Warning. This page was generated by a program which mangles the online pdfs. I hope it made no mistakes, but don't rely
on the information here without checking it first. Also, if any changes are made to the online timetables, this page will
change only if I notice and re-mangle things. In other words, please don't shout
at me if you end up in the wrong place!
So, please let me know of any mistakes. (Last mangled: 21 September 2025)
| | 9am |
10am |
11am |
12pm |
Xpm |
M | IA |
|
Differential Equations PROF C E THOMAS M. W. F. 10, Babbage Lecture Theatre |
|
Groups PROF H WILTON M. W. F. 11, Babbage Lecture Theatre |
|
|
|
IB |
|
Linear Algebra DR H BRADFORD M. W. F. 10, Cockcroft Lecture Theatre |
|
Methods PROF A ASHTON M. W. F. 11, Cockcroft Lecture Theatre |
|
|
|
II |
Probability and Measure PROF P RAPHAEL M. W. F. 9, MR3 |
Dynamical Systems PROF R R KERSWELL M. W. F. 9, MR9 |
|
Galois Theory DR R ZHOU M. W. F. 10, MR3 |
Fluid Dynamics PROF J R LISTER M. W. F. 10, MR4 |
Principles of Statistics DR S BACALLADO M. W. F. 10, MR9 |
|
Statistical Modelling PROF Q ZHAO M. W. F. 11, MR4 |
Algebraic Topology PROF A KEATING M. W. F. 11, MR3 |
Numerical Analysis PROF A C HANSEN M. W. F. 11, MR13 |
|
Automata and Formal Languages DR J BUTTON M. W. F. 12, MR3 |
Principles of Quantum Mechanics PROF E PAJER M. W. F. 12, MR2 |
Stochastic Financial Models DR M R TEHRANCHI M. W. F. 12, MR4 |
|
|
III |
Cosmology PROF E PAJER M. W. F. 9, MR2 |
Category Theory PROF P T JOHNSTONE M. W. F. 9, MR4 |
Analysis of Partial Differential Equations DR G AGENO M. W. F. 9, MR5 |
Probabilistic Combinatorics PROF J SAHASRABUDHE M. W. F. 9, MR13 |
|
Symmetries, Fields and Particles PROF M WINGATE M. W. F. 10, MR2 |
Algebraic Geometry PROF M GROSS M. W. F. 10, MR5 |
Structure and Evolution of Stars PROF C A TOUT M. W. F. 10, MR11 |
Biological Physics PROF R E GOLDSTEIN M. W. F. 10, MR12 |
Gaussian Processes and Measures PROF R NICKL M. W. 10, MR13 First lecture on Friday 10 October
|
|
Quantum Field Theory DR A CASTRO M. W. F. 11, MR2 |
Analytic Number Theory DR J TERäVäINEN M. W. F. 11, MR5 |
Information Theory PROF I KONTOYIANNIS M. W. 11, MR9 |
Planetary System Dynamics PROF M WYATT M. W. F. 11, MR11 |
Non-Newtonian Fluid Mechanics DR D HEWITT, DR K WARBURTON M. W. F. 11, MR12 |
Introduction to Nonlinear Analysis PROF P RAPHAEL M. W. F. 11, MR14 |
|
Modern Statistical Methods PROF R SHAH M. W. F. 12, MR5 |
Commutative Algebra DR N WILLIAMS M. W. F. 12, MR9 |
Formation of Galaxies PROF N W EVANS M. W. F. 12, MR11 |
Fluid Dynamics of Climate PROF P HAYNES, DR A MING, PROF J R TAYLOR M. W. F. 12, MR12 |
Random Discrete Structures PROF P SOUSI M. W. 12, MR13 |
|
|
Gr |
Introduction to Modular Representation Theory PROF S MARTIN M. W. 9, MR14 |
|
|
|
|
|
Tu | IA |
|
Numbers and Sets DR Z WYATT Tu. Th. S. 10, Babbage Lecture Theatre |
|
Vectors and Matrices DR A CAPEL CUEVAS Tu. Th. S. 11, Babbage Lecture Theatre |
|
Introduction to Mechanics §
PROF P J O'DONNELL
Tu. Th. 12, Hopkinson Lecture Theatre (ten lectures)
|
|
|
IB |
|
Quantum Mechanics PROF M UBIALI Tu. Th. 10, Cockcroft Lecture Theatre |
|
Analysis II PROF N WICKRAMASEKERA Tu. Th. S. 11, Cockcroft Lecture Theatre |
|
Markov Chains PROF I KONTOYIANNIS Tu. Th. 12, Cockcroft Lecture Theatre |
|
|
II |
Number Theory PROF J WOLF Tu. Th. S. 9, MR2 |
Cosmology PROF E P S SHELLARD Tu. Th. S. 9, MR4 |
|
Classical Dynamics PROF D SKINNER Tu. Th. S. 10, MR9 |
Linear Analysis DR A ZSáK Tu. Th. S. 10, MR3 |
|
Graph Theory PROF S MARTIN Tu. Th. S. 11, MR2 |
Electrodynamics PROF A CHALLINOR Tu. Th. 11, MR4 |
|
Representation Theory PROF I GROJNOWSKI Tu. Th. S. 12, MR3 |
Asymptotic Methods
PROF H LATTER
Tu. Th. 12, MR9
|
|
|
III |
Advanced Probability PROF J R NORRIS Tu. Th. S. 9, MR3 |
Quantum Information Theory DR A CAPEL CUEVAS Tu. Th. 9, MR5 |
Algebraic Topology PROF O RANDAL-WILLIAMS Tu. Th. S. 9, MR9 |
|
Statistical Field Theory PROF H S REALL Tu. Th. 10, MR2 |
Topics in Statistical Theory PROF R SAMWORTH Tu. Th. 10, MR4 |
Lie Algebras and Their Representations PROF I GROJNOWSKI Tu. Th. S. 10, MR5 |
Forcing and the Continuum Hypothesis PROF B LOEWE Tu. Th. 10, MR11 |
Mixing Times of Markov Chains DR A SARKOVIC Tu. Th. 10, MR13 |
|
Differential Geometry DR Y LI Tu. Th. S. 11, MR3 |
Algebraic Methods in Combinatorics M BOASE Tu. Th. 11, MR5 |
Astrophysical Fluid Dynamics PROF G I OGILVIE Tu. Th. S. 11, MR12 |
Quantum Information, Foundations and Gravity PROF A KENT Tu. Th. 11, MR13 |
|
General Relativity PROF D SKINNER Tu. Th. S. 12, MR2 |
Functional Analysis DR A ZSáK Tu. Th. S. 12, MR4 |
Local Fields PROF T FISHER Tu. Th. 12, MR5 |
Statistics in Medicine (MODULES A, B, C: STATISTICS IN MEDICAL PRACTICE) + DR C JACKSON AND COLLEAGUES Tu. Th. 12, MR11 (twelve lectures)
|
Mathematical Analysis of the Incompressible NAVIER-STOKES EQUATIONS PROF E TITI Tu. Th. S. 12, MR12
|
|
|
Gr |
|
|
|
|
|
W | IA |
|
Differential Equations PROF C E THOMAS M. W. F. 10, Babbage Lecture Theatre |
|
Groups PROF H WILTON M. W. F. 11, Babbage Lecture Theatre |
|
|
|
IB |
|
Linear Algebra DR H BRADFORD M. W. F. 10, Cockcroft Lecture Theatre |
|
Methods PROF A ASHTON M. W. F. 11, Cockcroft Lecture Theatre |
|
|
|
II |
Probability and Measure PROF P RAPHAEL M. W. F. 9, MR3 |
Dynamical Systems PROF R R KERSWELL M. W. F. 9, MR9 |
|
Galois Theory DR R ZHOU M. W. F. 10, MR3 |
Fluid Dynamics PROF J R LISTER M. W. F. 10, MR4 |
Principles of Statistics DR S BACALLADO M. W. F. 10, MR9 |
|
Statistical Modelling PROF Q ZHAO M. W. F. 11, MR4 |
Algebraic Topology PROF A KEATING M. W. F. 11, MR3 |
Numerical Analysis PROF A C HANSEN M. W. F. 11, MR13 |
|
Automata and Formal Languages DR J BUTTON M. W. F. 12, MR3 |
Principles of Quantum Mechanics PROF E PAJER M. W. F. 12, MR2 |
Stochastic Financial Models DR M R TEHRANCHI M. W. F. 12, MR4 |
|
|
III |
Cosmology PROF E PAJER M. W. F. 9, MR2 |
Category Theory PROF P T JOHNSTONE M. W. F. 9, MR4 |
Analysis of Partial Differential Equations DR G AGENO M. W. F. 9, MR5 |
Probabilistic Combinatorics PROF J SAHASRABUDHE M. W. F. 9, MR13 |
|
Symmetries, Fields and Particles PROF M WINGATE M. W. F. 10, MR2 |
Algebraic Geometry PROF M GROSS M. W. F. 10, MR5 |
Structure and Evolution of Stars PROF C A TOUT M. W. F. 10, MR11 |
Biological Physics PROF R E GOLDSTEIN M. W. F. 10, MR12 |
Gaussian Processes and Measures PROF R NICKL M. W. 10, MR13 First lecture on Friday 10 October
|
|
Quantum Field Theory DR A CASTRO M. W. F. 11, MR2 |
Analytic Number Theory DR J TERäVäINEN M. W. F. 11, MR5 |
Information Theory PROF I KONTOYIANNIS M. W. 11, MR9 |
Planetary System Dynamics PROF M WYATT M. W. F. 11, MR11 |
Non-Newtonian Fluid Mechanics DR D HEWITT, DR K WARBURTON M. W. F. 11, MR12 |
Introduction to Nonlinear Analysis PROF P RAPHAEL M. W. F. 11, MR14 |
|
Modern Statistical Methods PROF R SHAH M. W. F. 12, MR5 |
Commutative Algebra DR N WILLIAMS M. W. F. 12, MR9 |
Formation of Galaxies PROF N W EVANS M. W. F. 12, MR11 |
Fluid Dynamics of Climate PROF P HAYNES, DR A MING, PROF J R TAYLOR M. W. F. 12, MR12 |
Random Discrete Structures PROF P SOUSI M. W. 12, MR13 |
|
|
Gr |
Introduction to Modular Representation Theory PROF S MARTIN M. W. 9, MR14 |
|
|
|
|
|
Th | IA |
|
Numbers and Sets DR Z WYATT Tu. Th. S. 10, Babbage Lecture Theatre |
|
Vectors and Matrices DR A CAPEL CUEVAS Tu. Th. S. 11, Babbage Lecture Theatre |
|
Introduction to Mechanics §
PROF P J O'DONNELL
Tu. Th. 12, Hopkinson Lecture Theatre (ten lectures)
|
|
|
IB |
|
Quantum Mechanics PROF M UBIALI Tu. Th. 10, Cockcroft Lecture Theatre |
|
Analysis II PROF N WICKRAMASEKERA Tu. Th. S. 11, Cockcroft Lecture Theatre |
|
Markov Chains PROF I KONTOYIANNIS Tu. Th. 12, Cockcroft Lecture Theatre |
|
|
II |
Number Theory PROF J WOLF Tu. Th. S. 9, MR2 |
Cosmology PROF E P S SHELLARD Tu. Th. S. 9, MR4 |
|
Classical Dynamics PROF D SKINNER Tu. Th. S. 10, MR9 |
Linear Analysis DR A ZSáK Tu. Th. S. 10, MR3 |
|
Graph Theory PROF S MARTIN Tu. Th. S. 11, MR2 |
Electrodynamics PROF A CHALLINOR Tu. Th. 11, MR4 |
|
Representation Theory PROF I GROJNOWSKI Tu. Th. S. 12, MR3 |
Asymptotic Methods
PROF H LATTER
Tu. Th. 12, MR9
|
|
|
III |
Advanced Probability PROF J R NORRIS Tu. Th. S. 9, MR3 |
Quantum Information Theory DR A CAPEL CUEVAS Tu. Th. 9, MR5 |
Algebraic Topology PROF O RANDAL-WILLIAMS Tu. Th. S. 9, MR9 |
|
Statistical Field Theory PROF H S REALL Tu. Th. 10, MR2 |
Topics in Statistical Theory PROF R SAMWORTH Tu. Th. 10, MR4 |
Lie Algebras and Their Representations PROF I GROJNOWSKI Tu. Th. S. 10, MR5 |
Forcing and the Continuum Hypothesis PROF B LOEWE Tu. Th. 10, MR11 |
Mixing Times of Markov Chains DR A SARKOVIC Tu. Th. 10, MR13 |
|
Differential Geometry DR Y LI Tu. Th. S. 11, MR3 |
Algebraic Methods in Combinatorics M BOASE Tu. Th. 11, MR5 |
Astrophysical Fluid Dynamics PROF G I OGILVIE Tu. Th. S. 11, MR12 |
Quantum Information, Foundations and Gravity PROF A KENT Tu. Th. 11, MR13 |
|
General Relativity PROF D SKINNER Tu. Th. S. 12, MR2 |
Functional Analysis DR A ZSáK Tu. Th. S. 12, MR4 |
Local Fields PROF T FISHER Tu. Th. 12, MR5 |
Statistics in Medicine (MODULES A, B, C: STATISTICS IN MEDICAL PRACTICE) + DR C JACKSON AND COLLEAGUES Tu. Th. 12, MR11 (twelve lectures)
|
Mathematical Analysis of the Incompressible NAVIER-STOKES EQUATIONS PROF E TITI Tu. Th. S. 12, MR12
|
|
|
Gr |
|
|
|
|
|
F | IA |
|
Differential Equations PROF C E THOMAS M. W. F. 10, Babbage Lecture Theatre |
|
Groups PROF H WILTON M. W. F. 11, Babbage Lecture Theatre |
|
|
|
IB |
|
Linear Algebra DR H BRADFORD M. W. F. 10, Cockcroft Lecture Theatre |
|
Methods PROF A ASHTON M. W. F. 11, Cockcroft Lecture Theatre |
|
|
|
II |
Probability and Measure PROF P RAPHAEL M. W. F. 9, MR3 |
Dynamical Systems PROF R R KERSWELL M. W. F. 9, MR9 |
|
Galois Theory DR R ZHOU M. W. F. 10, MR3 |
Fluid Dynamics PROF J R LISTER M. W. F. 10, MR4 |
Principles of Statistics DR S BACALLADO M. W. F. 10, MR9 |
|
Statistical Modelling PROF Q ZHAO M. W. F. 11, MR4 |
Algebraic Topology PROF A KEATING M. W. F. 11, MR3 |
Numerical Analysis PROF A C HANSEN M. W. F. 11, MR13 |
|
Automata and Formal Languages DR J BUTTON M. W. F. 12, MR3 |
Principles of Quantum Mechanics PROF E PAJER M. W. F. 12, MR2 |
Stochastic Financial Models DR M R TEHRANCHI M. W. F. 12, MR4 |
|
|
III |
Cosmology PROF E PAJER M. W. F. 9, MR2 |
Category Theory PROF P T JOHNSTONE M. W. F. 9, MR4 |
Analysis of Partial Differential Equations DR G AGENO M. W. F. 9, MR5 |
Probabilistic Combinatorics PROF J SAHASRABUDHE M. W. F. 9, MR13 |
|
Symmetries, Fields and Particles PROF M WINGATE M. W. F. 10, MR2 |
Algebraic Geometry PROF M GROSS M. W. F. 10, MR5 |
Structure and Evolution of Stars PROF C A TOUT M. W. F. 10, MR11 |
Biological Physics PROF R E GOLDSTEIN M. W. F. 10, MR12 |
|
Quantum Field Theory DR A CASTRO M. W. F. 11, MR2 |
Analytic Number Theory DR J TERäVäINEN M. W. F. 11, MR5 |
Planetary System Dynamics PROF M WYATT M. W. F. 11, MR11 |
Non-Newtonian Fluid Mechanics DR D HEWITT, DR K WARBURTON M. W. F. 11, MR12 |
Introduction to Nonlinear Analysis PROF P RAPHAEL M. W. F. 11, MR14 |
|
Modern Statistical Methods PROF R SHAH M. W. F. 12, MR5 |
Commutative Algebra DR N WILLIAMS M. W. F. 12, MR9 |
Formation of Galaxies PROF N W EVANS M. W. F. 12, MR11 |
Fluid Dynamics of Climate PROF P HAYNES, DR A MING, PROF J R TAYLOR M. W. F. 12, MR12 |
|
|
Gr |
|
|
|
|
|
S | IA |
|
Numbers and Sets DR Z WYATT Tu. Th. S. 10, Babbage Lecture Theatre |
|
Vectors and Matrices DR A CAPEL CUEVAS Tu. Th. S. 11, Babbage Lecture Theatre |
|
|
|
IB |
|
|
Analysis II PROF N WICKRAMASEKERA Tu. Th. S. 11, Cockcroft Lecture Theatre |
|
|
|
II |
Number Theory PROF J WOLF Tu. Th. S. 9, MR2 |
Cosmology PROF E P S SHELLARD Tu. Th. S. 9, MR4 |
|
Classical Dynamics PROF D SKINNER Tu. Th. S. 10, MR9 |
Linear Analysis DR A ZSáK Tu. Th. S. 10, MR3 |
|
Graph Theory PROF S MARTIN Tu. Th. S. 11, MR2 |
|
Representation Theory PROF I GROJNOWSKI Tu. Th. S. 12, MR3 |
|
|
III |
Advanced Probability PROF J R NORRIS Tu. Th. S. 9, MR3 |
Algebraic Topology PROF O RANDAL-WILLIAMS Tu. Th. S. 9, MR9 |
|
Lie Algebras and Their Representations PROF I GROJNOWSKI Tu. Th. S. 10, MR5 |
|
Differential Geometry DR Y LI Tu. Th. S. 11, MR3 |
Astrophysical Fluid Dynamics PROF G I OGILVIE Tu. Th. S. 11, MR12 |
|
General Relativity PROF D SKINNER Tu. Th. S. 12, MR2 |
Functional Analysis DR A ZSáK Tu. Th. S. 12, MR4 |
Mathematical Analysis of the Incompressible NAVIER-STOKES EQUATIONS PROF E TITI Tu. Th. S. 12, MR12
|
|
|
Gr |
|
|
|
|
|