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IntroductionLecture 1

The Continuum Hypothesis (CH) asserts that if X is any uncountable subset of the real
numbers R, then there is a bijection from X onto R. It is an answer to Cantor’s Continuum
question: for which ordinal α is 2ℵ0 = ℵα ?

This is Hilbert’s First Problem (1900). However, there are other answers. Indeed, the response to
Cantor’s question is among the most striking and surprising results of 20th Century mathematics.

Stated loosely, CH is independent of the principles of ordinary mathematics. More precisely, if
ZFC is consistent then ZFC does not prove CH and ZFC does not prove ¬CH (the negation of
CH, namely 2ℵ0 > ℵ1).

One of the aims of this course is to provide an introduction to the ideas and methods developed
since Gödel (1938) and Cohen (1963) to handle this and other insoluble problems.

Independence results appear everywhere, not just in set theory. Let us consider some examples
(to correct any naive misconceptions/prejudices, etc).

Example 1. Combinatorics and the order type of the real line.

Let T = 〈T,6T 〉 be a tree, i.e.

(1) 6T is a partial order on T ;

(2) {y ∈ T : y <T x} is well ordered.

A chain in T is a set C ⊂ T such that C is totally ordered: x 6 y or y 6 x for all x, y ∈ C. An
antichain in T is a set A ⊂ T such that (∀x 6= y ∈ A)(x 66 y ∧ y 66 x).

Suppose κ is an infinite cardinal. A κ-Suslin tree is a tree T = 〈T,6T 〉 such that

(1) |T | = κ

(2) every chain and every antichain in T has cardinality less than κ.

Proposition. There are no ℵ0-Suslin trees.

Proof. Let T be an infinite tree with no infinite antichains. We show that T has an infinite
chain. Note that since |T | = ℵ0, there exists x0 ∈ T such that {y ∈ T : y > x0} is infinite:
for if each x had only finitely many descendants then we could inductively construct an
infinite antichain.

Now continue by induction to define {xn : n ∈ ω}, as follows: given xn ∈ T such that
|{y ∈ T : y > xn}| = ℵ0, pick xn+1 > xn such that |{y ∈ T : y > xn+1}| = ℵ0.

Then {xn : n ∈ ω} is an infinite chain in T. So T is not ℵ0-Suslin. 2

Question. What about ℵ1-Suslin trees?

Could we prove (as in the case of ℵ0-Suslin trees) that there are none?

We shall see that this question cannot be answered on the basis of ZFC. The assertion that there
are no ℵ1-Suslin trees is called Suslin’s Hypothesis.
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Example 2. Commutative Algebra.

Definition. An infinite abelian group A is free if A ∼=
⊕

i∈I Z for some set I, where Z is the
infinite cyclic group under addition.

Definition. An abelian group G is called a Whitehead group (W -group) if when we write
G = F/K with F and K free, every homomorphism f : K → Z extends to a homomor-
phism from F to Z.

For example, a free abelian group is a W -group. Every countable W -group is free (harder).

Question. Is every W -group free?

It emerges that the existence of an uncountable non-free W -group is independent of ZFC.

Example 3. Complex Analysis.

Let H(C) be the family of entire holomorphic functions.

Definition. A family F ⊂ H(C) is called orbit-countable if for all n ∈ C, we have |{f(w0) :
f ∈ F}| 6 ℵ0.

Every countable family F ⊂ H(C) is orbit-countable.

Question. If a family F ⊂ H(C) is orbit-countable, is F countable?

The answer (due to Erdős) is that the existence of an uncountable orbit-countable family is
equivalent to CH.

Example 4. Euclidean Geometry (Sierpinski; Kuratowski; Davies)

Consider the assertions about the Euclidean plane and space:

(P1) Euclidean 3-dimensional space can be decomposed into 3 sets Ei (i = 1, 2, 3) such that
each line parallel to the coordinate axis OXi intersects Ei in only a finite number of points.

(Q1) The Euclidean plane can be decomposed into 3 sets Ei (i = 1, 2, 3) such that for some 3
directions vi in the plane, each line in the direction vi intersects Ei in only a finite number of
points.

Theorem (Sierpinski et al). (P1) ⇐⇒ (Q1) ⇐⇒ 2ℵ0 = ℵ1.

So, for example, the rudimentary geometric assertion (Q1) about partitioning the Euclidean
plane can neither be proved nor disproved from the principles of ordinary mathematics.

Example 5. Commutative Algebra ( Loś).

Suppose ϕ :
∏
i∈I Z→ Z is a homomorphism of groups.

Question. If ϕ|⊕
i∈I Z ≡ 0, is ϕ ≡ 0 ?

Theorem (Specker). If I = N, and ϕ|⊕
i∈I

Z ≡ 0, then ϕ ≡ 0.

Theorem ( Loś). The following are equivalent:
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(1) There exists a non-zero group homomorphism ϕ :
∏
i∈I Z→ Z such that ϕ|⊕

i∈I
Z ≡ 0.

(2) The cardinal |I| is a measurable cardinal.

Measurable cardinals are examples of large cardinals. They are sets that are so big that their
existence cannot be proved from the principles of ordinary mathematics. Yet, they determine
whether there exist non-trivial homomorphisms of the Cartesian power

∏
i∈I Z fulfilling (1).

Definition. An uncountable cardinal κ is measurable iff there is a κ-complete non-principal
ultrafilter on κ, i.e. there is a set U ⊂ P(κ) such that

(1) U is a filter on κ (i.e., A,B ∈ U implies A ∩ B ∈ U ; ∅ /∈ U ; and if A ∈ U and
A ⊂ B ⊂ κ, then B ∈ U)

(2) for all A ⊂ κ, either A ∈ U or κ \A ∈ U

(3) for all α < κ, {α} /∈ U

(4) if λ < κ and Aα ∈ U for all α < λ, then
⋂
α<λAα ∈ U .

Logical questions. Although these five examples are not explicitly set-theoretic in character,
the solutions are all independent of the principles of ordinary set theory. Why? What is the
source of the complexity that gives rise to set-theoretic independence? What sorts of properties
and classes of structures are immune to independence phenomena?

Chapter 1. AxiomaticsLecture 2

In this lecture, we review the mathematical logic required for independence results in set theory,
specify the vocabulary, the language and the axioms of the first-order theory ZFC. We then de-
scribe the architecture of independence proofs, and introduce some useful models of (subtheories
of) ZFC. As a pay-off, we shall be able to show:

(1) any proof of the existence of the set of real numbers in first-order set theory must neces-
sarily use the power set axiom.

(2) the first-order theory ZFC is not finitely axiomatisable

(3) the existence of a strongly inaccessible cardinal cannot be proved from ZFC

What does (3) mean?

Definition. A cardinal κ is strongly inaccessible iff

1. κ is an uncountable regular cardinal, and

2. κ is a strong limit cardinal.

Definition. A cardinal κ is regular iff κ cannot be written as a union of less than κ many
sets of size less than κ.

For example, ℵ0 is regular – it cannot be written as a finite union of finite sets. Also, ℵ1
is regular – countable unions of countable sets are countable, under AC. But ℵω is not

regular, since ℵω =
⋃
n<ω ℵn. (Non-regular infinite cardinals are called singular.)

Definition. A cardinal κ is a strong limit iff (∀λ < κ)(2λ < κ).

For example, ℵ0 is a strong limit.
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We can manufacture strong limits using the i function (bet function). We define it by
transfinite recursion:

i0 = ℵ0

iα+1 = 2iα

iδ =
⋃

α<δ

iα when δ is a limit ordinal

So iω is a strong limit cardinal: for if λ < iω then λ 6 in for some n ∈ ω, and so
2λ 6 2in = in+1 < iω . However, iω is not regular.

The question is then natural: can one prove there exist strongly inaccessible cardinals?

Let us turn to the technical definitions from mathematical logic.

Definition. A vocabulary is a family τ of symbols that includes relation symbols, function
symbols and constant symbols.

The vocabulary of set theory has one binary relation symbol ∈.

If τ is a vocabulary, then the first-order language L(τ) or Lτ is the family of terms and formulas
formed from τ using the syntactic rules of first-order logic.

For definiteness, we specify that the logical vocabulary has the symbols:

variables v0, v1, v2, . . ., and ), (, =, ∧, ¬, ∃

But of course we shall use the customary meta-linguistic abbreviations ∨, →, ∀, and other
conventions too. We write L(∈) or L∈ for the language of set theory.

Suppose τ is a vocabulary. A τ-theory is a family T of τ -sentences (i.e., sentences in L(τ)).

For a theory T and a sentence ϕ (in L(τ)), we write T ⊢ ϕ to mean that ϕ is deducible (provable)
from T , i.e. there is a formal first-order deduction of ϕ from T .

For families S, T ⊂ L(τ), we write T ⊢ S to mean T ⊢ ϕ for all ϕ ∈ S.

A theory T ⊂ L(τ) is consistent iff for some τ -sentence ϕ, T 6⊢ ϕ (i.e., T does not prove ϕ);
equivalently, for every ϕ ∈ L(τ), we have T 6⊢ ϕ ∧ ¬ϕ.

A theory T is complete iff T is maximal consistent, i.e. if T ⊂ T ′ and T ′ is consistent then
T = T ′. Equivalently, T is complete iff for every ϕ ∈ L(τ), either ϕ ∈ T or ¬ϕ ∈ T .

With this review of syntax over, we can define the theory ZFC precisely. The axioms are the
transcriptions into L(∈) of the formal principles of naive (or semi-axiomatic) set theory.

The axioms of ZFC are:

(A0) Set Existence. ∃x(x = x)

(A1) Extensionality. ∀x(x ∈ a↔ x ∈ b)→ a = b

Notes. 1. We are using the meta-language to write this axiom.

2. We tacitly adopt the generality interpretation of free variables: that free variables a
and b are understood to be universally quantified.
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(A2) Null set. ∃x∀y ¬(y ∈ x)

(A3) Pair set. ∃x∀y(y ∈ x↔ y = a ∨ y = b)

(A4) Union. ∃x∀y(y ∈ x↔ ∃z(y ∈ z ∧ z ∈ a))

(A5) Power set. ∃x∀y(y ∈ x↔ y ⊂ a), where y ⊂ a abbreviates ∀z(z ∈ y → z ∈ a)

(A6)ϕ Separation (restricted comprehension, subset). For each ϕ in L(∈) in which x does not
appear,

∃x∀y(y ∈ x↔ y ∈ a ∧ ϕ(y))

(i.e., x = {y ∈ a : ϕ(y)} is a set)

(A7)ψ Replacement. For each ψ(z, y) in L(∈) in which x does not appear,

∀z∀u∀v
(
ψ(z, u) ∧ ψ(z, v)→ u = v

)
−→ ∃x∀y

(
y ∈ x↔ ∃z(z ∈ a ∧ ψ(z, y))

)

(i.e., x = {F (z) : z ∈ a} is a set, where F (z) = y ⇐⇒ ψ(z, y).)

(A8) Foundation. ∃x(x ∈ a)→ ∃x(x ∈ a ∧ x ∩ a = ∅)

(A9) Infinity. ∃w(∅ ∈ w ∧ ∀x(x ∈ w → S(x) ∈ w)), where S(x) = x ∪ {x}

(A10) Choice.

∀x∀y
(
x ∈ a ∧ y ∈ a ∧ x 6= y → x ∩ y = ∅ ∧ ∀x(x ∈ a→ x 6= ∅)

)

−→ ∃c∀x(x ∈ a→ ∃u(c ∩ x = {u}))

Definition. The first-order theories ZF and ZFC are those with axioms A0–A9 and A0–A10Lecture 3

respectively.

Comments. Why these choices?

1. Why axiomatise?

• reduce vagueness of naive set theory and avoid paradoxes

• provide rigorous concept of provability (and unprovability)

• discover new set-theoretic principles

2. Why this first-order axiomatisation?

• the vocabulary {∈} is economised and suffices to express everything pertinent

• first-order logic is sound, complete and compact

• infinitary logics are not compact (infinitary logic allows infinite conjunctions and
infinite strings of quantifiers)

• second-order and higher order logics are generally not compact and the quantifiers
range over subsets of domains

3. Why these axioms?

• see the Shoenfield handout (or Part II Logic & Set Theory)
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The semantics and model theory of set theory

We discuss the concepts from first-order model theory that we need for the analysis of ZF and
ZFC.

Definition. Let ϕ(x) be a formula in L(∈). We refer to {x : ϕ(x)} as a class. (Classes need
not be sets: e.g., V is the class {x : x = x}.)

We may allow parameters x1, . . ., xn ∈ V . E.g., M = {x : ϕ(x, x1, . . ., xn)}.

Definition. Suppose τ is a vocabulary. A τ-structure is a pair M = (M, τM ) where M is a
non-empty class, and τM is a family of relations, operations and constants on M which
interpret the symbols of τ :

• if R ∈ τ is an n-ary relation symbol then RM ⊂Mn

• if f(x1, . . ., xn) ∈ τ , then fM : Mn →M (and we allow dom(f) ⊂Mn)

• if c ∈ τ is a constant symbol, then cM ∈M

In the case of L(∈), a τ -structure is simply a pair (M,∈M ) where ∈M⊂M ×M .

Definition.

1. Suppose ϕ ∈ L(∈) is a sentence. We write M |= ϕ to mean ϕ is true in M.

2. If free variables of the formula ψ are included in x1, . . ., xn and a1, . . ., an ∈ M , we
write M |= ϕ[a1, . . ., an] to mean a1, . . ., an satisfy ϕ(x1, . . ., xn) in M (when x1, . . ., xn
are assigned the values a1, . . ., an)

3. If T is a τ -theory, we write M |= T to mean M |= ϕ for every ϕ ∈ T , and say that M
is a model of T .

We write Mod(T ) for the class of models of T .

4. We say a τ -theory T is finitely axiomatisable if there exists a finite family T0 of
τ -sentences such that Mod(T ) = Mod(T0).

The fundamental results from first-order logic we need are the following.

Theorem (Completeness). Suppose T is a τ -theory and ϕ is a τ -sentence.

(1) T |= ϕ (i.e., every model of T is a model of ϕ) iff T ⊢ ϕ.

(2) T is consistent iff T has a model.

Theorem (Compactness). Suppose T is a τ -theory. Then T has a model iff every finite
subfamily of T has a model (i.e., T is finitely satisfiable).

Let us define some important examples of structures for L(∈).

Definition. We define by transfinite recursion on α ∈ Ord the set Vα as follows:

(1) V0 = ∅

(2) Vα+1 = P(Vα), the power set of Vα

(3) Vα =
⋃
β<α Vβ , when α is a limit ordinal

Definition. The class {Vα : α ∈ Ord} is called the von Neumann hierarchy.

Exercise. Vω is a model of ZFC\{Infinity}.
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Proposition.

1. If α < β then Vα ⊂ Vβ .

2. Vα is transitive: if x ∈ y ∈ Vα then x ∈ Vα (i.e., x ∈ Vα =⇒ x ⊂ Vα).

(Hint: use transfinite induction on α.)

Definition. The class WF of well-founded sets is defined by the formula WF (x)

(∃α ∈ Ord)(x ∈ Vα)

Picture.
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❈
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❈
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✄
✄
✄
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✄
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✄
✄
✄
✄
✄

...

...

...

Vω =
⋃

n<ω

Vn


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V7





V0 = ∅

V1 = P∅

V2 = PP∅

Vω+1





Vω1

Definition. Let λ be an infinite cardinal. We define H(λ) = {x : |trcl(x)| < λ}, where trcl(x)
is the transitive closure of x.

H(λ), also written Hλ, is the family of sets of cardinality hereditarily less than λ.

Reflection Principles and Non-finite Axiomatizability of ZF and ZFCLecture 4

We motivate the Reflection Principle with a simple proposition.

Proposition. ZF ⊢ ∀xWF (x), i.e. ZF ⊢ ∀x∃α ∈ Ord (x ∈ Vα).

Proof. Let x ∈ V and suppose x /∈WF .

Consider u = {y ∈ trcl({x}) : y /∈ WF}. Then u 6= ∅ (as x ∈ U).
By Foundation, u has an ∈-minimal element y.

For all z ∈ y, we have z ∈ WF (by ∈-minimality of y), so there
exists αz minimal such that z ∈ Vαz+1.

{αz : z ∈ y} is a set, by Replacement. So sup{αz + 1 : z ∈ y} ∈
Ord, and for all z ∈ y, we have z ∈ Vα. So y ⊂ Vα, and hence
y ∈ Vα+1 = P(Vα), contradicting y /∈WF .

So x must belong to WF . So we have shown that V = WF . 2

❆
❆
❆

❆
❆

❆
❆

❆

✁
✁
✁
✁
✁
✁
✁
✁

❈
❈
❈
❈
❈
❈
❈
❈

r

x

rz Vαz+1

Vα
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Thus our picture (under Foundation) simplifies to:

❆
❆
❆

❆
❆

❆
❆❆

✁
✁
✁
✁
✁
✁
✁✁V = WF

Vα

Comments.

1. Note, we do not attempt to show ZF ⊢ ∀xWF (x) by constructing a formal derivation
from the axioms. We argue informally in V (a class), and then observe that the
argument could be recast as a formal deduction.

2. We can restate the Proposition as follows. Let ZF0 be ZF without Foundation.
By the Deduction Theorem of first-order logic, the Proposition is exactly ZF0 ⊢
Foundation→ (V = WF ).

Exercise. Show that ZF0 ⊢ (V = WF )→ Foundation.

Returning to the picture of V , it is natural to ask: how similar are V and Vα? We consider
which first-order properties of V are “reflected” in Vα, for large α.

There are two aspects to this problem.

1. For ϕ an axiom of ZFC or first-order property in L(∈), and α ∈ Ord, is Vα a model of ϕ?

2. For which axioms ϕ of ZFC can one prove there exist (arbitrarily large) α ∈ Ord such
that Vα |= ϕ.

There is a technical difficulty to overcome: what does it mean to write V |= ϕ, or A |= ϕ when
A is a proper class?

Recall by Tarski’s Theorem on indefinability of truth that we cannot define (in ZFC) V |= ϕ.
We deal with this by relativising formulas to a class.

Definition. Suppose A = {x : A(x)} is a class where A(x) is a formula in L(∈) with free
variable x.

For each formula ϕ in L(∈) we define ϕA, the relativisation of ϕ to A, as follows:

• if ϕ is vi ∈ vj or vi = vj , then ϕA is vi ∈ vj or vi = vj

• if ϕ is ϕ1 ∧ ϕ2 or ¬ϕ3, then ϕA is ϕA1 ∧ ϕ
A
2 or ¬(ϕA3 )

• if ϕ is ∃yψ(y), then ϕA is ∃y(y ∈ A∧ψA(y)) – more formally, ϕA is ∃y(A(y)∧ψA(y))

Exercise. Write out ϕA for axioms (A0)–(A5).

Intuitively, ZF ⊢ ϕA means A |= ϕ, i.e. A is a model of ϕ when the bound quantifiers are
relativised to the class A.

Definition. Let A be a class. We say {Aα : α ∈ Ord} is a cumulative hierarchy for A if

(1) Aα is a set

(2) α < β implies Aα ⊂ Aβ

(3) Aδ =
⋃
α<δ Aα if δ is a limit ordinal

(4) A =
⋃
α∈Ord

Aα
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Theorem (Reflection Principle). Suppose A =
⋃
α∈Ord

Aα is a cumulative hierarchy. Sup-
pose ϕ(y1, . . ., yn) is a formula in L(∈).

Then there exist unboundedly many α ∈ Ord such that:

∀x1, . . ., xn ∈ Aα, ϕ(x1, . . ., xn)A ←→ ϕ(x1, . . ., xn)Aα

Proof. The idea is to “close under Skolem-like functions”.

Write ȳ for (y1, . . ., yn). List all of the subformulas of ϕ(ȳ) as ψ1, . . ., ψk. Wlog all existen-
tial subformulas (i.e. of the form ∃u(. . .)) appear at the beginning of the list, and if ϕ(ȳ)
is ∃xψ(x, ȳ) then ψ1 is ϕ(ȳ). Let ji + 1 be the number of free variables in ψi.

The “Skolem-like” functions. For y1, . . ., yji ∈ A, define fi : Aji → Ord by

fi(y1, . . ., yji) =





the least ordinal α such that
if ψi(x, y1, . . ., yji)

A for some x ∈ A
then ψi(x, y1, . . ., yji)

A for some x ∈ Aα

0 otherwise

For any γ, fi
[
Ajiγ

]
is a set by Replacement, so there is an ordinal βi(γ) greater than all

ordinals in fi
[
Ajiγ

]
.

Let β(γ) = max{βi(γ) : i 6 k}.

Now, given α ∈ Ord, define 〈γn : n < ω〉 by

γ0 = α, γn+1 = β(γn), and γω = sup{γn : n ∈ ω}

Claim. γω is as required. I.e., for all y1, . . ., yn ∈ Aγω , we have

ϕ(ȳ)A ←→ ϕ(ȳ)Aγω

This we prove by induction on complexity of ϕ.

The claim is trivial if ϕ(ȳ) is atomic. If ϕ(ȳ) is ϕ1(ȳ) ∧ ϕ2(ȳ) or ¬ϕ3(ȳ), then the claimLecture 5

follows by induction hypothesis on ϕ1, ϕ2, ϕ3.

The interesting case is when the formula ϕ(ȳ) is ∃xψi(x, ȳ).

If ϕ(ȳ)Aγ then there is x ∈ Aγω such that ψi(x, ȳ)Aγω . So by induction hypothesis applied
to ψi(x, ȳ) we obtain ψi(x, ȳ)A, i.e. ∃xψi(x, ȳ)A, i.e. ϕ(ȳ)A.

Conversely, if ϕ(ȳ)A and ȳ ∈ Ajiγω , then there is an m < ω with y1, . . ., yji ∈ Aγm . What
do we know about ξ = fi(ȳ) ? Well, ξ 6 γm+1.

We are given that there is x ∈ A such that ψi(x, ȳ)A, so by construction there is x ∈ Afi(ȳ)
such that ψi(x, ȳ)A. But Afi(ȳ) ⊂ Aγω , so by induction hypothesis we obtain ψi(x, ȳ)Aγω ,
or in other words ϕ(ȳ)Aγω , as required. 2

Corollary 1. Suppose ϕ(x̄) is a formula in L(∈).

Then ZF ⊢ ∀β ∃α > β ∀y1, . . ., yn ∈ Vα ϕ(ȳ)Vα ←→ ϕ(ȳ).
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Proof. By the Proposition, ZF ⊢ V = WF , so {Vα : α ∈ Ord} is a cumulative hierarchy for V .
Now apply the Reflection Principle with Aα = Vα and A = V . 2

Corollary 2. The theories ZF and ZFC are not finitely axiomatisable.

Proof. By contradiction and Gödel’s Second Incompleteness Theorem.

Suppose T0 is a finite set of sentences in L(∈) and Mod(ZFC) = Mod(T0).

Let ϕ be
∧
T0, the conjunction of T0. Now, by the Reflection Principle applied to ϕ using

{Vα : α ∈ Ord}, there exists α ∈ Ord such that ϕVα ↔ ϕ.

ZFC ⊢ ϕ, so ZFC ⊢ ϕVα , so Vα |= ϕ, and so Vα |= ψ for every ψ ∈ ZFC.

In other words, we have proved in ZFC that there exists a set (namely Vα) which is a model
of ZFC. That is to say, we have proved the consistency of ZFC just using the axioms of
ZFC. This contradicts Gödel’s Second Incompleteness Theorem. 2

We might prefer a proof that does not appeal to Gödel. Here is the idea.

For the Vα in the above proof, “Vα |= ZFC” – (∗)

Let α be minimal with this property (∗).

❆
❆

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁
✁
✁✁
Vα |= ZFC

Vβ = V Vα

β

If
{
V Vα

β : β < α
}

were a cumulative hierarchy for Vα, then in Vα we could apply the Reflection

Principle to ϕ =
∧
T0 to get a new ordinal γ < α such that ϕV

Vα
γ ↔ ϕVα .

But ϕVα ↔ ϕ, so ϕV
Vα
γ ↔ ϕ. Since “Vα |= ZFC”, V Vα

γ “must be” Vγ .

So γ < α and Vγ reflects ϕ, contradicting the minimality of α.

This is a vaguely expressed argument, but it can be made rigorous. The issue concerns how or
whether defined terms change their meanings as one moves from one model to another. This
will lead us to study the concept of absoluteness.

However, some further comment on the strength of the Reflection Principle is necessary.

Theorem. Let LM (standing for “Levy-Montague”) be the axioms of ZFC without the Re-
placement axiom scheme, but with all instances of the Reflection Principle (one for each
formula ϕ(ȳ)).

Then, for every formula ϕ(ȳ), LM ⊢ Replacementϕ(ȳ).

Proof. The idea is to use the axiom of Separation combined with RPϕ(ȳ) to find an appropriate
witness for Replacement.

Details will be in an exercise. 2

10



Cumulative hierarchies are very useful as a source of new axioms of set theory.

Definition. Suppose A is a set. Then the collection Def(A) is the family of sets y ⊂ A such
that for some formula ϕ(x, y1, . . ., yn) in L(∈) and a1, . . ., an ∈ A, we have y = {x :
ϕ(x, a1, . . ., an)A}.

Def(A) is the collection of definable subsets of A.

We define the cumulative hierarchy of constructible sets as follows.

1. L0 = ∅

2. Lα+1 = Def(Lα)

3. Lδ =
⋃
α<δ Lα when δ is a limit ordinal.

The class L =
⋃
α∈Ord

Lα is the universe of constructible sets. The Axiom of Constructibility
is the assertion that V = L, i.e. ∀x∃α ∈ Ord(x ∈ Lα).

The Axiom of Constructibility is independent of ZFC. It is a very powerful statement about the
regularity of the universe V . Although the study of the class L is not the goal of this course, we
note that L is a transitive class model of ZFC+GCH. It is the smallest transitive model of ZFC
containing all of the ordinals.

The intuition behind the definition of the class L is that instead of the “maximally fat” powerLecture 6

set operation, one puts into the power set of a set x only those subsets of x that necessarily
must be there, i.e. the ones that have names (in the sense of definability).

It is instructive to begin the study of L by comparing the basic properties of Vα and Lα.

Theorem (Basic properties of Vα).

(1) α 6 β → Vα ⊂ Vβ

(2) α < β → Vα ∈ Vβ

(3) Vα is transitive: x ∈ Vα → x ⊂ Vα

(4) Vα = {x ∈ WF : rank(x) < α}, where rank(x) = min{β ∈ Ord : x ∈ Vβ+1}

(5) y ∈ x→ rank(y) < rank(x)

(6) rank(α) = α for all α ∈ Ord

(7) Ord ∩ Vα = α
(

= {β : β < α}
)

(8) ∀n, |Vn| < ℵ0, and |Vω | = ℵ0, and, with (AC), |Vω+α| = iα for all α ∈ Ord

Proof. All are done by transfinite induction on α ∈ Ord. (Exercise.) 2

Theorem (Basic properties of Lα).

(0) Lα is a set and Lα ⊂ Vα

(1) Lα is transitive

(2) |Ln| < ℵ0, Ln = Vn for n < ω, and Lω = Vω

(3) |Lα| = |α| for α > ω

(4) α 6 β → Lα ⊂ Lβ

(5) α < β → Lα ∈ Lβ (use the formula x = x), and Lα ( Lβ

(6) α ∈ Lα+1 and α /∈ Lα

11



Proof. In most cases, these are like the proofs for Vα using transfinite induction. (Exercise.) 2

Comment. For most α ∈ Ord, we have Lα ( Vα, by (8). Thus in L, we have greater control
over the power set operation.

These basic properties of Vα and Lα will be useful when we come to establish relative consistency
results.

We define next the concepts of relative consistency and inner models.

Definition. Let ϕ be a sentence in L(∈) and T a theory. We say that ϕ is consistent relative
to T if the consistency of T implies the consistency of T ∪ {ϕ}.

Analogously, we can define the concept of S being consistent relative to T for another theory S.

There is a very useful criterion for relative consistency.

Theorem. Let T be a theory in L(∈) (or some expansion of L(∈)), and ϕ be a sentence.
Suppose A(x) is a formula in L(∈) with exactly the free variable x. If

(1) T ⊢ ∃xA(x)

(2) for every axiom σ in T , T ⊢ σA

(3) T ⊢ ϕA

then ϕ is consistent relative to T .

Proof. Let us prove the contrapositive. So T ∪{ϕ} is inconsistent. Then there is a finite subset
{σ1, . . ., σn} ⊂ T such that S0 = {σ1, . . ., σn, ϕ} is inconsistent. Thus S0 has no model.

Hence, |= σ1 ∧ . . . ∧ σn → ¬ϕ.

Recall from Logic, if ψ is any sentence, then |= ψ implies |= ∃xA(x)→ ψA – (∗)

So by (∗), |= ∃xA(x)→ (σ1 ∧ . . . ∧ σn → ¬ϕ)A.

That is, |= ∃xA(x)→ (σA1 ∧ . . . ∧ σ
A
n → ¬ϕ

A).

Now by (1) and (2), T ⊢ ¬ϕA. But by (3), T ⊢ ϕA. Thus T ⊢ ¬ϕA ∧ ϕA, so T is
inconsistent. 2

Definition. A class A is called an inner model of a theory T (with respect to a theory S) if

(1) A is transitive

(2) for every σ in T , we have S ⊢ σA

The previous theorem helps us find inner models. We now have several useful classes (Vα, Lα,
Hλ, WF , L) for the application of the criterion to obtain relative consistency results.

An example is the following theorem of Gödel: L is an inner model of ZFC+V = L+GCH.

12



Chapter 2. Infinitary CombinatoricsLecture 7

Definition. A cardinal κ is a successor cardinal if κ = λ+ for some cardinal λ.

A cardinal κ is a limit cardinal if κ is not a successor cardinal.

Remark. Every infinite cardinal is a limit ordinal.

Definition. Suppose that P = (P,6) is a partial order. A set A ⊂ P is a cover of P if

(∀p ∈ P )(∃q ∈ A)(p 6 q)

The cofinality of P is the least cardinal λ for which there exists a cover of P of size λ:

cf(P) = min{|A| : A ⊂ P is a cover of P}

Notes.

(1) cf(P) 6 |P|

(2) cf(α) 6 α for every ordinal α

(3) cf(α+ 1) = 1 (since {α} is a cover)

(4) cf(P(X),⊂) = 1

Lemma 1. Suppose α ∈ Ord. Then there exists a function f : cf(α)→ α such that

(1) range(f) is a cover of α

(2) f is strictly increasing: ξ < ζ → f(ξ) < f(ζ)

Proof. Let A be a cover of α of size cf(α), say A = {αζ : ζ < cf(α)}. Define f : cf(α)→ α by

f(ζ) = max
{
αζ , sup{f(ξ) + 1 : ξ < ζ}

}

Why is f well-defined for all ζ ∈ cf(α)? By minimality of |A|, f is well-defined. Then (1)
and (2) are immediate. 2

Definition. We say that f : α → β is a cofinal map (or that f maps α into β cofinally) if
range(f) is unbounded in β.

Proposition 2. The following are equivalent:

(1) cf(β) = α

(2) α is the least ordinal such that there is a cofinal map f : α→ β

Proof.

(1) ⇒ (2). Let A be a cover of cardinality cf(β) = α. So α is a cardinal. By Lemma 1,
there is an increasing function f : α → β such that range(f) is a cover of β. So
range(f) is unbounded in β and is therefore cofinal.

α is the least ordinal with this property. For if δ < α and g : δ → β, then |range(g)| 6
|δ| 6 δ < α = cf(β), so range(g) is not a cover and hence is not cofinal.

Thus α is the least cardinal such that there is f : α→ β cofinally.

(2) ⇒ (1). Let f : α → β be cofinal, and α is minimal, so |α| = α. Then A = range(f)
is a cover of β, so cf(β) 6 |A| 6 |α| = cf(β). 2
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Definition. A cardinal κ is regular if there is no family {Aα : α < λ} such that κ =
⋃
α<λAα,

with |Aα| < κ and λ < κ.

If κ is not regular, we say that κ is singular.

Examples. ℵ0 is regular, as is ℵ1. But ℵω is singular, since ℵω =
⋃
n<ω ℵn. And iω is also

singular.

Proposition 3. A cardinal κ is singular iff cf(κ) < κ.

Proof.

(⇐) Suppose λ = cf(κ), and λ < κ and A ⊂ κ is a cover of size λ, say A = {Aζ : ζ < λ}.

Let Aζ = {β < κ : β < αζ + 1} = αζ + 1.

Then |Aζ | = |αζ + 1| = |αζ | < κ, and λ < κ, and κ =
⋃
ζ<λAζ . (Take any β 6 κ,

then β ∈ Aζ for some ζ since A is a conver of κ.)

So κ is singular.

(⇒) Suppose κ is singular, and let λ be minimal such that κ =
⋃
ζ<λAζ with |Aζ | < κ.

Case 1: some Aα is a cover of κ. Then cf(κ) 6 |Aα| < κ, and we are done.

Case 2: otherwise. So no Aζ covers κ. Thus for all ζ < λ, there is αζ such that
∀β ∈ Aζ , β < αζ . Let A = {αζ : ζ < λ}. Then A is a cover of κ, and |A| 6 λ < κ, so
cf(κ) < κ. 2

Corollary 4. cf(κ+) = κ+ for every infinite cardinal κ.

Proof. Let λ = cf(κ+). Write κ =
⋃
α<λAα, with |Aα| < κ+.

Then κ+ =
∣∣⋃

α<λAα
∣∣ = λ · sup{|Aα| : α < λ} = max

{
λ, sup{|Aα| : α < λ}

}
.

But |Aα| 6 κ, so κ+ = max{λ, κ} = λ = cf(κ+). 2

Lemma 5. Suppose δ is a limit ordinal, and f : δ → α is strictly increasing and cofinal. ThenLecture 8

cf(δ) = cf(α).

Proof. First, cf(α) 6 cf(δ). Let g : cf(δ) → δ be as in Lemma 1.
Now, range(f ◦ g) is a cover of α. So cf(α) 6 cf(δ).

Second, cf(δ) 6 cf(α). Let h : cf(α) → α be cofinal, and let
k(ξ) be the least γ < δ such that f(γ) > h(ξ).

Claim: k : cf(α)→ δ is cofinal.

Why? If i < δ then f(i) < α. There exists ξ with f(i) 6 h(ξ),
and k(ξ) = min{γ : f(γ) > h(ξ)}, and so i < k(ξ) = γ.
(If γ < i then f(γ) < f(i) and we get a contradiction.)

So cf(δ) 6 cf(α). 2

✡
✡
✡✡✣ ❏

❏
❏❏❪

ξ

h(ξ)

f(γ)

γ

cf(α)

α δ

h

f
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Corollary 6. cf(cf(α)) = cf(α).

Proof. By Lemma 1, there is a strictly increasing cofinal map f : δ = cf(α) → α. By Lemma
5, since cf(α) is a limit ordinal (since cf(α) is a cardinal), it follows that cf(δ) = cf(α), i.e.
cf(cf(α)) = cf(α). 2

Thus cf(α) is always a regular cardinal.

Corollary 7. ℵ0 is regular.

Proof. Any cover is infinite.

Corollary 8. If δ is a limit ordinal, then cf(ℵδ) = cf(δ).

Proof. By Lemma 1, there is a strictly increasing cofinal map f : cf(δ)→ δ. Define g : cf(δ)→
ℵδ by g(ξ) = ℵf(ξ).

So cf(ℵδ) = cf(δ), by Lemma 5, because g is strictly increasing and cofinal. 2

Exercise. Prove that for all α ∈ Ord, we have α 6 ℵα.

Corollary 9. If ℵδ is an uncountable regular limit ordinal, then ℵδ = δ.

Proof. We have
ℵδ = cf(ℵδ) by regularity

= cf(δ) by Corollary 8
6 δ
6 ℵδ by the exercise

So ℵδ = δ. 2

Observation. The converse is false. I.e., there exists a singular δ with ℵδ = δ.

For example, let α0 = ω and αn+1 = ℵαn
, and α = supn<ω αn.

Then ℵα = α, but cf(ℵα) = ω.

Cofinality enables us to improve Cantor’s Theorem, that 2κ > κ.

Definition. Suppose that {Xi : i ∈ I} are pairwise disjoint sets, with |Xi| = λi. We define the
(cardinal) sum

∑

i∈I

λi =

∣∣∣∣
⋃

i∈I

Xi

∣∣∣∣

and we define the (cardinal) product

∏

i∈I

λi =
∣∣{f : f is a function from I into

⋃
X, with f(i) ∈ Xi∀i ∈ I

}∣∣

Theorem 10 (König). Suppose λα < κα, for all α < δ. Then
∑
α<δ

λα <
∏
α<δ

κα .

Proof. Clearly,
∑
α<δ

λα 6
∏
α<δ

κα. (Exercise: use the natural inclusion map.)

Note
∑
α<δ

λα =
∣∣ ⋃
α<δ

{α} × λα
∣∣. Suppose that G :

⋃
α<δ

{α} × λα →
∏
α<δ

κα.
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We show that G is not a surjection.

Define h ∈
∏
α<δ

κα as follows. For α < δ,

h(α) = min
{
ξ : ξ ∈ κα \ {παG(α, ζ) : ζ < λα}︸ ︷︷ ︸

has cardinality 6λα

}

where πα is the projection of
∏
β<δ

κβ onto κα.

h is well-defined, since λα < κα. Now it is evident that h /∈ range(G) – by construction,
h(α) 6= παG(α, ξ) for all ξ < λα. 2

Corollary 11. If λ > cf(κ), then κλ > κ.

Proof. Write κ =
∑

i<cf(κ)

λi, with λi < κ. Then by Theorem 10,

κ =
∑

i<cf(κ)

λi <
∏

i<cf(κ)

κ = κcf(κ) 6 κλ

2

Corollary 12. If κ > ℵ0, then cf(2κ) > κ.

Proof. Let λ = cf(2κ). By Corollary 11, (2κ)λ > 2κ.

But (2κ)λ = 2κλ = 2max{κ,λ}. So 2max{κ,λ} > 2κ.

So max{κ, λ} > κ, and so λ = cf(2κ) > κ. 2

We know from Corollaries 11 and 12 that ∀κ ∃λ∗ ℵ0 6 λ∗ 6 cf(κ) and κλ
∗

> κ.Lecture 9

Three natural questions occur:

(1) What is the least such λ∗?

(2) For the least λ∗ above,

(a) how large is κλ
∗

relative to κ?

(b) how large is κcf(κ) relative to κ?

(3) How are 2κ and κcf(κ) related (if at all)?

Key examples to think about:

(1) What is ℵℵ0
ω , given 2ℵn , n < ω?

(2) What is ℵℵ1
ω1

, given 2ℵα , α < ω1?

Answers were given by Shelah and Silver.

In this lecture, we examine some hypotheses which bear on these questions.
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Definition.

(1) The Generalised Continuum Hypothesis (GCH) is the statement:

(∀κ > ℵ0)(2κ = κ+)

(2) The Continuum Hypothesis (CH) is the statement:

2ℵ0 = ℵ1

(3) The weak Generalised Continuum Hypothesis (wGCH) is the statement:

(∀κ > ℵ0)(2κ < 2κ
+

)

(4) The weak Continuum Hypothesis (wCH) is the statement:

2ℵ0 < 2ℵ1

Remark. GCH → wGCH, and CH → wCH.

We look at how GCH impacts the operation of cardinal exponentiation and infinite products of
cardinals.

Notation. We write XY = {f : f is a function from X into Y }.

Proposition 13. Let κ > ℵ0. Then κ is regular iff (∗) (∀λ < κ)
(
λκ =

⋃
α<κ

λα
)

Proof.

(⇒) Suppose λ < κ = cf(κ). Note key observation: if f ∈ λκ, then range(f) is bounded
in κ, and so there is α < κ such that f ∈ λα.

So λκ ⊂
⋃
α<κ

λα and clearly
⋃
α<κ

λα ⊂ λκ. Thus (∗) holds.

(⇐) Suppose (∗) holds. If λ < κ and f : λ → κ then there is α < κ with f ∈ λα by (∗).
So f is not cofinal in κ. Thus λ < cf(κ) for all λ < κ.

So κ 6 cf(κ) 6 κ. I.e., κ is regular. 2

Lemma 14. For all κ > ℵ0, if λ < cf(κ) and (∀µ < κ)(2µ 6 κ), then κλ = κ.

Proof. If λ < cf(κ), then

κλ = |λκ| =
∣∣∣
⋃

α<κ

λα
∣∣∣

(∗)
=

∣∣∣
∑

α<κ

λα
∣∣∣ =

∑

α<κ

∣∣λα
∣∣ =

∑

α<κ

|α|λ

6
∑

α<κ

(
2|α|

)λ
=

∑

α<κ

2|α|λ 6
∑

α<κ

κ = κκ = κ 6 κλ

(Note that (∗) uses the key observation from the proof of Proposition 13.) 2

Thus GCH answer all of the opening question about λ∗, κcf(κ) and 2κ. GCH implies that
λ∗ = cf(κ), and κλ

∗

= κcf(κ) = κ+.
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Definition. For cardinals λ, κ, we define the weak power of κ to λ to be

κ<λ =
∑

µ<λ

κµ

Lemma 15. For all κ > ℵ0,

(1) if κ = cf(κ) and (∀µ < κ)(2µ 6 κ), then κ<κ = κ

(2) Assume GCH. Then κ = cf(κ) iff κ<κ = κ.

Proof.

(1) By Lemma 14, for all λ < κ = cf(κ), we have κλ = κ.

So κ<κ =
∑
λ<κ

κλ =
∑
λ<κ

κ = κκ = κ.

(2) Note GCH implies that (∀λ < κ)
(
2λ = λ+ 6 κ

)
.

(⇒) This is part (1).

(⇐) If λ = cf(κ) < κ, then by König’s Theorem, κλ > κ, and so κ < κ<κ. 2

Lemma 16. For all κ > ℵ0,

(1) κκ > κ<κ > 2<κ > κ

(2) If κ = λ+, then κ<κ = 2<κ = 2λ

Proof.

(1) This is trivial.

(2) Note 2<κ = 2λ and κ<κ = κλ. Hence 2λ = 2<κ 6 κ<κ = κλ 6 (2λ)λ = 2λ. 2

Corollary 17. GCH holds iff (∀κ > ℵ0)(2<κ = κ).

Lemma 18. If κ is a limit cardinal, then 2κ = (2<κ)cf(κ).

Proof. Write κ =
∑

i<cf(κ)

λi, with λi < κ. Then

2κ = 2
∑
λi =

∏

i<cf(κ)

2λi 6
∏

i<cf(κ)

2<κ = (2<κ)cf(κ) 6 (2κ)cf(κ) = 2κ

2

Theorem 19 (Bukovský-Hechler). Let κ > cf(κ) be such thatLecture 10

∃λ0 ∀λ λ0 6 λ < κ→ 2λ = 2λ0 (∗)

Then 2κ = 2λ0 .

Proof. Since cf(κ) < κ, by (∗) and wlog, cf(κ) 6 λ0.

Now, by Lemma 18, 2κ = (2<κ)cf(κ) = (2λ0)cf(κ) = 2λ0 . 2

Definition. The Gimel function (κ)ג is defined on the class of infinite cardinals by

(κ)ג = κcf(κ) .
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Why is (κ)ג important in current research in cardinal exponentiation?

Note. If κ, λ > ℵ0, then cf(κλ) > λ. (Exercise: use König again.) In particular, (κ)ג > κ.

Definition. The Gimel Hypothesis (Solovay, 1974) states: for every singular cardinal κ,

(κ)ג = max
{

2cf(κ), κ+
}

Remarks.

(1) GCH implies the Gimel Hypothesis. (Exercise.)

(2) We proved in ZFC that (κ)ג > 2cf(κ) and (κ)ג > κ. The Gimel Hypothesis asserts
that (κ)ג is the least ZFC-permitted value (relative to the other values of (λ)ג for
regular λ).

For example, under CH, the Gimel Hypothesis says ℵℵ0
ω = ℵω+1.

(3) Why only for singular cardinals? We know the for regular cardinals κ, we have
(κ)ג = 2κ, and it follows from work of Easton (1964, 1970) that for any “reasonably-
defined” cardinal-valued function F defined on regular cardinals such that

(i) κ < λ→ F (κ) 6 F (λ)

(ii) cf(F (κ)) > κ

it is consistent with ZFC and the Gimel Hypothesis that for all regular cardinals κ
we have 2κ = F (κ).

So, in particular, the Gimel Hypothesis does not imply GCH.

Failures of the Gimel Hypothesis are an active subject of research. An equivalent statement is
the following.

Definition. The Singular Cardinals Hypothesis (SCH) states: for every singular cardinal κ,

if 2cf(κ) < κ, then (κ)ג = κ+

Exercise. Show that the SCH is equivalent to:

for all regular cardinals κ, λ, if 2λ < κ, then κλ = κ

Corollary 20 (Bukovský). The continuum function κ 7→ 2κ can be defined in terms of the
Gimel function. In other words, if one knows ,ג then one knows 2κ for all κ.

Proof.

(a) If κ = cf(κ), then 2κ = .(κ)ג

(b) If κ is a limit cardinal and the continuum function is eventually constant below κ (as
in Theorem 19), then (check)

2κ = 2<κג(κ)

(c) If κ is a limit cardinal and the continuum function is not eventually constant below
κ, then

2κ = (κ>2)ג

because cf(2κ) = cf(κ). (Check.)
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Thus given (κ)ג we can compute 2κ.

To close this section on cardinal exponentiation, we note that the following theorems of Silver
and Shelah illustrate how different exponentiation of singular cardinals is.

Theorem.

(1) (Silver, 1974) If 2ℵα = ℵα+1 for all α < ω1, then 2ℵω1 = ℵω1+1

(2) (Shelah, 61994) pp(ℵω) < ℵω4

In simplistic terms, ℵℵ0
ω < ℵω4

+ (2ℵ0)+.

So, for example, if 2ℵ0 < ℵω, then ℵℵ0
ω < ℵω4

.

Note: pp(κ) is defined in terms of cofinalities of products of regular cardinals.

We leave exponentiation and turn to the study of prediction principles and families of large
subsets of limit ordinals.

Definition. Suppose that γ is a (limit) ordinal. We say that C ⊂ γ is a club of γ (or in γ) if

(1) C is closed in γ – i.e., if δ ⊂ C has sup δ ∈ γ then sup δ ∈ C

(2) C is unbounded in γ – i.e., ∀α < γ ∃β ∈ C α < β < γ.

(“Club” is from “closed unbounded”.)

Remarks.Lecture 11

(1) If γ is a successor ordinal, then clubs are not very interesting, since e.g. if γ = δ + 1,
then {δ} is a club.

(2) C ⊂ γ is closed iff C contains all of its limit points: δ is a limit point if (∀α <
δ) (∃β ∈ C) (α < β < δ) (where γ is a limit ordinal)

Examples.

(1) γ is closed in γ.

(2) If cf(γ) > ℵ0, then lim(γ) = {δ < γ : δ is a limit ordinal} is club in γ.

(3) If C ⊂ γ is unbounded in γ, then the set C∗ of limit points of C is club in γ.

(4) If λ > ℵ0 and cf(λ) = ℵ0, then any cofinal ω-sequence in λ is club in λ.

(5) If λ is a limit cardinal, then {κ < λ : κ is a cardinal} is club in λ.

(6) If λ is a limit cardinal, then {κ+ : 〈λ〉} is not club in λ (it is not closed)

Remark. The concept of a club of γ is most interesting when γ is an ordinal of uncountable
cofinality.

Remark. If Ci is closed in γ, then
⋂
i∈I

Ci is also closed in γ.

However, arbitrary intersections of clubs will not in general be club. Suppose that κ = cf(λ)
and f : κ→ λ is cofinal in λ. Consider Cα = {β < λ : β > f(α)} = [f(α), λ). Then Cα is
club in λ for all α < κ, but

⋂
α<κ

Cα = ∅.
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Proposition 23. Suppose cf(γ) > ℵ0, and κ < cf(γ).

Then
⋂
α<κ

Cα is club in γ whenever Cα is club in γ for all α < κ.

Proof. Let C =
⋂
α<κ

Cα. For later, wlog, α < β → Cα ⊃ Cβ .

Clearly, C is closed. We show that C is unbounded.

Let ξ < γ be given. Let fα(ξ) = min
{
Cα \ (ξ + 1)

}
.

(I.e., remove ξ and its predecessors.)

Let g(ξ) = sup{fα(ξ) : α < κ} < γ so g : γ → γ. (Recall κ < cf(γ).)

Define g0(ξ) = ξ, and gn+1(ξ) = g(gn(ξ)), and gω(ξ) = sup
n<ω

gn(ξ).

It follows that ξ < gω(ξ) < γ, and gω(ξ) ∈ C. 2

Cα

ξ

g(ξ)

r

r

r

g(g(ξ))
r

r

r

Corollary 24. Suppose λ = cf(λ) > ℵ0 and κ < λ.

If Cα is club in λ for all α < κ then
⋂
α<κ

Cα is club in λ.

Definition. Suppose γ is a limit ordinal. A set S ⊂ γ is stationary in γ if S ∩C 6= ∅ for every
club C of γ.

Examples. Let κ = cf(κ) < λ = cf(λ), with λ > ℵ0.

Let Sλκ = {δ ∈ λ : cf(δ) = κ}. Then Sλκ is stationary in λ.

Proof. Recall f is continuous if f(δ) = sup{f(α) : α < δ}.

Given a club C, define f : λ→ C, strictly increasing and continuous. Note f(κ) ∈ C and
f(κ) ∈ Sλκ , so Sλκ ∩ C 6= ∅. 2

Example. If λ = ℵ1 and κ = ℵ0, then Sℵ1

ℵ0
is actually a club in ℵ1, since Sℵ1

ℵ0
= lim(ℵ1).

However, in general, this is false. Sλκ does not contain a club of λ since any club must contain
elements of every cofinality < λ.

Proposition 25.

(1) If C is club and S is stationary in λ then C ∩ S is stationary in λ.

(2) If κ < cf(λ) and
⋃
{Xα : α < κ} is stationary in λ, then some Xα is stationary in λ.

Proof.

1. By Proposition 23.

2. If Cα ∩ Xα = ∅ for all α < κ, then C =
⋂
α<κ

Cα is club by Proposition 23, but

C ∩
⋃
{Xα : α < κ} = ∅, contradiction. 2
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Definition. Suppose λ = cf(λ) > ℵ0 and Xα ⊂ λ for α < λ. We define the diagonal inter-
section to be the set

∆
α<λ

Xα =
{
ξ < λ : (∀α < ξ)(ξ ∈ Xα)

}

Proposition 26. Suppose that λ = cf(λ) > ℵ0 and each Cα is club in λ. Then C = ∆
α<λ

Cα is

club in λ.

Proof. Clearly C is closed. To see that C is unbounded in λ, define g(ξ) for ξ < λ as follows:Lecture 12

g(ξ) = min

( ⋂

α<ξ

Cα \ (ξ + 1)

)

︸ ︷︷ ︸
club by Prop 23

By Proposition 23, g is well-defined, and ξ < g(ξ) < λ.

Let g0(ξ) = ξ, and gn+1 = g(gn(ξ)), and gω(ξ) = sup
n<ω

gn(ξ).

Claim. gω(ξ) ∈ C.

Why? Suppose α < gω(ξ). Then ∃n (∀m > n) (α < gn(ξ) ∈ Cα), and we know that Cα is
closed, so gω(ξ) ∈ Cα.

Thus C is club in λ. 2

Theorem 27 (Pressing Down Lemma / Fodor’s Lemma). Suppose λ = cf(λ) > ℵ0 and
S ⊂ λ is stationary in λ. If f : S → λ is regressive, i.e. ∀δ ∈ S f(δ) < δ, then there
is some stationary S′ ⊂ S such that f |S′ is constant. I.e., ∃α < λ such that f−1({α}) is
stationary.

Proof. Otherwise, there exists a club Cα such that Cα ∩ f−1({α}) = ∅. Then, by Proposition
26, C = ∆

α<λ
Cα is club.

In particular, it follows that C ∩ S 6= ∅. Pick ξ ∈ C ∩ S.

If α < ξ, then ξ ∈ Cα. So f(ξ) 6= α. So f(ξ) > ξ – (1).

But ξ ∈ S, and so f(ξ) < ξ – (2), contradicting (1). 2

Theorem 28 (Ulam). Suppose λ = cf(λ) > ℵ0. Then there exists a family of λ disjoint

stationary subsets of λ.

Proof. There are two cases.

Case 1. λ is a limit cardinal.

Consider {Sλκ : κ = cf(κ) < λ}. Recall: Sλκ = {δ < λ : cf(δ) = κ}

This is as required.

Case 2. λ = κ+.

Let {Aαξ : α < λ, ξ < κ} be an Ulam (λ, κ)-matrix on λ, i.e.
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(1) Aαξ ∩ Aβξ = ∅ if α < β < λ

(2)

∣∣∣∣λ \
⋃
ξ<κ

Aαξ

∣∣∣∣ 6 κ.

We can find Aαξ with these properties as in Exercise Sheet 1:

∀α ∈ [κ, κ+), let fα : κ→ α be a surjection, and Aαξ = {β < λ : fβ(ξ) = α}.

Note, by (2),
⋃
ξ<κ

Aαξ is stationary (by Proposition 25).

By Proposition 25 again, for some ξα < κ, Aαξα is stationary in λ.

So there exists ξ∗ such that E = {α : ξα = ξ∗} is stationary.

Thus {Aαξ∗ : α ∈ E} is the required family. 2

Corollary 29. Let λ = cf(λ) > ℵ0. There are 2λ stationary subsets of λ.

Proof. For the family {Bα : α < λ} of stationary subsets in Theorem 28 and non-empty X ⊂ λ,
take Fλ =

⋃
α∈X

Bα. 2

Prediction Principles

Intuitively, a set-theoretic prediction principle is a list of guesses (or approximations) of subsets
of a cardinal. In this sense, CH is a prediction principle:

CH ←→ ∃〈Xα : α < ω1〉 ∀Y ⊂ ω ∃α < ω1 Y = Xα

ACλ is also a prediction principle:

ACλ −→ ∃〈Xα : α < 2λ〉 ∀Y ⊂ λ ∃α < 2λ Y = Xα

The syntactic form of these statements leads one to consider stronger statements.

Definition. Let S be a stationary subset of λ = cf(λ) > ℵ0.

The diamond on S, denoted 3S , is the statement: ∃〈Aα : α ∈ S〉 such that

(1) Aα ⊂ α

(2) for all X ⊂ λ, the set {α ∈ S : X ∩ α = Aα} is stationary in λ

If S = λ, we write 3λ for 3S , and we write 3 for 3ℵ1
.

Remarks.Lecture 13

(1) S ⊂ S′ implies 3S → 3S′ . (Recall: for stationary sets.)

(2) 3λ+ → 2λ = λ+, so 3→ CH.

(3) 3S is equivalent to: ∃〈fa : α ∈ S〉 such that

(i) fα : α→ α

(ii) for all f : λ→ λ, the set {α ∈ S : f |α = fα} is stationary.
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Proof.

(1) is trivial.

(2) We show P(λ) ⊂ {Aα : α ∈ λ+}.

If X ⊂ λ, then there is β < λ+ with X ⊂ β. The set E = {α < λ+ : X ∩ α = Aα} is
stationary. Pick α ∈ E with α > β. Now X = X ∩ α = Aα.

(3) will be on Exercise Sheet 3.

Remark. V = L implies 3S , but we will show the relative consistency of 3 by forcing.

One of the most striking and important applications of 3 is to prove the existence of a Suslin
tree.

Theorem 30. 3 implies that there exists a Suslin tree.

It will be convenient first to recall some definitions relating to trees.

Definitions.

(1) A tree is a partial order T = 〈T,6T 〉 such that for all x ∈ T , the set x̂ = {y ∈ T :
y <T x} is well-ordered.

(2) The order-type of x̂ under <T is called the height of x in T, denoted htT(x).

(3) If α ∈ Ord, the αth level of T is the set Tα = Levα(T) = {x ∈ T : htT(x) = α}.

We write T|α for the partial order T restricted to the set T |α, where T |α =
⋃
β<α

T |β.

(4) A branch of T is a linearly ordered subset b such that x ∈ b ∧ y <T x→ y ∈ b.

We say that b is an α-branch if b has order-type α.

(5) A branch b is maximal if b is not properly contained in any other branch of T. AC
implies that every branch can be extended to a maximal branch.

Remark. x̂ is a branch. If x has no successors in T, then x̂ ∪ {x} is maximal.

(6) An antichain in T is a subset A ⊂ T such that no two elements of A are comparable
in <T . An antichain A is maximal if it is not properly contained in any other antichain
of T.

AC implies that every antichain can be extended to a maximal antichain.

Remark. If Tα 6= ∅, then Tα is a maximal antichain.

(7) Let δ be an ordinal and λ a cardinal. A tree T is a (δ, λ)-tree if

(i) ∀α < δ, Tα 6= ∅

(ii) Tδ = ∅

(iii) ∀α < δ, |Tα| < λ

So a (δ, λ)-tree has “height” δ and “width” less than λ.

(8) T has unique limits if whenever δ is a limit ordinal, if we have x, y ∈ Tδ with x̂ = ŷ,
then x = y.
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(9) A (δ, λ)-tree T is normal if

(i) T has unique limits

(ii) |T0| = 1

(iii) If α, α + 1 < δ, x ∈ Tα, then there are distinct y1, y2 ∈ Tα+1 such that x <T y1
and x <T y2

(iv) If α < β < δ and x ∈ Tα, then there is y ∈ Tβ such that x <T y

(10) Let λ be an infinite cardinal. A λ-tree is a normal (λ, λ)-tree.

(11) A Suslin tree is an ℵ1-tree with no uncountable antichains.

We now prove Theorem 30, that 3→ ¬(Suslin’s Hypothesis).Lecture 14

Proof. Assume 3 and let 〈Aα : α < ω1〉 be a 3-sequence. By transfinite recursion, we construct
a Suslin tree T = 〈T,<T 〉, with T = ω1, such that

(1) T =
⋃

α<ω1

T|α

(2) T|α is a (normal) (α,ℵ1)-tree

The elements of Tω are the finite ordinals, and for infinite α, the elements of Tα will be
ordinals from the set {ξ : ωα 6 ξ < ωα+ ω}.

How do we go?

(0) T0 = {0}.

(1) If n ∈ ω and T|n+1 is defined, define T|n+2 by taking the elements of Tn in turn and,
for each element, picking the next two unused finite ordinals to be its successors in
Tn+1.

(2) If α > ω and T|α+1 is defined, define T|α+2 by using the ordinals in {ξ : ωα 6 ξ <
ωα+ ω} to provide each element in Tα with two successors in Tα+1.

This is possible, since |Tα| 6 ℵ0.

(3) If α > ω and α is a limit ordinal, and T|α is defined, for each x ∈ T |α, pick an
α-branch bx with x ∈ bx, subject to the condition: if Aα is a maximal antichain in
T|α, then bx ∩ Aα 6= ∅. (Remember that Aα is from the 3-sequence – one of the
‘guesses’.)

Why is this possible?

There exists a ∈ Aα such that x and a are comparable: x 6T a or a <T x. If x 6T a
then pick bx to be some α-branch extending â ∪ {a}, and if a <T x then pick bx to
be an α-branch extending x̂ ∪ {x}.

If Aα is not a maximal antichain in T|α, pick bx to be any α-branch containing x.

For each α ∈ T |α, add a 1-point extension from {ξ : ωα 6 ξ < ωα + ω} to the
α-branch bx. This is possible since

∣∣T |α
∣∣ 6 ℵ0.

Let T =
⋃

α<ω1

T|α. Then T is an ℵ1-tree. This is clear.
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It remains to show that T is Suslin, i.e. T has no uncountable antichains. It’s enough to
show that every maximal antichain of T is countable.

Suppose that X ⊂ ω1, and X is a maximal antichain in T. Consider

C = {α ∈ ω1 : ωα = α and X ∩ α is a maximal antichain in T|α}

Claim. C is a club.

Proof of claim. It’s easy to see that C1 = {α < ω1 : ωα = α} is a club, and check that
C2 = {α ∈ lim(ω1) : X ∩ α is a maximal antichain in T|α} is a club.

Why is C2 club? Easily C2 is closed: αn ∈ C2 → αn → α.

C2 is unbounded. Let β0 < ω1. We find β ∈ C2 with β > β0. Given βn, define βn+1

to be the least limit ordinal γ > βn such that every element of T|βn
is comparable to

some element X ∩ γ. Let β = sup
n<ω

βn. So β ∈ C2, and so C = C1 ∩ C2 is a club.

So now by 3, the set S = {α < ω1 : X ∩ α = Aα} is stationary in ω1, and so C ∩ S 6= ∅.

Pick α ∈ C ∩ S. Then X ∩ α = Aα, and so Aα is a maximal antichain in T|α.

By construction of Tα (and every Tβ, β > α), every element of Tα lies above some element
of Aα = X ∩ α (i.e., is comparable with some element in X ∩ α).

So X ∩ α is a maximal antichain in T.

So X ∩ α = X , and so |X | = |X ∩ α| 6 |α| 6 ℵ0, since α < ω1.

Thus X is countable. 2

It is natural to ask (and István Juhász did) whether this is optimal. Could one replace 3 by a
weaker principle? In this connection, we mention the club principle, ♣.

Definition. ♣ asserts that there exists 〈Cδ : δ ∈ lim(ω1)〉 such that

(1) supCδ = δ

(2) for every uncountable X ⊂ ω1, the set {δ ∈ lim(ω1) : Cδ ⊂ X} is stationary in ℵ1.

Remarks.

(1) 3→ ♣

(2) Juhász’s Question: does ♣ imply the existence of a Suslin tree?

Remark. (Regarding 3→6=SH.)Lecture 15

Some model theory allows one a less ad hoc proof that the set C in the proof is a club.
Recall that X is a maximal antichain in T. Consider the τ -structure TX = 〈T,6T , X〉.

The set {α ∈ lim(ω1) : TX |α � TX} is club by question 5(iv) on Exercise Sheet 3. This is
the set C in the proof.
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We shall return to 3λ later. We now introduce a new axiom MA (Martin’s Axiom) and use it
to show that there are no Suslin trees.

Definition. Suppose P = 〈P,6P 〉 is a partial order. Wlog, P has a least element OP .

(1) Two elements p, q ∈ P are compatible if (∃r ∈ P )(p 6 r ∧ q 6 r). Otherwise p, q
are incompatible.

(2) A subset G ⊂ P is directed if (∀p ∈ G)(∀q ∈ G)(∃r ∈ G)(p 6 r ∧ q 6 r).

(3) A subset D ⊂ P is dense in P if (∀p ∈ P )(∃d ∈ D)(p 6 d).

(4) Let κ be an infinite cardinal. We say that P satisfies the κ-chain condition if every
antichain in P has cardinality less than κ.

(5) If κ = ℵ1, then the ℵ1-chain condition is called the countable chain condition
(CCC).

Caveat. Some sources reverse the order in the above (and subsequent) definitions. E.g., they
say p, q are compatible if (∃r ∈ P )(r 6 p ∧ r 6 q).

Definition (cont.)

(6) Suppose D is a family of dense sets in P, and G ⊂ P is directed. We say that G is
D-generic (or generic relative to D) if

∧
D∈D

G ∩D 6= ∅

Proposition 31. Suppose D = {Dn : n < ω} is a countable family of dense sets in the partial
order P. Then there exists a D-generic set G ⊂ P .

Proof. By induction, we define 〈dn : n < ω〉.

D0 6= ∅, so pick d0 ∈ D0. Given dn ∈ Dn, since Dn+1 is dense in P, there exists dn+1 ∈
Dn+1 with dn 6 dn+1.

Now G = {dn : n < ω} is a D-generic set, as required. 2

In general, we cannot “improve” Proposition 31 to uncountable families of dense sets. Uncount-
able antichains can wreak havoc. However, if we require that P has the CCC then there is a
relatively consistent statement.

Definition. Let κ be an infinite cardinal. The statement MAκ asserts: for every CCC partial
order P and every family D = {Dα : a < κ} of dense subsets in P, there exists a D-generic
set G ⊂ P in P.

Martin’s Axiom is the statement:
∧

ℵ06κ<2ℵ0

MAκ.

Remark. CH → MA.

So for this reason, we generally tacitly assume ¬CH when we apply MA.

Proposition 32.

(1) ZFC ⊢ MAℵ0

(2) MAκ → 2ℵ0 > κ

(3) ZFC ⊢ ¬MA2ℵ0 .
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Proof.

(1) is immediate from Proposition 31.

(2) We must find a poset P and some dense sets.

Let 〈fα ∈ ω2 : α < κ〉. We aim to find g ∈ ω2 with
∧
α<κ

g 6= fα.

We pick P to approximate g. Let P be the set of finite functions from ω into {0, 1} :

P =
{
f : dom(f) ⊂ ω, f : dom(f)→ {0, 1}, |dom(f)| < ℵ0

}

and define f 6P h iff h|dom(f) = f , i.e. h extends f .

P = (P,6P ) is CCC since |P | = ℵ0.

Let En = {p ∈ P : n ∈ dom(p)}. Easily, En is dense in P.

For α < κ, let

Dα =
{
p ∈ P : ∃n ∈ dom(p), fα(n) 6= p(n)

}
.

Then Dα is dense in P.

Now let D = {Dα, En : α < κ, n < ω}. By MAκ, there exists a D-generic set G.

Let g =
⋃
G. Note: g is a function since G is directed.

We have dom(g) = ω since G ∩ En 6= ∅, and range(g) ⊂ {0, 1}.

And, for all α < κ, we have g 6= fα since G ∩Dα 6= ∅.

Thus g ∈ ω2 and g 6= fα for all α < κ. So 2ℵ0 > κ.

(3) is immediate from (2).

The axioms MAℵ1
and MA say that the universe contains generic sets (for families of dense setsLecture 16

in CCC posets, provided the families are of size < 2ℵ0). We now prove:

Theorem 33. MAℵ1
implies that there are no Suslin trees.

Lemma. If T is a Suslin tree, then every chain in T is countable.

Proof. By contradiction. Suppose C is an uncountable chain in T. Wlog, C is maximal. So
C ∩ Tα 6= ∅ for all α < ω1. So there exists cα ∈ C ∩ Tα, and by normality (iii) of a Suslin
tree, there exists aα+1 ∈ Tα+1 \ C such that {aα+1, cα+1} is an antichain in Tα+1.

Consider A = {aα+1 : α < ω1}. Clearly, A is an antichain, and |A| = ℵ1, contradiction. 2

“Why can one not simply define inductively an uncountable chain in a Suslin tree by using
normality to grab a chain member at each next level?”

This will not work, since at limit levels δ, there is no uniform single choice for an element cδ to
continue the chain at the limit level above all the lower elements cα, α < δ. By normality, one
can certainly ascend one-by-one, but not above a boatload.
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“What is the cofinality cf(T) of a Suslin tree T?”

If C is a cover of a Suslin tree T, then T =
⋃
{ĉ : c ∈ C} ∪C; so if C were countable, then some

ĉ would have cardinality ℵ1 and be an uncountable chain in T. This is impossible since Suslin
trees have no uncountable chains by the Lemma. Hence there is no countable cover of T. Since
T has cardinality ℵ1, any cover has cardinality at least, and hence exactly, ℵ1. It follows that
cf(T) = ℵ1.

Back to Theorem 33.

Proof. Towards a contradiction, suppose that T is a Suslin tree. Then T is a CCC partial order.

Let Dα = {y ∈ T : htT(y) > α} for α < ω1. Clearly, Dα 6= ∅ and Dα is dense in T.

By MAℵ1
, there is a D-generic set G for D = {Dα : α < ω1}. Clearly, G is a chain in T

since G is directed, and |G| = ℵ1, contradicting the lemma. 2

3 and MA have many applications across ordinary mathematics. Here is a more recent short
application of MA to abelian group theory.

Example (sketch). Let A be an infinite abelian group. We write A∗ = Hom(A,Z) for the dual
of A. We say that A is free if A ∼= ⊕i∈IZ for some set I.

Let κ be an infinite cardinal. We say that A is κ-free if every subgroup of A of cardinality
< κ is free.

For example, Zω is ℵ1-free.

The Trivial Dual Conjecture for κ states: there exists a κ-free group A with A∗ = 0.

This is denoted TDUκ.

Remarks.

(1) TDUℵ0
is true: e.g., Q = (Q,+).

(2) What about TDUℵ1
?

TDUℵ1
is true, but it’s a decent theorem due to Eda (1989).

(3) What about TDUℵ2
?

Theorem. MA implies that if A is ℵ2-free and |A| < 2ℵ0 , then A is separable.

Definition. An abelian group A is separable if every finite subset of A is contained in a
free direct summand of A.

Equivalently, any pure cyclic subgroup of A is a free direct summand of A.

B 6 A is pure in A if: ∀b ∈ B, ∀n ∈ ω, if A |= ∃x (nx = b), then B |= ∃x (nx = b)

Proof. Let h ∈ A. Suppose that 〈h〉 is pure cyclic. It is enough to show that 〈h〉 is a
free abelian summand. Let η(h) = 1. We use MA to extend η to a homomorphism
Φ ∈ Hom(A,Z).

Let P = (P,6P ) be the set
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{
ϕ : ϕ ∈ Hom(Aϕ,Z), ϕ(h) = 1, Aϕ is a pure finitely-generated subgroup of A

}

Then ϕ 6 ψ if ψ extends ϕ.

Some facts which require proof:

• P is a CCC partial order

• For a ∈ A, let Da = {ϕ ∈ P : a ∈ Aϕ}

Then Dα is dense in P.

By MA, there exists a D-generic set G since |D| < 2ℵ0 = |A|.

Let Φ =
⋃
G. Then Φ ∈ Hom(A,Z) and by the First Isomorphism Theorem,

A/ ker Φ ∼= Z. So ker Φ is a direct summand of A. This completes the proof (modulo
some algebra). 2

Open question. What is the status of TDUℵω
?

Chapter 3. ForcingLecture 17

In this chapter, we present forcing, a method for constructing extensions of models of (subtheo-
ries of) ZFC. We then use the technique to prove the independence of the Continuum Hypothesis,
3, ♣, and some other combinatorial principles, but also V = L.

There are several approaches to the presentation of forcing. We shall follow the presentation of
Shelah in Proper and Improper Forcing, chapter 1.

We start from the assumption that ZFC is consistent, and has a countable model M. Wlog, we
shall also assume:

(1) M is a standard ∈-model: if M = (M,EM) then EM = ∈|M×M . In other words, the
membership predicate of M is real membership.

(2) The universe of M is a transitive set: x ∈ y ∈M → x ∈M .

These additional assumptions come “for free” and they simplify the presentation. (We can justify
(1) and (2) either using the fact that L, the universe of constructible sets, is a standard ∈-model
and use the Downward Löwenheim-Skolem theorem to obtain a countable elementary submodel;
alternatively, use the Reflection Principle to cut down to a Vα for an arbitrary large finite
fragment of ZFC, and take a countable elementary submodel of Vα; finally, use the Mostowski
Collapse to obtain an isomorphic transitive model.)

So throughout this presentation, we shall assume that M is a countable transitive model satis-
fying (1) and (2). We call M a CTM.

We wish to extend M.

Definition. A forcing is a partial order P = (P,6P ). We shall, wlog, assume that forcings
have minimal elements. It is also not necessary to assume that P is antisymmetric. In
some sources, this is called a pre-partial order or quasi-order.

The elements of a forcing are called (forcing) conditions.

30



The extensions we construct are defined using forcings and generic filters in V . These forcings
and generic sets control the truth values of sentences in the extensions.

Definition. Suppose A is a model of ZFC (or a fragment of ZFC), and P ∈ A (so P and 6P

belong to A). We say that G ⊂ P is a filter in P if

(1) G is directed: (∀x, y ∈ G) (∃z ∈ G) (x 6 z ∧ y 6 z)

(2) G is downward-closed: x 6 y ∈ G→ x ∈ G.

Note. The definition does not require G ∈ V to belong to A.

❆
❆
❆

❆
❆
❆

✁
✁
✁
✁
✁
✁

❉
❉
❉
❉
❉
❉

☎
☎
☎
☎
☎
☎

q
G

A

V

Definition. We say a subset D ⊂ P is dense open in P if

(1) D is dense in P: p ∈ P → (∃d ∈ D)(p 6 d)

(2) D is open (upward-closed): (∀p, q ∈ P )(q 6 p ∧ q ∈ D → p ∈ D)

We say that a filter G in P is generic (over A) if G ∩ D 6= ∅ for every dense open set
D ⊂ P in A.

Our aim is to build an extension M[G] for a given CTM M and a generic filter G over M with
the properties:

(1) M ⊂M[G], i.e. M is a substructure of M[G]

(2) M ∩Ord = M[G] ∩Ord

(3) G ∈M[G]

(4) M[G] is the smallest CTM such that (1), (2), (3) hold.

How will it work?

In intuitive terms, if one thinks of the conditions p ∈ P as potential information about G, then
{p : p ∈ G} should be contradiction-free, and this amounts to saying that G should be directed.

If q 6 p ∈ G, this amounts to saying that stronger information (p) implies weaker information
(q) about G, so G should be downward-closed.

How about genericity?

The genericity condition on G amounts to saying that G is generic in the sense of “non-specific”
or random, i.e. G contains consistent general information.

Are there any generic sets over a CTM? And where?

Proposition 1. Suppose M is a CTM, and P ∈M is a forcing. Then there exists a generic filter
G (∈ V ) on P over M. In fact, for any p ∈ P , there is a generic G over M such that p ∈ G.

Proof. (See Proposition 31 in Chapter 2.)Lecture 18

In V , M is countable, and so there is a list {Dn : n ∈ N} of all the dense open sets in P
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that belong to M. Now, inductively, pick pn+1 > pn with pn+1 ∈ Dn+1 (using denseness
of Dn+1) and p1 = p. Let G = {q ∈ P : ∃n ∈ ω : q 6 pn}.

G is a generic filter over M, as required. 2

Note. This argument happens in V , not in M.

In general, G /∈M .

Proposition 2. Suppose P is separative, i.e. ∀p ∈ P , ∃q, r ∈ P , with p 6 q, p 6 r and q⊥r.
(Every condition has two incompatible extensions.)

Then G /∈M , for any generic filter G in P over M.

Proof. By contradiction. Suppose G ∈ M. Then the set D = P \G belongs to M. But D 6= ∅
and D is dense open, so G ∩D 6= ∅. Contradiction. 2

Now let us try to motivate the construction of the forcing extension.

First, note that we do need to consider a new sort of model-theoretic extension. Why? Two
general reasons:

(1) ZFC and its subtheories are not model-complete.

A theory is model-complete if whenever A ⊂ B (substructure) then A � B (elementary
substructure), i.e. its submodels are elementary submodels. For example, Vω ⊂ Vω1

, but
Vω 6� Vω1

.

Recall. A substructure A ⊂ B is an elementary substructure of B if for every formula
ϕ(x1, . . ., xn) and a1, . . ., an ∈ A, we have A |= ϕ[a1, . . ., an]⇒ B |= ϕ[a1, . . ., an].

(2) The CTM M might (for all we know) be a model also of V = L. Then if a submodel
M− of M contains all of the ordinals of M then M− = M, because everything in M− is
constructible.

The other way to extend M is to find an elementary extension M+. But this does not help to
prove independence, because Th(M) = Th(M+) if M �M+, so e.g. if M |= CH then M+ |= CH.

Recall. If A is a τ -structure, the diagram of A is the collection of atomic sentences and

negations of atomic sentences in the language τA (τ with constants
◦
a for each a ∈ A)

which are true in A.

The elementary diagram of A is {ϕ : A |= ϕ, ϕ is a sentence in the vocabulary of τA}.

In model-theoretic terms, we are looking for a concept intermediate between the diagram of M
and the elementary diagram of M. Where should we go?

One way to construct an extension of a model A is to add new constants
◦
a (for a ∈ A) and a witness constant g, and observe that the elementary

diagram with the sentences
◦
a 6= g for each a ∈ A is finitely satisfiable, hence

by the Compactness Theorem has a model A+, and gA
+

/∈ A.
❆
❆

❆
❆

❆
❆

✁
✁
✁
✁
✁
✁

q gA
+

q
◦
a

A+

A

Of course, this is too much, since A+ is already an elementary extension of A, but the idea of
using names or new constants is a useful strategy. We therefore design names that are more
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complicated sets in M, defined by transfinite recursion for elements of M and P, and whose
interpretations will depend upon the generic set G. In general, the referents of these names
cannot be computed or identified in M, since G /∈M (usually).

Definition. Suppose P ∈M is a forcing. We define by induction on α ∈ Ord the P-names (or
names) of rank 6 α as follows.

A set τ is a P-name of rank 6 α if τ = {(pi, τi) : i < i0}, where pi ∈ P , τi is a P-name of
rank 6 βi < α, and i0 ∈ Ord.

A P-name is a P-name of rank 6 α for some α ∈ Ord.

We write MP for the collection of P-names that are elements of M.

We let the (name) rank of τ , rkn(τ) = α if τ is a P-name of rank 6 α, but not of rank
6 β for any β < α.

We define for a ∈M , by induction on rk(a), a P-name ȧ = {(p, ḃ) : p ∈ P, b ∈ a}.

Note that ȧ is a P-name. (Check.)

Examples of P-names.

(1) rank 6 0: ∅

(2) rank 6 1: ∅, {(pi, ∅) : i < i0}.

Definition (cont.) We define the P-name Γ = {(p, ṗ) : p ∈ P}.Lecture 19

We define the revised (name) rank rkr(τ) =

{
0 if τ = ȧ for some a ∈ M⋃
{rkr(σ) + 1 : (p, σ) ∈ τ for some p ∈ P}

Notation. V P is the class of all P-names. We use f
˜
, τ
˜
, a
˜

for P-names that are not of the form

ȧ for a ∈M.

When no confusion arises, we lapse into using a instead of ȧ.

This completes the definitions of the names.

We turn next to define the values or interpretations of the names. This definition by transfinite
recursion is given in V (not in M), since in general G /∈ M.

Definition. Suppose P ∈ M is a forcing and G ⊂ P is a generic filter over M. We define by
induction on α ∈ Ord.

(1) If τ is a P-name of rank 6 α, say τ = {(pi, τi) : pi ∈ P, i < i0} where τi is a P-name
of rank 6 βi, βi < α, then the interpretation (or value) of τ relative to G is

τ [G] = {τi[G] : pi ∈ G, i < i0}

(2) M[G] = {τ [G] : τ ∈M and τ is a P-name}.

Note: τ [G] is also written τG, valG(τ), val(τ,G) and other variants.

Write ∈M[G]=∈M[G]×M[G].
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In this course, M is called the ground model, and M[G] the generic extension of M relative
to G (by G).

Finally, we define the forcing relation 
P (or 
) which connects truth in generic extensions
with definable sets in M and the combinatorial properties of P.

Definition. Suppose P ∈ M is a forcing, τ1, . . ., τn are P-names, and ϕ(x1, . . ., xn) is a formula
in the vocabulary of set theory (possibly with a unary predicate symbol M(x) for M).

We say that a condition p ∈ P forces ϕ(τ1, . . ., τn), denoted p 
P ϕ(τ1, . . ., τn), if

M[G] ⊢ ϕ
[
τ1[G], . . ., τn[G]

]

for every generic filter G in P over M such that p ∈ G.

Remark. The definition of 
P is given in V , apparently. However, we shall prove that the
binary predicate 
P is definable in M.

This is a critical fact about forcing.

We can now state precisely the Forcing Theorem.

Theorem 3. Suppose M is a CTM, and P ∈ M is a forcing. Then for every generic filter G in
P over M, there exists a CTM M[G] (defined as above) such that

(1) M[G] is an extension of M. M ⊂M[G], G ∈ M[G].

(2) Ord ∩M = Ord ∩M[G], i.e. M and M[G] have the same ordinals.

(3) For every sentence ϕ in the vocabulary of ZFC (possibly with a unary predicate
symbol M(x)),

M[G] ⊢ ϕ iff (∃p ∈ G)(p 
P ϕ)

(4) The predicate 
P is definable in M.

(5) M[G] is minimal with the above properties: if M+ is any transitive model of ZFC
with M ⊂M+, G ∈M+, then M[G] ⊂M+.

It will take some preparatory work to prove M[G] has properties (1)–(5).

Let us consider some examples to see how this theorem helps us to establish independence
results.

Example 1. Adding a Cohen real.

Let P =
{
f : f : dom(f) ⊂ ω → {0, 1}, |dom(f)| < ℵ0

}
, 6P is extension of functions, i.e.

f 6 g ⇔ g|dom(f) = f .

So we have P ∈ M. In M, the sets Dn = {f ∈ P : n ∈ dom(f)} are dense open and
definable in M, so belong to M. So G ∩Dn 6= ∅.

What do we know about g =
⋃
G? g is a function from ω to {0, 1}.

If G is generic, then g =
⋃
G is a “real”, i.e. g : ω → {0, 1}. And since P is separative,Lecture 20

G /∈M and so g /∈ M. So g is a real which is “new”.
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If we could add enough new reals, then CH would fail in the generic extension M[G].

Example 2. Let Pλ =
{
f : f is a finite function from λ × ω into {0, 1}

}
, where λ ∈ M, and

f 6 g ⇔ g|dom(f)=f .

If G is generic over M, define gα : ω → {0, 1} by gα(n) =
⋃
G(α, n). Then 〈gα : α < λM〉

is a sequence of new reals.

However, this would not be quite enough to “blow up” the continuum to size λ in M[G],
because maybe λM could be small in M[G]. We would need to ensure that cardinals do
not “collapse”.

Example 3. P3 = {āα = 〈Ai : i < α〉 : α < ω,Ai ⊂ ı̄ ∀i < α}, with āα 6 āβ ⇔ āα is an initial
segment of āβ .

A 3-sequence in M[G] will be Ā =
⋃
{ā : ā ∈ G}, where G is a generic filter over M.

Example 4. P = {f : f is a function from a countable (in M) ordinal into P(ω)}, with f 6

g ⇔ f ⊂ g.

A generic filter G gives rise to a map g =
⋃
G : ωM

1 → P(ω)M.

To make sure that M[G] is a model of CH, we must be sure that ωM
1 = ω

M[G]
1 and P(ω)M =

P(ω)M[G].

To check that M[G] is an extension of M and that, e.g. in the examples above, ωM
1 = ω

M[G]
1

and P(ω)M = P(ω)M[G], we need to show that for transitive models, the simplest set-theoretic
concepts are invariant under extension. The concept of invariance of a property or a term is
important in its own right. We study it briefly in a more general setting.

Absoluteness

Definition. Suppose ϕ(x1, . . ., xn) is a formula in the vocabulary of ZFC (or some expansion),
and A ⊂ B are classes. We say:

(1) ϕ(x1, . . ., xn) is absolute between A and B if

∀x1, . . ., xn ∈ A
(
ϕ(x1, . . ., xn)A ↔ ϕ(x1, . . ., xn)B

)

(2) A term t is absolute between A and B if the formula x = t is absolute between A
and B.

(3) If ϕ or t is absolute between A and V , then ϕ or t is absolute for A.

(4) If ϕ or t is absolute for any transitive class A, then ϕ or t is absolute.

Why is absoluteness useful? What concepts and properties are absolute?

Example. Suppose A is a class, x ∈ A, and V |= (∃y)(y ∈ x). A priori, y need not belong to A.

However, if A is transitive, then y ∈ A. So for transitive A, ∃y(y ∈ x)↔
(
∃y(y ∈ x)

)A
.

This example suggests that atomic formulas and formulas all of whose quantifiers are restricted

will have the property (∃y ∈ x)ϕ↔
(
(∃y ∈ x)ϕ

)A
.
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I.e., properties expressed by formulas with restricted quantifiers are absolute, leading to the
following definition of ∆0-formulas.

Definition. We define that class of Σ0 = Π0 = ∆0 formulas as follows:

(1) If ϕ is atomic, then ϕ is Σ0.

(2) If ϕ1, ϕ2, ϕ3 are Σ0, then ϕ1 → ϕ2 and ¬ϕ3 are Σ0. (And ϕ1 ↔ ϕ2, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2

are also Σ0 by conventional abbreviations.)

(3) If ϕ is Σ0, then ∃x(x ∈ y ∧ ϕ) is Σ0. (We abbreviate ∃x(x ∈ y ∧ ϕ) as ∃x ∈ y ϕ.)

Also, ∀x(x ∈ y → ϕ) is Σ0 (abbreviated as (∀x ∈ y)ϕ).

(See handout for a list of ∆0-formulas.)

Definition. Suppose T is a theory. We say that ϕ is ΣT0 (T -provably Σ0) if for some Σ0-formula
ψ, we have T ⊢ ϕ↔ ψ.

If T is ZF or stronger, we omit T .

Lemma. Suppose ϕ(x1, . . ., xn) is Σ0 (or provably equivalent to a Σ0-formula), and A is a
transitive class.

Then ∀x1, . . ., xn ∈ A ϕ(x1, . . ., xn)↔ ϕ(x1, . . ., xn)A.

I.e., ϕ(x1, . . ., xn) is absolute.

Proof. Straightforward induction on the complexity of ϕ(x1, . . ., xn). 2

With these matters clarified, we turn to the proof of the Forcing Theorem.

Lemma 4. Let G be a generic filter in P over M. Then

(1) For all a ∈ M, we have ȧ[G] = a, and Γ[G] = G.

So M ⊂M[G], and G ∈M[G].

(2) M[G] is transitive.

(3) If τ is a P-name in M, then rkr(τ) 6 rkn(τ), and rank(τ [G]) 6 rkn(τ).

So Ord ∩M = Ord ∩M[G].

(4) M[G] is minimal: if M+ is a transitive model of ZFC with M ⊂ M+ and G ∈ M+,
then M[G] ⊂M+.

First, a remark on absoluteness of transfinite recursion.Lecture 21

(1) If s(y, z) is absolute and ZFC ⊢ t(α) = s(t|α, α), then y = t(α) is absolute.

(2) If s0 and s1(y) are absolute terms and ZFC ⊢ t(0) = s0 ∧ t(n+ 1) = s(t(n)), then y = t(n)
is absolute.

Proof of Lemma 4.

(1) Induction on P-name rank 6 α.
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x ∈ ȧ[G]↔ x = ḃ[G] for some b ∈ a with (p, ḃ) ∈ ȧ.

By induction, this ↔ x = b for some b ∈ a. So x ∈ a and ȧ[G] = a.

Then Γ[G] = {(p, ṗ) : p ∈ P}[G] = {ṗ[G] : p ∈ G} = {p : p ∈ G} = G.

(2) x ∈ τ [G] ∈M[G] → x = τi[G] for some P-name τi, etc, which → x ∈ M[G].

(3) The claims about rank are proved by induction (exercise).

We show that Ord ∩M = Ord ∩M[G]. Clearly, Ord ∩M ⊂ Ord ∩M[G] by (1).

If β ∈ Ord ∩M[G], say β = τ
˜
[G] for some P-name τ ∈MP.

Then β = rank(β) = rank(τ
˜
[G]) 6 rkn(τ) ∈ Ord ∩M, since ranks are defined by

transfinite recursion, so are absolute.

So β 6 α ∈ Ord ∩M, so β ∈M, since M is transitive and α ∈ Ord.

Thus Ord ∩M = Ord ∩M[G].

(4) For τ ∈MP, we see that τ ∈M+, G ∈M+.

So τ [G] = τ [G]M
+

∈M+, so M[G] ⊂M+. 2

We start proving M[G] satisfies the axioms of ZFC. We get some very easily.

Proposition 5. With the usual assumptions on M,P, G, we have that M[G] satisfies the fol-
lowing.

(0) Set existence

(1) Extensionality

(2) Null set

(3) Foundation

(4) Pair set

(5) Union

(6) Infinity

Proof.

(0) ∅ 6= M ⊂M[G].

(1) M[G] is transitive

(2), (3), (6) absoluteness of terms involved in the axioms.

(4) Let x = σ[G], y = τ [G] ∈M[G], with σ, τ ∈ MP.

Define a P-name upair(σ, τ) ∈ MP, by upair(σ, τ) = {〈0P, σ〉, 〈0P, τ〉}.

It’s easy now to check upair(σ, τ)[G] = {σ[G], τ [G]} = {x, y}.

(5) Suppose that x = τ [G] ∈M[G]. Two ways to check union.
(i) manufacture a P-name u ∈MP such that u[G] =

⋃
x

(ii) “on credit”. Find a P-name ρ ∈ MP such that
⋃
x ⊂ ρ[G] and then appeal to

Separation. (But this assumes that we have checked that Separation holds in
M[G].)

37



We indicate (1). We want (
⋃
x)[G] =

{
z[G] : ∃u[G] ∈ x[G], z[G] ∈ u[G]

}
.

Reflecting suggests the following P-name as a candidate to give
⋃
x in M[G].

u =
{

(r, ρ) : ∃p, q ∈ P, ∃σ ∈ MP, 〈p, σ〉 ∈ τ ∧ 〈q, ρ〉 ∈ σ ∧ p 6 r ∧ q 6 r
}

This is a P-name in M, and it is easy enough to check that u[G] =
⋃
x =

⋃
(τ [G]).

If one does (2), take ρ =
⋃

range(τ). We have range(τ) = {σ : ∃p ∈ P, 〈p, σ〉 ∈ τ}.

ρ is a P-name in M, and
⋃
x ⊂ ρ[G]. Now apply Separation. 2

It remains to verify Power set, Replacement, Separation and Choice in M[G]. These axioms will
require us to produce more complicated P-names in M. Hence we must treat the definability of

 in M.

To verify these remaining axioms, we shall assume proven the following two clauses of the ForcingLecture 22

Theorem.

(3) M[G] |= ϕ
[
τ1[G], . . ., τn[G]

]
iff (∃p ∈ G)

(
p 
 ϕ(τ1, . . ., τn)

)
.

(4) The relation 
P is definable in M; more precisely, given ϕ(x1, . . ., xn), there is a formula
ϕ∗(x1, . . ., xn, x, y) which is absolute in M such that for all a1, . . ., an ∈M,

p 
 ϕ(ȧ1, . . ., ȧn) iff M |= ϕ∗(a1, . . ., an, p,P)

Notes.

(3) is sometimes called the Truth Lemma.

(4) is sometimes called the Definability Lemma.

We shall prove (3) and (4) in an appendix (they are proved by induction).

Proposition 51

2
The axioms of Separation, Power set, Replacement and Choice are all satisfied

in M[G].

Proof.

(1) Separation.

We’ll write σG, τG, . . . instead of σ[G], τ [G], . . ., when more convenient.

Suppose that σ, τ1, . . ., τn ∈ MP and ϕ(x, y, x1, . . ., xn) is a formula. We wish to show
that

y =
{
a ∈ σG : M[G] |= ϕ[a, σG, τ1G, . . ., τnG]

}

belongs to M[G].

We define an appropriate name ρ ∈ MP.

ρ =
{
〈p, π〉 : 〈p, π〉 ∈ P × range(σ), p 
 π ∈ σ ∧ ϕ(π, σ, τ1, . . ., τn)

}

We have ρ ∈ V P. In fact, ρ ∈MP by Definability Lemma (4).

We just check that ρ[G] = y.

First, ρ[G] ⊂ y. Suppose a ∈ ρ[G]. Then a = π[G], where 〈p, π〉 ∈ ρ for some p ∈ G.
By definition of ρ,

p 
 π ∈ σ ∧ ϕ(π, σ, τ1, . . ., τn)
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Since p ∈ G,
M[G] |= πG ∈ σG ∧ ϕ[πG, σG, τ1G, . . ., τnG]

(by definition of 
).

So a = π[G] ∈ y.

Second, y ⊂ ρ[G]. Suppose a ∈ y. Then a ∈ σ[G] and ϕ(a, σG, τ1G, . . ., τnG)M[G].

So a = π[G] for some π ∈ range(σ). So M[G] |= πG ∈ σG ∧ ϕ[πG, σG, τ1G, . . ., τnG].

Thus (∃p ∈ G)p 
 π ∈ σ ∧ ϕ(π, σ, τ1, . . ., τn) (by Truth Lemma (3)).

So 〈p, π〉 ∈ ρ and πG ∈ ρG. So y ⊂ ρG.

(2) Power set.

Suppose x ∈M[G], x = σ[G] for some σ ∈ MP.

Let Zσ =
{
〈q, p〉 : (∃p 6 q)(〈p, ρ〉 ∈ σ)

}
.

Let Z ′
σ = {u : u ⊂ Zσ}M. Let τ = P × Z ′

σ.

τ ∈MP. It is an exercise to check that (Px)M[G] = τG.

(3) Replacement.

Suppose σ[G] ∈ M[G] and we wish to find a set τ [G] ∈M[G] such that (in M[G])

∀z
(
z ∈ τ [G]↔ (∃y)

(
y ∈ σ[G] ∧ ψ(y, z)

))

i.e.
τ [G] =

{
z : (∃y ∈ σ[G]) ψ(y, z)M[G]

}

We seek a suitable name.

Let Zσ =
{
〈q, y〉 : (∃r ∈ P )

(
〈r, y〉 ∈ σ ∧ r 6 q

)}

Then Zσ ∈ MP.

For each 〈q, y〉 ∈ Zσ, consider all P-names z such that q 
 ψ(ẏ, ż).

There are too many P-names z for this to be a set in M. We cut the collection down
to a set in M by using the rank function in M.

Let ρ(q, y) be the least rank of a set z ∈M for which q 
 ψ(ẏ, ż). (If no such z exists,
then ρ(q, y) = 0.)

Now, let

τ =
{
〈w, z〉 : (∃〈q, y〉 ∈ Zσ)

(
q 
 ψ(ẏ, ż) ∧ rank(z) 6 ρ(q, y)

)}M

Check that τG is as required. Note that τ ∈ MP because rank(τ) is bounded in M,
and 
 is definable in M.

(4) Choice.

Suppose x = τG ∈ M[G]. We show that there is a function f ∈ M[G] mapping an
ordinal α onto a set containing x as a subset.

Let 〈σβ : β < α〉 be an enumeration of range(τ).
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Since M |= AC, we may assume that this enumeration belongs to M. Let opair(u, v)
be the ordered pair 〈u, v〉 =

{
{u, u}, {u, v}

}
.

Let f =
{
〈p, opair(β̇, σβ)〉 : p ∈ P, β < α

}
∈ MP

Then f [G] =
{
〈β, σβ [G]〉 : β < α

}
∈ M[G], and x ⊂ range(f), dom(f) = α.

So x is well-ordered in M[G]. 2

Corollary 6. M[G] |= ZFC.

Proposition 7. Let P ∈ M be a forcing. If p 
 (∃x)(x ∈ σ ∧ ϕ(x, τ1, . . ., τn) then there existLecture 23

q > p and π ∈ range(σ) such that q 
 ϕ(π, τ1, . . ., τn).

Proof. Suppose p ∈ G for some generic filter G.

M[G] 
 (∃x)
(
x ∈ σG ∧ ϕ(x, τ1G, . . ., τnG)

)
, so for some π ∈ MP and q′ ∈ G, we have

(q′, π) ∈ σ and M[G] |= πG ∈ σG ∧ ϕ(πG, τ1G, . . ., τnG)
)
,

By the Truth Lemma, there is q ∈ G such that q 
 π ∈ σ ∧ ϕ(π, τ1, . . ., τG).

Wlog, q > p, q′. 2

We turn to the proof of the relative consistency of CH.

Definition. Let P ∈ M. We say

(1) P preserves cardinals if for every generic filter G in P over M, for all β ∈ Ord∩M,

(β is a cardinal)M ←→ (β is a cardinal)M[G] (∗)

If a cardinal κ in M ceases to be a cardinal in M[G], we say that P collapses κ (or
that κ is collapsed by P).

(2) Analogously, we say that P preserves cardinals 6 λ ∈M if (∗) holds for all β 6 λ,
β ∈ Ord ∩M.

Note. The finite ordinals and ω are absolute, so cardinal preservation is an issue only for β > ℵ0.
Note also that if β is a cardinal in M[G], then β is a cardinal in M since M ⊂M[G].

Definition. Let P ∈ M. We say

(1) P preserves cofinalities if for every limit ordinal δ ∈ M,

cf(δ)M = cf(δ)M[G] (∗∗)

(2) Analogously, P preserves cofinalities 6 λ ∈M if (∗∗) holds for δ 6 λ.

Lemma 8. If P preserves cofinalities, then P preserves cardinals.

Proof. Every infinite cardinal κ is regular or a limit.

Case 1. κ is regular in M. Then cf(κ)M[G] = cf(κ)M = κ, so κ is a regular cardinal in
M[G].

Case 2. κ is a limit cardinal in M. Then the regular (even the successor) cardinals λ ∈M,
λ < κ, are unbounded in κ. By Case 1, these λ remain regular cardinals in M[G] and
are still unbounded in κ, and so κ is a limit cardinal in M[G]. 2
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Definition.

1. Suppose λ > ℵ0. A forcing P is λ-closed (or λ-complete) if for any γ < λ, every
6P-increasing sequence 〈pi : i < γ〉 ⊆ P has an upper bound p ∈ P . I.e.,

∧
i<γ

pi 6P p.

2. P is countably complete if P is ℵ0-complete.

Lemma 9. Suppose P ∈M, λ ∈ M, and (P is λ-closed)M. Let α < λ, B ∈M, and suppose G is
generic in P over M.

Then (αB)M = (αB)M[G].

In M[G], there are no new α-sequences, i.e. if f : α→ B, f ∈M[G], then f ∈ M.

Proof. M[G] |= f is a function from α into B. Say f = τG for some τ ∈MP.

Suppose f /∈ (αB)M = αB ∩M (absolute) = K ∈ M.

By the Truth Lemma, there exists p ∈ G such that p 
 (τ is a function from α̇ into Ḃ and
τ /∈ K).

Now we work entirely in M and define by transfinite recursion a 6P-increasing sequence
〈pβ : β 6 α〉 and 〈bβ ∈ B : β < α〉 as follows:

(1) p0 = p

(2) ξ 6 ζ −→ pξ 6P pζ

(3) pβ+1 
 τ(β̇) = bβ for some bβ ∈ B.

Why is this possible to do?

If δ 6 α is a limit ordinal, since P is λ-closed and α < λ, there is pδ ∈ P with
∧
ξ<δ

pξ 6P pδ.

So (2) is satisfied.

If pβ has been defined, pβ 
 τ is a function from α̇ into Ḃ. (p = p0 6 pβ)

So pβ 
 (∃x)(x ∈ Ḃ ∧ τ(Ḃ) = x).

By Proposition 7, there exists bβ ∈ B and pβ+1 > pβ such that pβ+1 
 τ(β̇) = ḃβ .

This completes the definition.

In M, consider the function g : α → B given by g(β) = bβ. Then g ∈ K. In particular,
g ∈M.

Let H be a generic filter in P over M such that pα ∈ H . Then for all β < α, pβ ∈ H .

∧
β<α

M[H ] 
 τH(β) = g(β). So in M[H ], τH = g ∈ K (∗).

But, p = p0 6 pα ∈ H , so p ∈ H . And p 
 τ /∈ K̇, so M[H ] |= τH /∈ K.

So τH /∈ K, which contradicts (∗). Thus f ∈ M. 2
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Corollary 10. Suppose (λ is a cardinal and P is λ-complete)M. Then P preserves cofinalities
6 λ and cardinals 6 λ.

Proof. If for some cardinal κ 6 λ we have cf(κ)M[G] < cf(κ)M, then in M[G], there exist α < κ
and f ∈ M[G] such that f : α→ κ is strictly increasing and cofinal in κ.

By Lemma 9, f ∈M, so cf(κ)M 6 α < κ. 2

Theorem 11. Con(ZFC) −→ Con(ZFC+(2ℵ0 = ℵ1)).

I.e., there is a model of ZFC+(2ℵ0 = ℵ1).

Proof. Let M be a CTM. We construct M[G] such that M[G] |= (2ℵ0 = ℵ1).

We wish M[G] to possess a surjection from ω1 onto P(ω) in M[G].

In M, let P =
{
f : dom(f) = α < ω1, range(f) ⊆ P(ω)

}
, with f 6P g if g|dom(f) = f .

Note:

(1) P is ℵ1-complete. So ωM
1 = ω

M[G]
1 , by Corollary 10.

(2) (P(w))M = (P(ω))M[G], since (ω2)M = (ω2)M[G], by Lemma 9.

Let g =
⋃
G, where G is a generic filter in P over M.

Then Ea =
{
f : a ∈ range(f)

}
, for α ⊆ ω (in M), is a dense open set in M.

So G ∩ Ea 6= ∅.

Hence in M[G], g is a surjection from ω
M[G]
1 onto (P(ω))M[G]. 2

Lemma 12. Suppose P ∈ M and (P is a CCC)M. Suppose f ∈ M[G] is a function from α to β,Lecture 24

with α, β ∈ Ord and α > ω.

Then there exists y ∈ M with range(f) ⊆ y and (|y| 6 |α|)M.

In other words, f ∈ M[G] can be “approximated” by a set in M.

Proof. f = τG for some τ ∈MP. M[G] |= (τG : α→ β is a function).

By the Truth Lemma, there is p ∈ G with p 
 (τ : α̇→ β̇ is a function).

So p 
 (∀δ < α̇)(τ(δ) < β̇). And p ∈ G, so M[G] |= (∀δ < α)(f(δ) < β).

Say γ = f(δ). Thus there is q ∈ G, p 6 q, with q 
 τ(δ̇) = γ̇.

For each δ < α, define yδ =
{
ξ < β|(∃r)(p 6 r)(r 
 τ(δ̇) = ξ̇)

}
.

Note: yδ ∈ M by the Definability Lemma, and γ ∈ yδ where γ = f(δ).

In M, yδ is countable. Why? Choose for each ξ ∈ yδ a condition qξ such that p 6 qξ and

qξ 
 τ(δ̇) = ξ̇.

Then {qξ : ξ ∈ yδ} is an antichain in P. This is easy to check.
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So {qξ : ξ ∈ yδ} is countable since P has CCC in M, and hence (yδ is countable)M.

Let y =
⋃
δ<α

yδ. Then y ∈ M since α, yδ ∈M:
(
|y| =

∑
δ<|a

|yδ| = ℵ0|α| = |α|
)M

.

And range(f) ⊆ y since ∀γ < δ, we have f(δ) ∈ yδ. 2

Lemma 13. Suppose (P is CCC)M. Then P preserves cofinalities and cardinals.

Proof. If not, then since ℵM0 = ℵ
M[G]
0 , the witness to failure κ = cf(κ) > ℵ0 in M has cofinality

α = cf(κ)M[G] < κ in M[G].

So in M[G], there is f : α → κ, strictly increasing and cofinal in κ. Now, by Lemma 12,
there is y ∈M such that range(f) ⊆ y and (|y| = |a|)M.

So y is cofinal in κ in M. Thus
(
cf(κ) 6 |y| = |α| < κ

)M
, so cf(κ)M < κ in M, contradiction.

P must therefore preserve cofinalities and hence also cardinals. 2

We shall use a useful result to check CCC.

Lemma 14 (the ∆-system Lemma). Suppose A is an uncountable family of finite subsets
of a set X .

Then there exist an uncountable subfamily B ⊆ A and a set r such that for all a 6= b ∈ B,
we have a ∩ b = r.

Proof. Wlog, for all a ∈ A, |a| = n for a fixed n < ω. We prove by induction on n.

If n = 1, this is the Pigeonhole Principle. So suppose n > 1.

Case 1. If there exists x such that x ∈ a for uncountably many a ∈ A, then evict x and
consider

{
a \ {x} : a as above}. Apply the induction hypothesis to get B and add x

back to each b ∈ B.

Case 2. Not case 1. Then every x leaves the a’s in A after at most countably many a’s.
So one can easily define a sequence 〈aα : α < ω1〉 with aα ∈ A with aα ∩ aβ = ∅ for
α 6= β. 2

Definition. Fn(A,B, κ) =
{
f : f is a function from A to B and |f | < κ

}
.

Corollary 15. Fn(λ× ω, 2,ℵ0) has the CCC.

Proof. If A ⊆ Fn(λ × ω, 2,ℵ0) is uncountable, apply Lemma 14 to find B ⊂ A with |B| = ℵ1,
and f ∩ g = r for all f 6= g ∈ B.

So h = f ∪ g ∈ Fn(λ× ω, 2,ℵ0) and f 6 h ∧ g 6 h.

So A is not an antichain. 2

Theorem 16. Con(ZFC) −→ Con(ZFC+(2ℵ0 > ℵ1)).

I.e., there is a model of ZFC+(2ℵ0 > ℵ1).
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Proof. Let M be a CTM. In M, let P = Fn(λ× ω, 2,ℵ0) where λ > ℵ2 in M.

By Corollary 15, P has the CCC, so P preserves cofinalities and cardinals, and hence

ℵ
M[G]
1 = ℵM1

ℵ
M[G]
2 = ℵM2 6 λ

The following sets are dense open and belong to M:

Dα,n = {p ∈ P : (α, n) ∈ dom(p)}

So G ∩Dα,n 6= ∅ for all α < λ, n ∈ ω.

In M[G],
⋃
G : λ× ω → 2. Let gα(n) =

⋃
G(α, n). Then gα : ω → 2, gα ∈M[G].

Claim. In M[G], α < β → gα 6= gβ.

Why? Otherwise M[G] |= gα = gβ, so there exist τα, τβ ∈ MP, and p ∈ G such that
p 
 τα = τβ .

Pick n < ω such that (α, n), (β, n) /∈ dom(p).

Extend p to q, so q|dom(p) = p, with q(α, n) = 0 and q(β, n) = 1.

Let H be generic in P over M, q ∈ H .

Then M[H ] |= ταH(n) = 0, and M[H ] |= τβH = 1, but M[H ] |= ταH(n) = τβH , because
p ∈ H (as p 6 q).

Contradiction. Thus in M[G], gα 6= gβ , and so M[G] |= (2ℵ0 > λ > ℵ2). 2

Corollary 17. The Continuum Hypothesis is independent of ZFC (if ZFC is consistent).

Proof. Theorems 11 and 16. 2
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TOPICS IN SET THEORY: Exercise Sheet 1

Department of Pure Mathematics and Mathematical Sciences,
University of Cambridge

Michaelmas 2012-2013 Dr Oren Kolman

1 (i) Assume the axiom of choice.
Suppose I is a non-empty set and for each i ∈ I , λi is an infinite cardinal.
Show

∑
i∈I λi ≤ | I | supi∈Iλi , where | I | is the cardinality of I . [Hint:

enumerate λi and think up a surjection from | I | ×λ onto
⋃
i∈I λi where

λ = supi∈Iλi .]

(ii) Suppose κ is an infinite cardinal. Prove that the (cardinal) successor κ+ of
κ is a regular cardinal. [Hint: part (i).]

2 (i) Suppose f ∈ H(C) , i.e. f is an entire holomorphic function of the single
complex variable z . Let Z(f) = {z ∈ C : f(z) = 0} be the zero set of f .
If f 6= 0, what is the cardinality of Z(f)? [Hint: the zeros of a holomorphic
function have a noteworthy topological property.]

(ii) Suppose F ⊆ H(C) has cardinality ℵ1 . What is the cardinality of the set⋃
f 6=g∈F Z(f − g)? [Hint: Q1(i).]

(iii) Suppose 2ℵ0 > ℵ1 and F ⊆ H(C) has cardinality ℵ1 . By judicious selection
of a w0 ∈ C , show that F is not orbit countable.

(iv) Deduce the observation of Erdös that if 2ℵ0 > ℵ1 , then orbit countability is
equivalent to countability.

3 (i) Let ZFC− be the first-order theory whose axioms are obtained from ZFC by
omitting the axiom of infinity. Show that (*) (Vω,∈ ∩ (Vω × Vω)) is a model
of ZFC− .

(ii) Show that every element of Vω is finite. Deduce that the axiom of infinity
cannot be proved from the other axioms of ZFC .

(iii) Can the assertion (*) be proved from ZFC− ? Explain.

4 (i) Consider the assertion DODGY: there exists a family {Aα,n : α < ω1, n < ω}
such that (i)ω1 \

⋃
n<ω Aα,n is finite for every α < ω1 , and (ii) if α 6= β , then

Aα,n ∩ Aβ,n = ∅ for all n < ω . Decide whether DODGY is provable or not
from ZFC . [Hint: it may be easier to try part (ii) first.]
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(ii) Prove there exists a family {Aα,n : α < ω1, n < ω} such that (i)ω1 \
⋃
n<ω Aα,n

is countable for every α < ω1 , and (ii) if α 6= β , then Aα,n ∩ Aβ,n = ∅ for all
n < ω . [Hint: For each ordinal α < ω1 , choose a surjection fα from ω onto
α (why is this possible?), and consider the set Aα,n = {ξ : fξ(n) = α} .]

(iii) Can you generalize the result of part (ii) to cardinals greater than ℵ1 ? How
about ℵω ?

5 Assume that ℵ1
ℵ0 = ℵ1 . Prove ℵnℵ0 = ℵn for all n < ω . [Hint: induction.]
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TOPICS IN SET THEORY: Exercise Sheet 2

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge

Michaelmas 2012-2013 Dr Oren Kolman

1 (i) Suppose that x and y belong to the class WF of well-founded sets. Find
bounds for the ranks of the following sets in terms of the ranks of x and y :
∪x , P (x) , {x} , x× y , x ∪ y , x ∩ y , {x, y} , 〈x, y〉 , and yx .

(ii) Calculate the ranks of the sets N , Z , Q , R , and C .

2 (i) Suppose that M is a transitive model of ZF (or a large enough finite fragment
of ZF including the Power Set Axiom) and let x ∈ M . Prove that P (x)M =
P (x) ∩ M . Deduce that the Power Set Axiom holds in M if and only if
∀x ∈ M∃y ∈ M(P (x) ∩M ⊆ y) .

(ii) Suppose that Vα reflects (a large enough finite fragment T of) ZFC , let
β < α . Prove that V Vα

β = Vβ . Hence complete the second proof that neither
ZF nor ZFC is finitely axiomatizable.

3 Prove the basic properties of the hierarchy {Vα : α ∈ Ord} .

(i) α ≤ β → Vα ⊆ Vβ .

(ii) α < β → Vα ∈ Vβ .

(iii) Vα is a transitive set: x ∈ Vα → x ⊆ Vα .

(iv) Vα = {x ∈ WF : rank(x) < α} , where rank(x) = min{β : x ∈ Vβ + 1} .

(v) y ∈ x→ rank(y) < rank(x) .

(vi) rank(α) = α .

(vii) Ord ∩ Vα = α .

(viii) For every n ∈ ω, | Vn |< ℵ0 ; | Vω |= ℵ0 ;
(AC) for all α ∈ Ord, | Vω+α |= iα .

4 Prove the basic properties of the constructible hierarchy {Lα : α ∈ Ord} .

(i) Lα is a set and Lα ⊆ Vα .

(ii) Lα is transitive.
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(iii) For every n ∈ ω, | Ln |< ℵ0 , and Ln = Vn ; Lω = Vω .

(iv) For every α ≥ ω, | Lα |=| α | .
(v) α ≤ β → Lα ⊆ Lβ .

(vi) α < β → Lα ∈ Lβ and Lα  Lβ .

(vii) α ∈ Lα+1 and α /∈ Lα .

5 (i) Suppose that M is a transitive class. Show that ZFC ` ExtensionalityM

and ZFC ` RegularityM .

(ii) For a L(∈) -formula ϕ(x, y) with free variables x, y, y1, . . . , yn , and a variable
z not free in ϕ(x, y) , let (∗)ϕ(x,y) be the assertion (∀x ∈ a)(∃!y)ϕ(x, y) →
∃z∀y(y ∈ z ↔ ∃x(x ∈ a ∧ ϕ(x, y))) . The notation ∃!wψ abbreviates the
formula ∃z∀w(ψ ↔ w = z) , where z is the first variable different from w and
not free in ψ . Show that the schema (∗)ϕ(x,y) is an equivalent form of the
schema of the Axiom of Replacement.

(iii) Prove that the Reflection Principle for {Vα : α ∈ Ord} implies the Axioms of
Replacement. [Hint: Suppose a ∈ Vα ; referring to part (i), reflect to a Vβ ,
and use the Axioms of Separation to find the right candidate for the image of
a .] Comment: sometimes it may prove less onerous to check the Reflection
Principle instead of Replacement, e.g., when showing that the class L is an
inner model of ZFC , it is equivalent to check that L is an inner model of
Levy-Montague set theory LM .

6 **

(i) Consider the assertion that for every formula ϕ(x1, . . . , xn) in the language of
set theory, for all ordinals ω < α < β , for all a1, . . . , an ∈ Vα ,

ϕ(a1, . . . , an)Vα ↔ ϕ(a1, . . . , an)Vβ .

What is your opinion? Can the assertion be proved in ZFC ? Would your
view change if Vα and Vβ were replaced by Lα and Lβ ? Would your views
alter if the assertion were modified to the sharpened form: for all uncountable
cardinals κ < λ , for every formula ϕ(x1, . . . , xn) in the language of set theory,
for all a1, . . . , an ∈ Vκ ,

ϕ(a1, . . . , an)Lκ ↔ ϕ(a1, . . . , an)Lλ .

(ii) Suppose there exists an ordinal α such that Vα is a model of ZFC . Show
that the least such ordinal α has cofinality ω .

(iii) Suppose κ is a strongly inaccessible cardinal. Prove that Vκ is a model of
ZFC . 1

1Unrelated general gossip: apparently, if the existence of inaccessible cardinals were inconsistent with
ZFC , marvellous phenomena would appear - one could prove that there are no uncountable Grothendieck
universes and the axiom of universes in category theory is false. (An uncountable Grothendieck universe
is exactly Hκ for an inaccessible cardinal κ , and the axiom of universes asserts that every set is in such
a universe.)

2



(iv) Deduce that the converse of part (iii) is false.

7 (i) Prove that for every infinite cardinal κ , 2κ = κκ .

(ii) Let κ, λi(i ∈ I) be infinite cardinals. Prove:

(a) κ
P

i∈Iλi =
∏

i∈I κ
λi ;

(b) (
∏

i∈I λi)
κ =

∏
i∈I λ

κ
i .
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Michaelmas 2012-2013 Dr Oren Kolman

1 Suppose α and β are ordinals. Prove:

(i) ℵα+1 < 22ℵα ; α ≤ β implies ℵαℵβ = 2ℵβ .

(ii)
∏

0<n<ω n = 2ℵ0 ;
∏

n<ω ℵn = ℵωℵ0 ;
∏

α<ω+ω ℵα = ℵω+ω
ℵ0 .

(iii) α < β implies ℵα+1
ℵβ = ℵαℵβ ℵα+1 .

(iv) GCH implies ℵαℵβ =
ℵα ℵβ < cf(ℵα);
ℵα+1 cf(ℵα) ≤ ℵβ ≤ ℵα;
ℵβ+1 ℵα ≤ ℵβ.

(v) ℵωℵω1 = ℵωℵ0 2ℵω1 .

(vi) α < ω2 implies ℵαℵ2 = ℵαℵ1 2ℵ2 .

2 (i) Prove that an infinite cardinal κ is a strong limit cardinal if and only if κ = iδ

for some limit ordinal δ .
(ii) (Tarski’s recursion formula) Let κ be a limit cardinal and λ > 0 . Let δ be

a limit ordinal such that λ < cf(δ) . Suppose that {κξ < κ : ξ < δ} is a
strictly increasing sequence of cardinals such that κ =

∑
ξ<δ κξ . Show that

κλ =
∑

ξ<δ κξ
λ .

(iii) Prove that if δ > 0 is a limit ordinal, then cf(iδ) = cf(δ) .

3 (i) Suppose κ is a limit cardinal and λ < cf(κ) . Prove κλ =
∑

α<κ | α |λ .

(ii) Suppose κ is a limit cardinal and λ ≥ cf(κ) . Prove κλ = (supα<κ| α |λ)cf(κ) .

(iii) Suppose κ > cf(κ) is not a strong limit cardinal. Prove κ<κ = 2<κ > κ .

(iv) Suppose κ > cf(κ) is a strong limit cardinal.
Prove 2<κ = κ and κ<κ = κcf(κ) .

(v) 2ℵ0 > ℵω implies ℵωℵ0 = 2ℵ0 .

(vi) 2ℵ1 = ℵ2 and ℵωℵ0 > ℵω1 implies ℵω1

ℵ1 = ℵωℵ0 .

(vii) 2ℵ0 ≥ ℵω1 implies (ℵω)ג = 2ℵ0 and (ℵω1)ג = 2ℵ1 .

(viii) 2ℵ1 = ℵ2 implies ℵωℵ0 6= ℵω1 . [HINT: Cofinalities.]

4 Prove there exists a rigid dense subset D of the linear order (R,≤) , i.e. D has no
non-trivial order-automorphisms. [HINT: Predictively list the order-automorphisms
from R into R (using the observation that these are uniquely determined by their
restrictions to Q ) and construct two disjoint sets D ⊇ Q and B by transfinite
recursion so that every potential order-automorphism of D maps some element of
D into B .]
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5 (i) Let λ = cf(λ) > ℵ0 .
Show U = {δ < λ : ωδ = δ} and V = {δ < λ : ωδ = δ} are club in λ .

(ii) Suppose B ⊆ λ = cf(λ) > ℵ0 . Show that B is a club of λ if and only if B
is the range of a continuous strictly increasing function f : λ→ λ .

(iii) Prove that if λ > cf(λ) ≥ ℵ0 , then there is a club C of λ such that no
member of C is a regular cardinal. [HINT: Try the range of a continuous
function f : cf(λ)→ {α < λ : α > cf(λ)} .]

(iv) Suppose λ = cf(λ) > ℵ0 and f : λ→ λ . Show that the set D = {δ < λ : δ is
closed under f} is club in λ . Deduce that if F is a family of functions from
λ to λ and | F |< λ , then the set E = {δ < λ : δ is closed under F} is club
in λ . Hence or otherwise, show that for a τ -structure M with universe λ ,
where | τ | < λ , the set {δ < λ : M | δ is an elementary submodel of M} is
a club in λ . [HINT: Skolem functions and the Tarski-Vaught Criterion.]

6 Let ω1 have the order topology and suppose that f : ω1 → R is a (topologically)
continuous function. Show there exists α < ω1 such that ∀β > α, f(β) = f(α) .
[HINT: for each real ε > 0 and limit ordinal ξ > 0 use the inverse image of
(f(ξ) − ε, f(ξ) + ε) to define a regressive function gε(ξ) , apply Fodor’s Theorem
and first countability of R .]

7 Let A be a set of cardinality κ = cf(κ) > ℵ0 . A κ -filtration of A is an indexed
sequence {Aα : α < κ} such that for all α, β < κ

(i) | Aα |< κ ;

(ii) α < β implies Aα ⊆ Aβ ;

(iii) δ ∈ lim(κ) implies Aδ = ∪{Aα : α < δ} ;

(iv) A = ∪{Aα : α < κ} .

(i) Suppose {Aα : α < κ} and {Bα : α < κ} are κ -filtrations of A . Show the
set {α ∈ κ : Aα = Bα} is a club of κ .

(ii) Let {Aα : α < κ = cf(κ)} be a κ -filtration of A . Prove there exists a club
C of κ such that for all α ∈ C , | Aα+ \ Aα |=| α+ \ α | where α+ is the
successor of α in C , i.e. α+ = inf{β ∈ C : β > α} .

(iii) Suppose λ = cf(λ) > ℵ0 and {Aα : α < κ} is a κ -filtration of a set A of
cardinality κ . Prove Fodor’s Lemma: if S is a stationary subset of κ and
f : S → A is a function such that for all α ∈ S , f(α) ∈ Aα , then there exists
a stationary S ′ ⊆ S such that f | S ′ is constant

8 Prove that ♦ implies there exists {Zα : α < 2ℵ1} such that

(i) ∀α < 2ℵ1 Zα is a stationary subset of ℵ1 ;

(ii) ∀α < β < 2ℵ1 Zα ∩ Zβ is countable.

9 Suppose that S is a stationary subset of λ = cf(λ) > ℵ0 . Prove that ♦S is
equivalent to the statement: there exists {fα : α ∈ S} such that
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(i) ∀α ∈ S, fα : α→ α ;

(ii) ∀f : λ→ λ, {α ∈ S : f | α = fα} is a stationary subset of λ .

10 (i) Show that ♦ implies ♣ .

(ii) * Prove Devlin’s Theorem: ♣+CH implies ♦ . Deduce that ♦ is equivalent
to ♣+ CH .

11 Let ♦′S denote the following statement: there exists {Eα : α ∈ S} such that

(i) ∀α ∈ S,Eα is a countable set of subsets of α ;

(ii) ∀X ⊆ λ, {α ∈ S : X ∩ α ∈ Eα} is a stationary subset of λ .

Prove that ♦′S and ♦S are equivalent in ZFC .

12 (i) Suppose π is a bijection from λ+ onto λ × λ+ . Show there exists a club C
of λ+ such that for all δ ∈ C , the restriction map π | δ is a bijection from δ
onto λ× δ .

(ii) For a cardinal λ and a set W , let [W ]≤λ = {Y ⊆ W : | Y |≤ λ} . If 2λ = λ+ ,
let {Xα : α < λ+} be an enumeration of [λ+]≤λ and suppose Z ⊆ λ+ . Show
that for some club C of λ+ , for all δ ∈ C there are arbitrarily large α < δ
such that for some β < δ, Z ∩ α = Xβ .

(iii) Suppose cf(δ) = κ > ℵ0 and h is a function from dom(h) ⊇ δ into κ . Prove
that the following are equivalent:

(a) h is one-to-one on some club C of δ ;

(b) h is strictly increasing on some club D of δ ;

(c) range(h | S) is unbounded in κ for every stationary subset S ⊆ δ .

13 Open Research Problems.

(i) Juhasz’s Problem. Does ♣ imply ¬SH , i.e. does ♣ imply there exists a
Suslin tree?

(ii) Assume that cf(χ) < χ and λ = χ+ = 2χ . Determine whether ♦Sλ
cf(χ)

is a

theorem of ZFC (or even ZFC +GCH ).

(iii) Assume that λ = λ<λ = 2µ is a regular limit cardinal. Determine whether ♦λ
is a theorem of ZFC .
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TOPICS IN SET THEORY: Exercise Sheet 4

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge

Michaelmas 2012-2013 Dr Oren Kolman

This final set of exercises involves, alongside basic drill, some questions that require signif-
icant extensions of the material covered in lectures. Attempt a representative selection.
Several questions are optional (they presuppose some elementary non-set-theoretic in-
formation from algebra, complex analysis, model theory, or topology); some problems
are difficult (marked † ) or open, and they have been included, along with guidance, to
illustrate the richness and flexibility of forcing.

1 Absoluteness results

All formulas and terms are in the vocabulary of ZFC unless otherwise indicated.
Suppose that ϕ , ϕ1 and ϕ2 are absolute.

(i) Suppose that ψ is a formula with the same free variables as ϕ such that
ZF ` ϕ↔ ψ . Show that ψ is absolute.

(ii) Suppose that ∀yϕ1 , ∃zϕ2 and ψ have the same free variables; suppose
ZF ` ∀yϕ1 ↔ ψ and ZF ` ∃zϕ2 ↔ ψ . Show that ψ is absolute.

(iii) Suppose that ψ(y) and the term t are absolute. Show that ψ(t) is absolute.

(iv) Suppose that t is absolute. Show that x ∈ t and t ∈ x are absolute.

(v) Suppose that ψ(y) and t are absolute. Show that {y ∈ t : ψ(y)} is absolute.

(vi) Prove that the following terms and predicates are absolute (in each instance,
it suffices to produce a ZF -provably equivalent absolute or ∆0 -formula):

y ⊆ x ; z = {x, y} ; z = {x} ; z = 〈x, y〉 ; z =
⋃
x ; z = x ∪ y ; z = x ∩ y ;

z = x \ y ; z = x× y ;

f is a function; y = dom(f) ; y = range(f) ;

y = ∅ ; y = s(x) ; y = 1; y = 2;

y = f ′′x (where f ′′x means the application of f to x ); y = f | x ;

x is transitive; x ∈ Ord (remember that Foundation is an axiom of ZFC);
x is a limit ordinal; x = ω .

(vii) Suppose that the term s(y, z) is absolute, and ZFC ` (∀α)t(α) = s(t | α, α) .
Show that the formula y = t(α) is absolute. [For a formula ϕ(x) , ϕ(α)
abbreviates (α ∈ Ord ∧ ϕ(α)) .]

(viii) Prove that the following are absolute:

α + β ; α · β ; αβ ; rank(x) ; y is the transitive closure of x .
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(ix) Determine which of the following are (a) absolute, (b) absolute for Vκ , when
κ is a strongly inaccessible cardinal, (c) absolute between the ground model
and its generic extensions (brief explanations suffice):

Z , (Q,≤) , (R,≤) , x is countable, y = P (z) , α is a cardinal, ℵ1 , S is
a stationary set, C is a club, P is a forcing, the partial order P is a c.c.c.
forcing, Fn(A,B,ℵ0) , Fn(A,B,ℵ1) , T is a Suslin tree († ), y = ℵδ ,
δ = ℵδ , z = iξ , x ∈ Lα , (∃α)(x ∈ Lα) , ZFC ` ϕ ;

Optional
(λ)ג († ), M is an R -module over the commutative ring R , P = NP , the
real Hilbert space `2 , X is a complex Banach space, Y is an inseparable
topological space, the Singular Cardinals Hypothesis († ), the Riemann
Hypothesis († ).

2 Generic filters and classical theorems

(i) Prove Cantor’s theorem on the ℵ0 -categoricity of unbounded dense linear or-
ders: if A and B are countable unbounded dense linear orders, then A and
B are isomorphic. [HINT. Let P be the partial order of finite partial isomor-
phisms between A and B under extension. Show that for all a ∈ A and
b ∈ B , the sets Da = {p : a ∈ dom(p)} and Rb = {q : b ∈ range(q)} are
dense open in P . Consider what properties a filter G generic relative to the
family {Da, R

b : a ∈ A, b ∈ B} might possess.]

(ii) For a set X and a cardinal λ , let [X]<λ = {Y ⊆ X : | Y | < λ} . Let
I = {I ⊆ ω :

∑
n∈I

1
n
<∞} . Let Q be the partial order {I ⊆ ω :

∑
n∈I

1
n
< 1}

where I ≤Q J iff I ⊆ J . For a cardinal λ , let HS<λ(I) abbreviate the
statement:

(∀H ∈ [I]<λ)(∃I∞ ∈ I)(∀I ∈ H)(I ⊆∗ I∞)

where for x, y ∈ P (ω), x ⊆∗ y ⇔ (| x\y |< ω) . Prove the assertion HS<ℵ1(I) .
What can be said about HS<2ℵ0 (I)? [HINT. Show DJ = {q ∈ Q : J ⊆∗ q} is
dense in I for J ∈ I .]

(iii) Consider the following (rash) statement: if the forcing P has the ℵ2 -chain
condition and D is a family of less than 2ℵ1 dense open sets in P , then there
exists a D -generic filter G in P . Is this statement provable, refutable, or
independent of ZFC ? (Generalization of Martin’s Axiom to higher cardi-
nals and discovery of the strongest or optimal form of the generic principle it
expresses are elusive; Martin’s Maximum (MM ; see below) and the Proper
Forcing Axiom (PFA ) are the best-known candidates.)

3 Concerning forcings, anti-chains and generic sets

(i) Prove that a filter G is generic in P over M if and only if for every maximal
anti-chain A ∈M of P | G ∩ A |= 1. [HINT. One direction might use AC.]

(ii) A subset D ⊆ P is:

(1) pre-dense above p ∈ P if (∀q ∈ P)(q ≥ p → (∃d ∈ D)(d and q are com-
patible)); D is pre-dense if D is pre-dense above 0P .
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(2) dense above p ∈ P if (∀q ∈ P)(q ≥ p→ (∃d ∈ D)(d ≥ q)) . (So D is dense
in P if D is dense above 0P .)

Suppose that E is pre-dense in P and G is generic in P over M . Show that
G ∩ E 6= ∅ .

Suppose that E is pre-dense above q ∈ P and G is generic in P over M .
Show that if q ∈ G , then G ∩ E 6= ∅ .

(iii) Deduce that the following are equivalent for a filter G ⊆ P ∈ M where M is
a transitive model of ZFC .

G is generic in P over M ;
G ∩D 6= ∅ for every dense open subset D of P ;
G ∩ C 6= ∅ for every dense subset C of P ;
G ∩B 6= ∅ for every pre-dense subset B of P ;
G ∩ A 6= ∅ for every maximal anti-chain A of P .

(iv) Suppose M is a CTM, P ∈M, E ⊆ P, E ∈M , and G is generic in P over M .
Prove that either G∩E 6= ∅ or (∃q ∈ G)(∀r ∈ E)(r and q are incompatible).
[HINT. Consider {p ∈ P : (∃r ∈ E)(r ≤ p)} ∪ {q ∈ P : (∀r ∈ E)(r and q are
incompatible)} ∈M .]

(v) Suppose M is a CTM and P ∈ M is a separative forcing. Prove that there
are 2ℵ0 generic filters in P over M .

4 The forcing relation 
P

Suppose that P is a non-trivial forcing, p, q ∈ P , and ϕ is a formula in the
vocabulary of ZFC which may contain P -names. Show:

(i) if p 
P ϕ and p ≤P q , then q 
P ϕ ;

(ii) if q 
P ϕ and p ≤P q ∧ p 6= q , then p 
P ϕ ;

(iii) if (@r)(p ≤P r ∧ r 
P ϕ) , then p 
P ¬ϕ ;

(iv) (∃r)(p ≤P r)(r decides ϕ) , i.e. either r 
P ϕ or r 
P ¬ϕ ;

(v) if p does not decide ϕ , then
∧
i=1,2(∃ri)(p ≤P ri)(r1 
P ϕ) ∧ (r2 
P ¬ϕ) .

5 Names

Suppose G is generic in P over M .

(i) Suppose σ, τ ∈MP . Show σG ∪ τG = (σ ∪ τ)G .

(ii) Suppose τ ∈MP and range(τ) ⊆ {ṅ : n ∈ ω} .
Let σ = {〈p, ṅ〉 : (∀q ∈ P)(〈q, ṅ〉 ∈ τ ↔ p and q are incompatible)} . Show
σG = ω \ ∪τG . [HINT. Show the set {r ∈ P : (∃q ≤ r)(〈q, ṅ〉 ∈ σ ∨ 〈q, ṅ〉 ∈ τ}
is dense.]

(iii) Suppose σ, τ ∈MP . Show σG ∪ τG = (σ ∪ τ)G .
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(iv) Suppose A is an anti-chain in P and for each a ∈ A, τa is a P -name. Show
there exists a P -name τ such that for every a ∈ A , if a ∈ G , then τ [G] =
τa[G] , and τ [G] = ∅ if G∩A = ∅ . [HINT. Suppose τa = {(qa,j, τa,j) : j < ia} .
Consider the P -name τ = {(r, τa,j) : a ∈ A, j < ia, r ≥ qa,j , and r ≥ a} and
refer to Question 3 (i).]

6 Nice Names and Bounds for the Continuum

Suppose G is generic in P over M . A name τ ∈ MP is a nice name for a subset
x of σ ∈MP if τ =

⋃
{Aπ × {π} : π ∈ range(σ)} , where each Aπ is an anti-chain

in P .

(i) Prove that if P ∈ M , then for all σ, ρ ∈ MP there exists a nice name τ such
that 
P (ρ ⊆ σ → ρ = τ) . [HINT. For π ∈ range(σ) , let Aπ be maximal
relative to the properties (1) (∀p ∈ Aπ)(p 
 π ∈ ρ) and (2) Aπ is an anti-chain
in P ; now use Question 3 (iv) to check τ as defined above works.]

(ii) Suppose (P is a c.c.c. forcing and λ is a cardinal) M . Let κ∗ = (| P |λ)M . Then
(2λ ≤ κ∗)M[G] . [HINT. For P (λ)M[G] , count the number of possible nice names
for its members, remembering that P has the countable chain condition.]

(iii) Deduce that if (λ is a cardinal and λℵ0 = λ)M , then there is a generic extension
M[H] such that (2ℵ0 = λ)M[H] .

7 Adding Cohen reals and Suslin trees

(i) A tree T is ever-branching if for every s ∈ T , the set {t ∈ T : s ≤T t} is not
linear ordered. Let M be a CTM such that (T is an ever-branching Suslin
tree) M . Suppose (P = Fn(λ× ω, 2,ℵ0) ∧ λ ≥ ℵ0)

M . Prove that for any filter
G generic in P over M , M[G] |= (T is a Suslin tree).

(ii) Deduce that there is a model of ZFC in which there is a Suslin tree but CH
fails. Remark: So the existence of Suslin trees does not imply CH (nor a

fortiori ♦ ). It is a theorem of Shelah that adding a Cohen real adds a Suslin
tree.

8 Diamonds and Clubs

(i) † Prove that the theory ZFC +♦ is relatively consistent. [HINT. It may be
slightly easier to verify ♦ in its function form (see Exercise Sheet 3, Question
9): let I = {〈α, ζ〉 : ζ < α < ω1

M} and consider the forcing Q = Fn(I, 2, ω1) .
Show that Q is countably complete, and that if G is generic in Q over M ,
then in M[G] , a ♦ -sequence is given by 〈(

⋃
G)α : α < ω1〉 . For this, noticing

Q adds no new ω -sequences and ω1
M = ω1

M[G] , define a sequence of ordinals
and conditions forcing an arbitrary given club to intersect the family of guesses
for a function f : ω1 → ω1 . (Refer to K. Kunen, Set Theory, chapter VII, or
S. Shelah, Proper and Improper Forcing, chapter 1, if the abyss looms.)]

(ii) Deduce that ♦ is independent of ZFC .
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(iii) Show if (λ is a cardinal and λℵ0 = λ and ♦)M , then there is a generic
extension M[H] such that (2ℵ0 = λ and there is a Suslin tree) M[H] .

(iv) Suppose that (P is a c.c.c. forcing and | P |≤ ℵ1 and ♦)M . Show for every G
generic in P over M , M[G] |= ♦ . [HINT. In M , use ♦ to guess nice names
for subsets of ω1 .]

(v) Suppose that (P is a c.c.c. forcing) M and M[G] |= ♦ . Show M |= ♦ . [HINT.
Remember the equivalent characterization of ♦ from Exercise Sheet 3 and the
lemma about approximating functions in c.c.c. generic extensions.]

(vi) Optional Prove that ♣ is independent of ZFC .

9 The Generalized ∆ -System Lemma

(i) Suppose λ < κ = cf(κ) and
∧
α<κ α

λ < κ . Prove that if | A | = κ and
x ∈ A implies | x | < λ , then there exists B ⊆ A such that | B | = κ and
(∃r)(∀x ∈ B)(∀y ∈ B)(x 6= y → x ∩ y = r) . [HINT. This is a standard result.
WLOG

⋃
A ⊆ κ and some ρ < λ is the order type of every x = 〈x(ξ) : ξ <

ρ〉 ∈ A . Using
∧
α<κ α

λ < κ and κ = cf(κ) , let ξ0 be the minimal ξ such
that {x(ξ) : x ∈ A} is cofinal in κ ; let σ = sup{x(η) + 1 : x ∈ A ∧ η < ξ0} ,
so (*) x � ξ0 ⊆ σ < κ ; now define by induction {xα : α < κ} such that
xα(ξ0) > max{σ, sup{xβ(η) : β < α ∧ η < ρ}} . Use (*) and σλ < κ to refine
{xα : α < κ} and extract a root r ⊆ σ .]

(ii) Find a family of ℵω finite sets such that no subfamily of size ℵω has a root.

10 The Levy collapse and its Basic Properties †

Suppose S ⊆ Ord and λ is a cardinal. Define Col(λ, S) = {p : p is a function
and | p | < λ ∧ dom(p) ⊆ S × λ ∧ (∀(α, ξ) ∈ dom(p))(p(α, ξ) = 0 ∨ p(α, ξ) ∈ α)} ,
and p ≤Col(λ,S) q if and only if p ⊆ q . This forcing is called Levy forcing. It adds
surjections from λ onto every α ∈ S . For example, if κ > λ , then Col(λ, {κ})
collapses | κ | to λ . In particular, Col(λ, κ) makes a cardinal κ into the cardinal
successor of λ in a generic extension (so the idiom is slightly misleading, since κ
remains a cardinal and only those cardinals strictly between λ and κ are collapsed).
Levy forcing is frequently used when κ is an inaccessible cardinal, in order to obtain
desirable properties on successor (and other) cardinals in generic extensions. But its
applications are fundamental and much more far-reaching in large cardinal theory.
In the following, λ is a regular cardinal.

(i) Col(λ, S) is λ -closed.

(ii) If κ = cf(κ) > λ and either κ is inaccessible, or λ = ω , then Col(λ, κ) has
the κ -chain condition. [HINT. Apply the Generalized ∆-System Lemma, as
in the case of the c.c.c. for Fn(A,B,ℵ0) .]

(iii) If Col(λ, κ) has the κ -chain condition, then forcing with Col(λ, κ) preserves
cardinals ≤ λ and ≥ κ .
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(iv) Suppose κ = cf(κ) , Col(λ, κ) has the κ -chain condition, and G is Col(λ, κ) -
generic. Then for any f ∈ M[G] such that f : γ → Ord , where γ < κ , there
exists δ < κ such that f ∈M[G∩Col(λ, δ)] . [HINT. Let f = τG and for α <
γ , let Aα be a maximal anti-chain such that (∀p ∈ Aα)(∃ξ)(p 
 τ(α̇) = ξ) .
Deduce (∃δ)(p ∈

⋃
α<γ Aα ∧ dom(p) ⊆ δ × λ) . To see f ∈ M[G ∩ Col(λ, δ)] ,

observe f(α) = ξ if and only if p 
 τ(α̇) = ξ̇ where p is the unique member
of G ∩ Col(λ, δ) (see Question 3).]

11 Optional: Moderately large cardinals do not decide CH †

Recall the arrow notation from the partition calculus: κ→ (µ)αβ is the statement:
for every function f : [X]α → B , where | X | ≥ κ and | B | = β , there exists
Y ⊆ X such that | Y | ≥ µ and f � [Y ]α ≡ b for some b ∈ B . In this notation,
Ramsey’s infinite theorem is written (∀n ∈ ω)(∀k ∈ ω)(ℵ0 → (ℵ0)

n
k) . Analogously,

κ → (µ)<αβ is the statement: for every function f : [X]<α → B , where | X | ≥ κ
and | B | = β , there exists Y ⊆ X such that | Y | ≥ µ and f � [Y ]<α ≡ b for
some b ∈ B , where [X]<α =

⋃
ξ<α[X]ξ . In these cases, the function f is called a

colouring of the α -element subsets of X with β colours (or a B -colouring of X );
Y is called a homogeneous set for f . A cardinal κ is Ramsey if κ→ (κ)<ω2 .

(i) Prove that the set λ2 with the lexicographic order �lex contains no increasing
or decreasing sequences of length λ+ . [HINT. Otherwise, suppose H is e.g.
�lex -increasing, of size λ+ ; WLOG, H = {hα : α < λ+} and for some least
γ ≤ λ,∀g, h ∈ H, g � γ 6= h � γ . Now find ξ∗ < γ such that {hα � ξ∗ : α < λ+}
has cardinality λ+ .]

(ii) Prove that 2λ 9 (λ+)2
2 . [HINT. Otherwise, consider a homogeneous set Y of

size λ+ for the 2 -colouring F of [λ2]2 given by F ({f, g}) = 0 if and only if
f �lex g . This is due to Sierpiński and Kurepa independently.]

(iii) Prove that if κ is a Ramsey cardinal, then κ is strongly inaccessible. [HINT.
Regularity is easy: use the colouring c({α, β}) = 0 ⇔ (∃ξ)({α, β} ⊆ Xξ)
where κ =

⋃
ζ<γ Xζ , | Xζ |< κ ; use part (ii) for strong inaccessibility.]

(iv) Prove that κ is a Ramsey cardinal if and only if for all β < κ , κ → (κ)<ωβ .
[HINT. For the hard direction, if f : [κ]<ω → β , define a 2 -colouring g as
follows: g({ξ1, . . . ξm}) = 0 ⇔ n = 2m ∧ f({ξ1, . . . ξm}) = f({ξm+1, . . . ξ2m}) .
Notice if H is homogeneous for g and of cardinality κ , then g � [H]n ≡ 0
and so H is also homogeneous for f .]

(v) Suppose that M |= (κ is a Ramsey cardinal and | P |< κ) . Let G be generic
in P over M . Prove that M[G] |= (κ is a Ramsey cardinal). [HINT. If
M[G] |= (τG is a colouring of [κ)]<ω ), and this is forced by some condition
p ∈ G , consider the colouring g : [κ]<ω → P (P×2) defined by g(a) = {〈q, x〉 :
p ≤P q ∧ q 
 (τ(ȧ) = ẋ)} . Note g ∈ M and P (P × 2) has cardinality β
for some β < κ (by strong inaccessibility). Use part (iv) in M to obtain a
homogeneous set Y ∈M ; show p 
 (Ẏ is homogeneous for τ ).]
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(vi) Deduce that CH is independent of ZFC + (∃κ)(κ is a Ramsey cardinal).

Remark: This type of result in very general form is due to Levy and Solovay
(1967). See A. Kanamori, The Higher Infinite, Springer, 2009. The power of large
cardinals to decide a statement ϕ is thus circumscribed by the existence of forcings
of relatively small size if such forcings can used to prove the independence of ϕ .
(In the optional 25th lecture, part (v) was proved for measurable cardinals.)

12 Optional: GCH and Diamonds

(i) Let λ be a regular cardinal and E be a stationary subset of λ . Let ♦∗λ(E)
denote the statement: there exists a family {Sα ∈ [P (α)]<λ : α ∈ E} such that
∀X ⊆ λ there exists a club C ⊆ λ such that X ∩ α ∈ Sα for all α ∈ C ∩ E .
The sequence {Sα : α ∈ E} is called a ♦∗λ(E) -sequence.

(a) Prove ♦∗λ(E) implies ♦λ(F ) for every F such that E ∩ F is stationary
in λ . (Note for a stationary subset S of λ , ♦λ(S) is ♦S in the notation
of the lecture notes, where the additional distinguishing detail was not
required.)

(ii) Suppose λ = 2µ = µ+ and κ = cf(κ) < µ . Let E = {α < λ : cf(α) = κ} .

(a) Show there is an enumeration {Xα : α < λ} of all the bounded subsets
of λ .

(b) Assume µ = µκ . For α ∈ E , let Sα = {∪Y : Y ⊆ {Xβ ∩ α : α < β}
and | Y | ≤ κ} . Prove {Sα : α ∈ E} is a ♦∗λ(E) -sequence. [HINT. For
all W ⊆ λ , define a club D as follows: let 0 ∈ D ; if α ∈ D , let αs ,
the successor of α in D , be the least ordinal γ > α so that for some
β < γ,Xβ = W ∩ α . Now consider the set C of limit points of D and
check C is as required.]

(c) Assume µ is singular, cf(µ) = ρ 6= κ , and for every δ < µ, δκ < µ .
For α ∈ E , let {αi : i < κ} be strictly increasing and cofinal in α .
Fix a sequence {Uα

j : j < ρ} of sets such that α = ∪j<ρUα
j and for all

j, | Uα
j | < µ . Let Sα = {∪Y : Y ⊆ {Xβ ∩ α : β ∈ Uα

j } for some j and
| Y |≤ κ} . Prove {Sα : α ∈ E} is a ♦∗λ(E) -sequence.[HINT. Consider W
and D as previously defined. If δ ∈ E is a limit point of D , then there
exists {γi < δ : i < κ} such that if I ∈ [κ]<κ , then

⋃
i∈I Xγi

= W ∩ δ .
Since ρ 6= κ , there exists j < ρ such that | U δ

j ∩ {γi < δ : i < κ} |= κ .]

(iii) Assume GCH . Suppose µ is a cardinal and cf(µ) = ρ .

(a) Suppose µ = ρ . Prove ♦∗µ+({α < µ+ : cf(α) 6= ρ}) holds. [HINT. Use

(ii)(b).]

(b) Suppose µ 6= ρ . Prove ♦∗µ+({α < µ+ : cf(α) 6= ρ}) holds. [HINT. Use

(ii)(c).]

(iv) Deduce GCH implies ♦µ+ for all µ = cf(µ) ≥ ℵ1 .
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Remark: This exercise sketches an early proof of ♦µ+ from GCH due to Gregory
(1976) and Shelah (1981); in the course lecture notes, there is a short, much sim-
plified, unpublished proof discovered by Peter Komjath, inspired by a new proof of
Shelah: S. Shelah, Diamonds, Proc. Amer. Math. Soc. 138 (2010), 2151–2161.

13 Optional

(i) Consider the ordinal ω1 + 1 with the order topology and let X = (ω1 + 1)ω be
the topological space with the product topology. Let A be the set of successor
ordinals in ω1 . Show that for α ∈ A , the set Gα = {f ∈ X : α ∈ range(f)}
is dense and open in X . Show that the family {Hα : α ∈ A} , where Hα =
{h ∈ X : h(0) = α} , is a collection of non-empty open pairwise disjoint sets.

(ii) Prove the Continuum Hypothesis is equivalent to the statement: in every
compact Hausdorff space, the intersection of less than 2ℵ0 -many dense open
sets is non-empty. [HINT. Forwards, the Baire Category Theorem; backwards,
part (i) if CH fails.]

14 Optional

(i) Prove that non-isomorphism (of groups) is not absolute. [HINT. Free groups
of different infinite cardinalities; collapse. Now state a generalisation.]

(ii) An infinite abelian group A is called almost free if every subgroup B of
cardinality less than | A | is free. Show the statement that the group Zω is
almost free is independent of ZFC . [HINT. You may take it as proven that
Zω is ℵ1 -free, but is not ℵ2 -free.]

15 Optional: Forcing and Partial Isomorphisms

Suppose A and B are τ -structures in a vocabulary τ . Say A and B are partially
isomorphic, denoted A 'p B , if some non-empty family F ⊆ Part(A,B) of the
partial isomorphisms from A to B is a back-and-forth set for A and B :

(∀f ∈ F)(∀a ∈ A)(∃g ∈ F)(f ⊆ g ∧ a ∈ dom(g)) and
(∀f ∈ F)(∀b ∈ B)(∃g ∈ F)(f ⊆ g ∧ b ∈ range(g)) .

(i) Prove if τ , A and B are countable, then A 'p B . [Use the idea of your proof
of Cantor’s theorem from a previous exercise.]

(ii) Show the converse of (i) fails. [HINT. Consider the linear orders Q and R .]

(iii) Show that if two structures A and B are partially isomorphic, then there is
a forcing extension in which A and B are isomorphic.

Remark: Partial isomorphism yields a characterization of elementary equivalence
in the infinitary language L∞ω . For a recent introduction to these ideas, see J.
Va̋a̋na̋nen, Models and Games, Cambridge University Press, 2011.
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16 Optional

(i) Prove Erdős’s Theorem: if the Continuum Hypothesis holds then there is
an uncountable orbit-countable family of entire holomorphic functions on C .
[HINT. This is an ingenious elementary argument; see the original paper: P.
Erdős, An interpolation problem associated with the Continuum Hypothesis,
Mich. Math. J. 11, 9-10 (1964), or pages 335-336 in P. Komjath, V. Totik,
Problems and Theorems in Classical Set Theory, Springer, 2006.]

(ii) Deduce that the Continuum Hypothesis is equivalent to the assertion that
some orbit-countable family is uncountable.

(iii) Deduce that the statement (*) every orbit-countable family is countable is
independent of ZFC .

17 Let ZFC− be the theory ZFC – Power Set Axiom.

(i) Suppose κ = cf(κ) ≥ ℵ1 . Prove that Hκ is a model of ZFC− .

(ii) Deduce that no proof of the existence of R avoids some non-trivial use of the
Power Set Axiom.

18 Optional

Let ZFC− be the theory ZFC – Power Set Axiom. Suppose κ = cf(κ) ≥ ℵ1 .
Let N be a countable elementary submodel of Hκ .

(i) Suppose ϕ(x) is a formula in the vocabulary of ZFC (possibly with parame-
ters from N ) such that ZFC− ` (∃!x)ϕ(x) . Show if a ∈ Hκ and Hκ |= ϕ[a] ,
then a ∈ N .

(ii) Suppose f ∈ Hκ, dom(f) = {a1, . . . , an} ⊆ N,
∧

1≤i≤n f(ai) ∈ N . Prove
f ∈ N .

(iii) ω ∈ Hκ ; ω1 ∈ Hκ ; ω ⊆ Hκ .

(iv) If {a,A,B, f} ⊆ N , a ∈ A , and f : A → B is a function (in V ), then
f(a) ∈ N .

(v) If X ∈ N and X is countable, then X ⊆ N .

(vi) For every ordinal α ∈ ω1 ∪ {ω1} , α ∩N is an ordinal.

(vii) If X = {Xα : α ∈ ω1} ∈ N , then Xα ∈ N for every α ∈ ω1 ∩N .

19 Optional

For a forcing P , a cardinal κ is large enough (for P ) if κ = cf(κ) > ℵ1 and the set
of dense subsets of P is an element of Hκ (so, in particular, P , the conditions in
P and every dense subset of P all belong to Hκ ). For a set N , a conditionp ∈ P
is called N -generic if for every D ∈ N which is a dense subset of P , D ∩ N is
pre-dense above p .

Suppose κ is large enough for P . Prove the following are equivalent:
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(1) P has the countable chain condition;

(2) for every countable elementary submodel N of Hκ , 0P is N -generic;

(3) every countable subset X of Hκ is contained in a countable elementary
submodel N of Hκ such that0P is N -generic.

[HINT. For (1) ⇒ (2) , consider an A ∈ N maximal relative to the property of
being an anti-chain contained in D . For (3) ⇒ (1) , show if A ∈ N is a maximal
anti-chain, then A = {p ∈ P : (∃q ∈ A)(q ≤P p)} ∈ N is dense.]

20 Optional: Martin’s Maximum

A forcing P is called stationary-preserving if P does not destroy stationary subsets
of ω1 : if M |= (S is a stationary subset of ω1 ), then M[G] |= (S is a stationary
subset of ω1 ), whenever G is generic in P over M . Martin’s Maximum is the
statement MM : for every stationary-preserving forcing P , if (∀α < ω1)(Dα is
dense open in P) , then there exists a {Dα : α < ω1} -generic filter G in P .

(i) Show that if P is c.c.c, then P is stationary-preserving.

(ii) Give an example of a stationary-preserving forcing that has an uncountable
anti-chain.

(iii) MM implies MAℵ1 .

Remark: The relative consistency strength of MM is far stronger than that of
MA which is equiconsistent with ZFC ; MM requires a large cardinal axiom for
its consistency.

21 Optional: Normal Functions and Mahlo Cardinals

A (class) function G : Ord → Ord is called normal if G is increasing (α < β →
G(α) < G(β) ) and continuous (for all limit δ ∈ Ord,G(δ) =

⋃
α<δ G(α)) .

(i) (a) Prove in ZFC that every normal function G has a fixed point: there
exists δ ∈ Ord such that G(δ) = δ .

(b) Call the statement “every normal function has a regular fixed point” the
regular fixed point axiom RFPA . Show that RFPA is not provable in
ZFC.

(ii) A strongly inaccessible cardinal κ is called Mahlo if {α < κ : α is a regular
cardinal} is stationary in κ .

(a) Suppose κ is Mahlo. Show κ is a regular limit cardinal, and κ is the
limit of κ inaccessible cardinals.

(b) Prove that if κ is Mahlo, then Vκ |= RFPA .

22 Open Question: Banach Spaces and Cofinality ††
The cofinality of a Banach space E is the least ordinal ξ such that there exists
an increasing chain 〈Eα : α < ξ〉 of proper closed subspaces of E whose union
is dense in E . Does every infinite-dimensional Banach space have cofinality ω ?
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Remark: This is an equivalent reformulation of the Separable Quotient Problem:
does every infinite-dimensional Banach space X have a separable infinite-dimensional
quotient X/Y ? See S. Todorcevic, Combinatorial dichotomies in set theory, Bull.
Symbolic Logic, 17 (2011), 1–72.

23 Open Question: Abelian groups and the replicating cofinality

Let us call the replicating cofinality, rcf(A) , of an infinite abelian group A , the
least ordinal ξ , if it exists, such that there exists an increasing chain 〈Aα : α < ξ〉
of proper subgroups of A such that Aα ∼= A and A =

⋃
α<ξ Aα . [More generally,

the replicating cofinality, rcf(B) , of a structure B , is the least ordinal ξ , if it
exists, such that B =

⋃
α<ξ Bα for some increasing chain 〈Bα : α < ξ〉 of proper

submodels of B , where Bα
∼= B .]

(i) What is the replicating cofinality of the free abelian group
⊕

α<κ Z of cardi-
nality κ , if κ ≥ ℵ1 ?

(ii) Open Question† What is the replicating cofinality of the group Zω ?
Remark: It is known that Zω is not the union of a countable chain of proper
subgroups each isomorphic to Zω ; see J. Irwin, A. Blass, Baer meets Baire:
Applications of category arguments and descriptive set theory to Zω , in: Arnold,
D. M. et al. (eds.), Abelian Groups and Modules, New York, NY, Marcel
Dekker, Lect. Notes Pure Appl. Math. 182, 1996, pp. 193-202.

24 Open Question: Galvin’s Conjecture ††
Let κD be the least cardinal κ , if it exists, such that for every partial order P , if
every suborder of P of size less than κ can be decomposed into countably many
chains, then P can also be decomposed into countably many chains. Galvin’s Con-
jecture states that ℵ2 is a possible value for κD . See S. Todorcevic, Combinatorial
dichotomies in set theory, Bull. Symbolic Logic, 17 (2011), 1–72.

Remark. After the classic papers of Gődel and Cohen, the following are accessible and
list many further suggestions for reading and research:

Woodin, W. H., The Continuum Hypothesis, part I, Notices Amer. Math. Soc.
48(2001), 567-576.

Woodin, W. H., The Continuum Hypothesis, part II, Notices Amer. Math. Soc.
48(2001), 681-690.

Dehornoy, P., Recent progress on the Continuum Hypothesis (after Woodin);

http://www.math.unicaen.fr/~dehornoy/Surveys/DgtUS.pdf;
http://www.math.unicaen.fr/~dehornoy/Surveys/Dgt.pdf.

Koellner, P., The Continuum Hypothesis, Stanford Encyclopaedia of Philosophy,
September 2011;

http://www.logic.harvard.edu/EFI_CH.pdf.
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Steprans, J., History of the Continuum in the Twentieth Century, to appear in:
Vol. 6, History of Logic;

http://www.math.yorku.ca/~steprans/Research/PDFSOfArticles/hoc2INDEXED.pdf

Remark. For research problems in set theory, there are some treasure houses to visit:

Shelah, S., On what I do not understand (and have something to say): Part I, Fund.
Math. 166(2000), 1–82;

http://matwbn.icm.edu.pl/ksiazki/fm/fm166/fm16612.pdf.

And for the model-theoretic pendant:

Shelah, S., On what I do not understand (and have something to say ), model theory,
Math Japonica 51 (2000), 329–377;

http://shelah.logic.at/files/702.pdf.

Fremlin, D.H., Problems ;

http://www.essex.ac.uk/maths/people/fremlin/problems.pdf.

Miller, A.W., Some interesting problems ;

http://www.math.wisc.edu/~miller/res/problem.pdf.

S. Todorcevic, Combinatorial dichotomies in set theory, Bull. Symbolic Logic, 17
(2011), 1–72.
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