Mathematics Tripos Part III Dr P.H. Haynes, Michaelmas 1996

Perturbation Methods: Sheet 1†

1. Find the rescalings for the roots of

$$\epsilon x^4 - x^2 - x + 2 = 0$$
,

(a)

$$\epsilon^2 x^3 + x^2 + 2x + \epsilon = 0 \ .$$

Thence find two terms in the approximation for each root.

2. Find the first two terms of $x(\epsilon)$ the solution near 0 of

$$\sqrt{2}\sin\left(\frac{\pi}{4} + x\right) - 1 - x + \frac{1}{2}x^2 = -\frac{1}{6}\epsilon$$

(a)

$$\tan\left(\frac{\pi}{4} + x\right) = 2x^2 + 2x + 1 + \epsilon.$$

(q)

3. Find several terms in an approximation for the solution of

$$e^{-x^2} = \epsilon x$$

4. Find the first-order perturbations of the eigenvalues of the differential equation

$$y'' + \lambda y + \epsilon y^n = 0$$

in $0 < x < \pi$, with $y(0) = y(\pi) = 0$ for n = 1, 2 and 3.

5. Find an asymptotic approximation to the exponential integral as $x \to \infty$,

$$E_n(x) = \int_1^\infty t^{-n} e^{-xt} dt ,$$

and estimate the remainder.

6. Evaluate the first two terms as $r \to 0$, and the first 4 terms (counting $\ln r$ and 1 as different orders of magnitude) as $r \to \infty$, of

$$\int_0^\infty \frac{rx \, dx}{(r^2 + x)^{3/2} (1 + x)} \, .$$

7. Evaluate the first two terms as $m\nearrow 1$ of the elliptic integral

$$\int_0^{\pi/2} \frac{d\theta}{(1 - m^2 \sin^2 \theta)^{1/2}}$$

8. For $0<\epsilon\ll 1$ deduce the asymptotic behaviour of the integral

$$I(\epsilon) = \int_0^1 \frac{dx}{x(x+\epsilon) + \epsilon^3 \cos x}$$

Calculate upto and including terms of O(1). The following indefinite integrals may be of help:

$$\int \frac{dx}{x^2(x+1)^2} = \frac{2x^2 - 1}{x(x+1)} + 2\ln\left(\frac{1+x}{x}\right) \;, \quad \int \frac{x^2\,dx}{(x+1)^2} = \frac{x(x+2)}{x+1} - 2\ln(1+x) \;.$$

9. Evaluate the first two terms as $\epsilon \to 0$ of the integral

$$\int_0^1 \frac{\ln x}{\epsilon + x} \, dx .$$

Hint: This question is a little bit of a cheat. Do not introduce a δ .

0. Let

$$\alpha_n = \int_0^1 \frac{1 - (1 - t)^n}{t} dt$$
.

Show that as $n \to \infty$

$$\alpha_n \sim \ln n + \int_0^1 \frac{1 - \exp(-t)}{t} \, dt - \int_1^\infty \frac{\exp(-t)}{t} \, dt \; .$$
e, deduce that

Hence, or otherwise, deduce that

se that
$$\int_0^\infty \ln(t) \exp(-t) dt = -\gamma \ ,$$

where γ is Euler's constant:

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln(n) \right) .$$

Thus find the first two terms of the asymptotic expansion as $\lambda\to\infty$ of

$$\lambda \int_0^1 \frac{\exp(-\lambda t)}{\ln\left(\frac{1}{2}t\right)} dt$$
.

11.* The function $f(t;\epsilon)$ satisfies the integral equation

$$x = I(x; \epsilon) \equiv \int_{-1}^{1} \frac{f(t; \epsilon)}{\epsilon^2 + (t - x)^2} dt \text{ in } -1 \le x \le 1.$$

Assuming that f remains $O(\epsilon)$ in the end regions where $(1-|t|) = \operatorname{ord}(\epsilon)$, obtain the first two terms of an asymptotic approximation for f at fixed $t \neq \pm 1$ as $\epsilon \to 0$. Without any detailed calculation, comment on the contribution to $I(x;\epsilon)$ from the end regions for a point x outside the end regions, and comment on the behaviour of f in the end regions.

[†] Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a question included for those who find the rest of the sheet too easy.

Perturbation Methods: Sheet 2†

1. For real x and $x \to \infty$, find the full asymptotic behaviour of

$$K_0(x) = \int_1^\infty (t^2 - 1)^{-\frac{1}{2}} e^{-xt} dt$$
.

2. For real x and $x \to \infty$, find the leading-order asymptotic behaviour of

(a)
$$\int_0^1 \sin(t) e^{-x \sinh^4 t} dt ,$$

$$\int_0^\infty e^{-xt-t^{-1}} dt .$$

3. For real n and $n \to \infty$, find the leading-order asymptotic behaviour of

$$J_n(n) = \frac{1}{\pi} \int_0^{\pi} \cos(n \sin t - nt) dt.$$

4. For real x and $x \to \infty$, find the full asymptotic behaviour of

$$I(x) = \int_0^1 \ln(t)e^{ixt} dt.$$

5. Find the asymptotic behaviour of

$$K_{\nu}(z) = \frac{1}{2} \int_{-\infty}^{\infty} e^{\nu t - z \cosh t} dt ,$$

for real z and ν , with $z = \operatorname{ord}(1)$ and $\nu \to \infty$.

6. Find the asymptotic behaviour of

$$J_{\nu}(\nu z) = \frac{1}{2\pi i} \int_{\infty - i\pi}^{\infty + i\pi} e^{\nu z \sinh t - \nu t} dt ,$$

for real ν and z, as $\nu \to \infty$ with first 0 < z < 1 and second z = 1. (The case of z = 1 has a cubic saddle where three ridges meet and f'' = 0.)

[†] Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a question included for those who find the rest of the sheet too easy.

$$f(y;\lambda) = \int_C \exp\left(\lambda(1+\mathrm{i}y)z - \frac{1}{3}z^3\right) dz,$$

where y and λ are real, and the contour C starts from z=0 and extends to $z=\infty$ in the sector $|\arg(z)| < \pi/6$.

(a) Show that $f(y; \lambda)$ satisfies the differential equation

$$f_{yy} + \lambda^3 (1 + iy) f = -\lambda^2 .$$

- (b) Deduce the leading-order asymptotic behaviour of $f(0; \lambda)$ as $\lambda \to -\infty$.
- (c) Deduce the leading-order asymptotic behaviour of $f(0; \lambda)$ as $\lambda \to +\infty$.
- (d) With reference to the solutions deduced in parts (b) and (c), and the steepest descent contours for the Airy function included in the notes, find the leading-order asymptotic behaviour of f for $0 \le y < \infty$. In particular:
 - (i) state clearly your choice of integration contour;
 - (ii) for $\lambda \gg 1$ comment on how the asymptotic behaviour of the solution differs according as $0 \le y < y_c$ and $y_c < y < \infty$, where y_c should be identified.
- (e) * Why is it that

$$f = -\frac{1}{\lambda(1+iy)} - \frac{2}{\lambda^4(1+iy)^4} + \dots,$$

is not always a uniformly valid asymptotic approximation for $|\lambda| \gg 1$?

8. (a) Let

$$f(\lambda) = \int_{\mathcal{C}} \frac{G(z)}{z - z_0} \exp(-\mathrm{i} \lambda W(z)) \; dz \; ,$$

where G and W are analytic near the contour C and z_0 , W(z) has a single saddle point at $z=z_0$, and C passes from one 'valley' of $\Im(W)$ with respect to z_0 to another, avoiding z_0 in a clockwise manner. Show that

$$f(\lambda) \sim -\mathrm{i}\pi G(z_0) \exp(-\mathrm{i}\lambda W(z_0))$$
 .

(b) The function $g(\theta; \lambda)$ is defined by

$$g(\theta;\lambda) = \int_{\Gamma} \frac{1}{(z-z_0)(z^2-1)^{\frac{1}{2}}} \exp\left(\mathrm{i}\lambda\left((z^2-1)^{\frac{1}{2}}\theta-z\right)\right) \; dz \; ,$$

where θ , z_0 and λ are real and positive, and the contour Γ goes from $-\infty$ to ∞ passing above the three singularities of the integrand. Take the branch cuts for $(z^2-1)^{\frac{1}{2}}$ to be lines drawn towards $\Im(z)=-\infty$ from the points $z=\pm 1$. Obtain the leading-order asymptotic behaviour of $g(\theta;\lambda)$ as $\lambda\to\infty$ on the assumption that $0<\theta<1$ and $z_0>1$; be careful to discuss all cases.

9. For a contour C enclosing t = z, where z is real and positive, find the asymptotic behaviour as $n \to \infty$ of

$$P_n(z) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(t^2-1)^n}{(t-z)^{n+1}} dt.$$

Consider the cases z < 1 and z > 1 in turn. [Hint. Write $z = \cos \alpha$ and $z = \cosh \alpha$ respectively.]

10. Find the leading-order asymptotic behaviour of

$$I(z) = \frac{1}{2} \int_{-1}^{1} e^{-4zt^2 + 5izt - izt^3} dt$$

as $|z| \to \infty$. [Hints. Start with z real and positive, and carefully construct steepest descent contours. Then obtain the leading-order asymptotic approximations on each part of the contour. Finally allow z to become complex.]

Mathematics Tripos Part III Dr P.H. Haynes, Michaelmas 1996

Perturbation Methods: Sheet 3†

1. An example of a regular expansion. The flow down a slightly corrugated channel is described by a function $u(x, y; \epsilon)$ which is periodic in x and which satisfies

$$\nabla^2 u = -1 \quad \text{in} \quad |y| \le h(x; \epsilon) \equiv 1 + \epsilon \cos kx ,$$

subject to $u = 0$ on $y = \pm h(x; \epsilon)$.

Obtain the first three terms for u and hence evaluate correct to $\operatorname{ord}(\epsilon^2)$ the average flux per unit width

$$\frac{k}{2\pi} \int_{x=0}^{2\pi/k} \int_{y=-h(x;\epsilon)}^{+h(x;\epsilon)} u(x,y;\epsilon) \, dx dy \ .$$

2. The function $y(x; \epsilon)$ satisfies

$$\epsilon y'' + (1+\epsilon)y' + y = 0$$
 in $0 \le x \le 1$,

and is subject to boundary conditions y=0 at x=0 and $y=e^{-1}$ at x=1. Find two terms in the outer approximation, applying only the boundary condition at x=1. Next find two terms in the inner approximation for the $\operatorname{ord}(\epsilon)$ boundary layer near to x=0; apply only the boundary condition at x=0. Finally determine the constants of integration in the inner approximation by matching.

3. The function $y(x; \epsilon)$ satisfies

$$\epsilon y'' + x^{1/2}y' + y = 0$$
 in $0 \le x \le 1$,

and is subject to the boundary conditions y = 0 at x = 0 and y = 1 at x = 1. First find the rescaling for the boundary layer near x = 0, and obtain the leading order inner approximation. Then find the leading order outer approximation and match the two approximations.

4. The function $y(x; \epsilon)$ satisfies

$$(x + \epsilon y)y' + y = 1$$
 with $y(1) = 2$.

Find y(0) correct to ord(1).

5. Find two terms in ϵ in the outer region, having matched to the inner solutions at both boundaries for

$$\epsilon^2 y'''' - y'' = -1$$
 in $-1 < x < 1$,

with y = y' = 0 at x = -1 and x = 1.

[†] Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a question included for those who find the rest of the sheet too easy.

6. The function $y(x, \epsilon)$ satisfies

$$\epsilon y'' + yy' - y = 0 \quad \text{in} \quad 0 \le x \le 1 \ ,$$

and is subject to the boundary condition y = 0 at x = 0 and y = 3 at x = 1. Assuming that there is a boundary layer only near x = 0, find the leading order terms in the outer and inner approximations and match them.

Suppose now the boundary conditions are replaced by $y = -\frac{3}{4}$ at x = 0 and $y = \frac{5}{4}$ at x = 1. Show that the boundary layer moves to an intermediate position which is determined by the property of the inner solution that y jumps within the boundary layer from -M to M, for some value M. Find the leading order matched asymptotic expansions.

7. For $0 \le x \le \infty$, the function $G(x; \epsilon)$ satisfies the differential equation

$$(3+2\epsilon)G''' + (1+2\epsilon)GG'' + (1-2\epsilon)G'^2 = 0 ,$$

and the boundary conditions

$$G(0;\epsilon) = 0 \;, \quad G'(0;\epsilon) = \frac{1}{6} \;, \quad G''(0;\epsilon) = 0 \;, \quad G(x;\epsilon) \sim 2x^{\frac{1}{2}}\lambda^{-\frac{1}{2}} \quad {\rm as} \quad x \to \infty \;.$$

If $0 < |\epsilon| \ll 1$, determine the eigenvalue λ to leading order. Hint. In a regular expansion of the form $G = G_0 + \epsilon G_1 + \ldots$ it is sufficient to identify the asymptotic behaviour of G_1 as $x \to \infty$ (i.e. you do not need to solve for G_1 for all x). The following results may prove useful:

$$\int \frac{a \, dx}{a^2 - x^2} = \tanh^{-1} \left(x/a \right) ,$$

$$\int \frac{dx}{\cosh^4 \left(x/a \right)} = a \tanh \left(x/a \right) \left(1 - \frac{1}{3} \left(\tanh \left(x/a \right) \right)^2 \right) .$$

8. Consider the following problem which has an outer, an inner and an inner-inner inside the inner

$$x^3y' = \epsilon ((1+\epsilon)x + 2\epsilon^2)y^2$$
 in $0 < x < 1$,

with $y(1) = 1 - \epsilon$. Calculate two terms of the outer, then two of the inner, and finally one for the inner-inner. At each stage find the rescaling required for the next layer by examining the non-uniformity of the asymptoticness in the current layer.

9. The function $y(x; \epsilon)$ satisfies

$$(\epsilon + x)y' = \epsilon y$$
 with $y(1) = 1$.

Find y(0) correct to $\operatorname{ord}(\epsilon^2)$.

10. For $0 \le x \le 1$, the function $\phi(x; \epsilon)$ satisfies the differential equation

$$\epsilon x^{\frac{1}{2}}(x+\epsilon)\phi_{xx} + (x+\epsilon)(x+1)\phi_x - x\phi = 0 ,$$

and the boundary conditions

$$\phi(0;\epsilon) = 0$$
, $\phi(1;\epsilon) = 2$.

On the assumption that $0 < \epsilon \ll 1$, find the solution correct to, and including, terms of $O(\epsilon)$ in three asymptotic regions (which are to be identified). The following integral may prove useful

$$2\int_0^x \exp(-2q^{\frac{1}{2}}) dq = 1 - (1 + 2x^{\frac{1}{2}}) \exp(-2x^{\frac{1}{2}}).$$

11. The function $f(r, \epsilon)$ satisfies the equation

$$f_{rr} + \frac{2}{r}f_r + \frac{1}{2}\epsilon^2(1 - f^2) = 0$$
 in $r > 1$,

and is subject to the boundary conditions

$$f=0$$
 at $r=1$ and $f\to 1$ as $r\to \infty$.

Using the asymptotic sequence 1, ϵ , $\epsilon^2 \ln \frac{1}{\epsilon}$, ϵ^2 , obtain asymptotic expansions for f at fixed r as $\epsilon \searrow 0$ and at fixed $\rho = \epsilon r$ as $\epsilon \searrow 0$. Match the expansions using the intermediate variable $\eta = \epsilon^{\alpha} r$ with $0 < \alpha < 1$.

Hint. You may quote that the solution to the equation

$$y_{xx} + \frac{2}{x}y_x - y = \frac{e^{-2x}}{x^2} ,$$

subject to the condition $y \to 0$ as $x \to \infty$, is

$$y = A \frac{e^{-x}}{x} + \frac{1}{2x} \int_{x}^{\infty} \frac{e^{-x-t} - e^{x-3t}}{t} dt$$
,

with A a constant. Further as $x \to 0$

$$y \quad \sim \quad \frac{2A + \ln 3}{2x} \; + \; \ln x - A + \gamma + \tfrac{1}{2} \ln 3 - 1 \; .$$

Perturbation Methods: Sheet 4†

1. Obtain equations for the drift in the amplitude and phase in the solution to

$$\ddot{x} + \epsilon \dot{x}(x^2 - 1) + (1 + \epsilon k)x = \epsilon \cos t ,$$

with $k = \operatorname{ord}(1)$ as $\epsilon \searrow 0$. [The tough part is then to show that a slave oscillator will lock onto the forcing from a master if the slave is not detuned too much, i.e. if $|k| < k_c$ then R tends to an equilibrium, while if $|k| > k_c$ then R oscillates (the free oscillations beating with the forced response).]

2. Find the leading order approximation to the general solution for $x(t; \epsilon)$ and $y(t; \epsilon)$ satisfying

$$\frac{d^2x}{dt^2} + 2\epsilon y \frac{dx}{dt} + x = 0 ,$$

$$\frac{dy}{dt} = \frac{1}{2}\epsilon \ln x^2 ,$$

which is valid for $t = \operatorname{ord}(1/\epsilon)$ as $\epsilon \to 0$. You may quote the result

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \cos^2 \theta \, d\theta = -\ln 4 \ .$$

3. Solve the Mathieu equation

$$\ddot{y} + (\omega^2 + \epsilon \cos t)y = 0 ,$$

for the case when $\omega = \frac{1}{2} + \epsilon \omega_1 + \dots$ Identify the stability boundary correct to $\operatorname{ord}(\epsilon)$.

- * Explain why it is necessary to introduce a slow time $\mathcal{T} = \epsilon^{\frac{3}{2}}t$ in order to calculate the stability boundary correct to $\operatorname{ord}(\epsilon^2)$ and perform the calculation.
- 4. The function $u(t;\epsilon)$ satisfies the governing equation

$$\frac{d^2u}{dt^2} - \lambda \epsilon^2 t \frac{du}{dt} + u = \epsilon \gamma u^2 \frac{du}{dt} \,,$$

and the initial conditions

$$u=2a\;,\quad {\rm and}\quad \frac{du}{dt}=0\quad {\rm at}\quad t=0\;,$$

where $0 < \epsilon \ll 1$, and λ , γ and a are order one constants. By ascertaining at what order of ϵ a secularity first appears in the regular perturbation expansion for $u(t;\epsilon)$, or otherwise, find a solution for $|u(x,t)|^2$ that is uniformly valid for large times. If

[†] Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a question included for those who find the rest of the sheet too easy.

 $\lambda > 0$, sketch typical solutions for $|u|^2$ for both $\gamma > 0$ and $\gamma < 0$. Sketch the squared amplitude as a function of time for different values of a, with special emphasis on the case $|a| \ll 1$.

5. Find the leading order approximation which is valid for times $t = \operatorname{ord}(\epsilon^{-1})$ as $\epsilon \to 0$, to the solution $x(t; \epsilon)$ and $y(t; \epsilon)$ satisfying

$$\frac{dx}{dt} + x^2 y \cos t = \epsilon (x - 2x^2) ,$$

$$\frac{dy}{dt} = \epsilon \left(1 - \frac{\sin t}{x} \right) ,$$

with x = 1 and y = 0 at t = 0.

6. Use the transformation

$$x(t,\epsilon) = \Re \left[r(\epsilon t, \epsilon) \exp \left(i \int_{-\infty}^{t} \sigma(\epsilon q, \epsilon) dq \right) \right],$$

to obtain a higher order approximation correct to $O(\epsilon^2)$ to the equation

$$\ddot{x} + f(\epsilon t)x = 0.$$

7. Find the large eigenvalue solutions of the equation

$$y'' + \lambda (1 - x^2)^2 y = 0 ,$$

subject to y=0 at $x=\pm 1$. At the ends $x=\pm 1$ you will need to use turning point solutions like

$$(1-x^2)^{1/2}$$
J_{1/4} $(\lambda^{1/2}(1-x^2)^2/4)$,

and then use

$$J_{1/4}(z) \sim (2/\pi z)^{1/2} \cos(z - 3\pi/8)$$
 as $z \to \infty$.

8. Sound waves propagating through a slow-varying mean flow satisfy the equations

$$\rho_0(\tilde{u}_t + (U\tilde{u})_z) = -c_0^2 \tilde{\rho}_z , \quad \tilde{\rho}_t + (U\tilde{\rho})_z = -\rho_0 \tilde{u}_z ,$$

where the wavespeed c_0 and the undisturbed density ρ_0 are constants, $\tilde{u}(z,t)$ and $\tilde{\rho}(z,t)$ are the perturbation velocity and density respectively, and $U(\epsilon z, \epsilon t)$ is the slowly-varying mean flow. By seeking solutions of the form,

$$(\tilde{\rho}, \tilde{u}) = ((A_0, B_0)(\epsilon z, \epsilon t) + \epsilon (A_1, B_1)(\epsilon z, \epsilon t) + \ldots) \exp(i\theta(\epsilon z, \epsilon t)/\epsilon) + c.c.$$

show that the wave action E_r/ω_r is conserved, where

$$E_r = \frac{c_0^2 |A_0|^2}{2\rho_0}$$
, and $\omega_r = \omega - kU$.

9. Repeatedly apply the Shanks transform to the 6 terms

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11}$$

to obtain an estimate for $\pi/4$. What is the error?