SHOLZOL Pua Oif} 1L [ O IN0lARYoq 91]) U0 juawiued pue ‘suoial pua oy apisino z juiod
¥ 10] sHOLal puo o[} wodp (21r)f 01 UONNGINeD 9} U0 JUIWI0D ‘UOITR[NI[RD pajieiap
KR ANOIAY ) 4 2 se [F # ) paxy 1 [ 1o] uorewxordde opoydwdse ue jo swiay om)
181y 93 uteqo f(3)pao = (|3 — 1) areya suoiSa1 pua oy} ul (3) surewsd § jey) Sulwnssy

|| H|u+wT
.HVaV_lE :_Nﬁ T,.nwxm \, MCMH:HH
) I

uonenba [eidajul ayy saysyyes (347)f worpouny ay g,

R GO
_:::/\lv%a _\4

Jo 2 4= y se uoisuedxa onjordwdse ayy jo suria) om) 1y oY) puy snyJ,

Ar;___|m+ s Egr) g = 0
1 i
Mueysuod s Ie[ng st L areym
i
f L= = p(3-)dxa (P)ug \,
==}
1RY} 2o0pap ‘asIMIA}0 10 ‘BIud[]

I 7 0
—— —_— T SR ~
Z\ w G0 =1 H\\.*.: uj el

00 +— U SB 1BY) MOYG

w1

‘¢ B 90NPOIIUL JOU O(] "JeD ® JO JIq ][ ® s1 wonsanb sy, spurgy

43 c\.
s ap
rup

_N.HMQ“FHM all Jo () + 3 Se sua) oMm) 1811 2] 9jenjea;]

T+ {1+7) m z v (1 +2)z N:+H:H\
« g riups a0 e BUL T ‘ ug + =
( Nure (z +2)x Lp LT T+1 e T — %2 P

djey

Jo oq Lewr spraBojut opuyopur Sumoyo) o, (1) jo swaay Suipnpur pue oydn ayenope)

rs0d 9+ (0 42)x Of
e A
1

rp

[e1Sajut 9y Jo anotaryaq dnjojduifse oyy sonpap 1 3> 3 > () 10

ot

@

"0 001 190Us Y3 JO 19l A1y pul oym asol]) doj po
1 x y - ynoe-wed djuepgseukey g 4 e o o) pojlewa aq ued sjudwwo)) |

uonsanb e soqe:

gilgusguw—1) 0
op s

[e1Saqut orydifja oYy Jo | 7 W Se SIS OM] 481l 93 VRR[eAT] 4
CEH Dyl + ) O
Tp T -

JO ‘00 4— 1 se (apnyjufew jo siaplo
JUSIIYIP SB[ PUE L U] BUBUNOD) SULIB) | 1S DY) PUR *() = .4 5B SULIO} OM) IS1Y 3UJ 3yen[es] ‘9

“lepulewsl 91|} J9jeullise pue

{
CIP gz Pus? \ = (=g
o0
‘00 ¢ x se [riSolul [erjusuodxe oy} o1 uonewixoidde snojdwidse ue pui ‘g
gpuegit=uiop0=(x)A= ()i yum‘x>z>pum
0 = Jfia+fiv+ fi

uorjenba [enusayip ay) jo sanjeauafia oy jo suolyeqiniiod J1opio-1siy oYy puly ¥

Jo uonnjos ayj Joj uorjewxoidde ue ul SULIY) [RIAAS PUL] g

.w+ﬂ+am+wamuﬁs+wucﬁ ()

¥
ul_luwam+.ﬂlﬁlﬁa+mv5.w|\» (v)

Jo (0 1vau uotnjos oY) (2)T JoO SUII) oM} IS1Y dY) pul] ‘g
“j001 yoea Joj uonewixolidde ayy ul sWIL) oMm) puy DU ],

0 =+ ag+ Tt T (@)

0=+ T— o - (v)
JO s1001 0117 10] sBulfedsal o) pui] ‘T
{1 999§ :spoyjRIN uoljeqiniiag

9661 sew eIy ‘ssukey "Hd 1Q
|1l Med sodu| sonewsyiepy



Mathematics Tripos Part 11|
Dr P.H. Haynes, Michaelmas 1996

Perturbatien Methods: Sheet 2t

1. For real z and = — oo, find the full asymptotic behaviour of

Ko(z) = / (-1 e,
1

2. For real z and z — oo, find the leading-order asymptotic behaviour of

1
(a) / sin(t) SRt gy
0

. ) i
(b) f et gt
8 0

3. For real n and n — oo, find the leading-order asymptotic behaviour of

1 ™
da{n) = ;/{; cos(nsint — nt) dt .

4. For real z and z — oo, find the full asymptotic behaviour of

Ia) == /01 In(t)el®t dt .

5. Find the asymptotic behaviour of

o0
K-V(Z) = %/ eut—zcosh t dt ,

—C0

for real z and v, with z = ord(1) and v — co.

6. Find the asymptotic behaviour of
1 oo+iT )
JV(I/Z) - : / ez sinh t—vt dt :

for real v and 2, as v — oo with first 0 < 2z < 1 and second z = 1. (The case of z = 1 has
a cubic saddle where three ridges meet and f" = 0.)

T Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a question
included for those who find the rest of the sheet too easy.
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7. The function f(y;A) is defined by
fly;A) = / exp (A(1+iy)z — 32°) dz,
g

where y and A are real, and the contour C starts from z = 0 and extends to z = oo in the
sector |arg(z)| < 7 /6.
(a) Show that f(y;A) satisfies the differential equation

f + X3 (1 +1iy) f= -2,

(b) Deduce the leading-order asymptotic behaviour of f(0; ) as A — —co.

(c) Deduce the leading-order asymptotic behaviour of f(0;A) as A — +o0.

(d) With reference to the solutions deduced in parts (b) and (¢), and the steepest descent
contours for the Airy function included in the notes, find the leading-order asymptotic
behaviour of f for 0 < y < oo. In particular:

(i) state clearly your choice of integration contour;
(ii) for A > 1 comment on how the asymptotic behaviour of the solution differs
according as 0 < y < y. and y. < y < oo, where y. should be identified.

(e) * Why is it that

1 2
F= " Xatw e T
is not always a uniformly valid asymptotic approximation for |A| > 17 *

8. (a) Let

f(/\)zf Gz} exp(—iAW(2))dz ,

Z—=2p

where G and W are analytic near the contour C and zp, W (z) has a single saddle point at
2z = zp, and C passes from one ‘valley’ of &(W') with respect to zy to another, avoiding zg
in a clockwise manner. Show that

f(A) ~ =imrG(zp) exp(—iAW (z)) .
(b) The function g(#; A) is defined by

g(6; A) :/F o zo)(lz?' 3 exp (i)\ ((3’3 - 1}~ z)) dz

where 8, zp and A are real and positive, and the contour [' goes from —oo to oo passing
above the three singularities of the integrand. Take the branch cuts for (22 —1)% to be lines
drawn towards $(z) = —oo from the points z = +1. Obtain the leading-order asymptotic
behaviour of g(#; A) as A — oo on the assumption that 0 < § < 1 and 25 > 1; be careful to
discuss all cases.

9. For a contour C enclosing t = 2z, where z is real and positive, find the asymptotic behaviour

as n — oo of ( 5 )
1 te —1)"
Po(z) = 2n+1?ri/0 (t — z)n+1 dt

Consider the cases 2 < 1 and z > 1 in turn. [Hint. Write z = cosa and z = cosha
respectively.]

10. Find the leading-order asymptotic behaviour of

1 /! i, B
I(z) =2 e—4zt +5izt—izt dt
@=3/
as |z| = co. [Hints. Start with z real and positive, and carefully construct steepest descent
contours. Then obtain the leading-order asymptotic approximations on each part of the

contour. Finally allow = to become complex.]



Mathematics Tripos Part Ill
Dr P.H. Haynes, Michaelmas 1996

Perturbation Methods: Sheet 37}

1.  An example of a regular expansion. The flow down a slightly corrugated channel
is described by a function u(x,y; €) which is periodic in # and which satisfies
Viu=~1 in |y|<h(z;e) =1+ecoska,
subject to u=0 on y=xh(z;€).

Obtain the first three terms for u and hence evaluate correct to ord(e®) the average flux
per unit width

I 2r/k  pt+h(zie)

o u(z,y; €) dedy .

27 r=0 y=—h(z;e)

2. The function y(z;e€) satisfies
ey’ +(1+ey' +y =0 in 0<z<1,

and is subject to boundary conditions y = 0 at z = 0 and y = ™! at z = 1. Find
two terms in the outer approximation, applying only the boundary condition at ¢ = 1.
Next find two terms in the inner approximation for the ord(e) boundary layer near to
x = 0; apply only the boundary condition at # = 0. Finally determine the constants of
integration in the inner approximation by matching.

3. The function y(z;¢) satisfies
ey’ +2'/%' +y =0 in 0<z<1,

and is subject to the boundary conditions y = 0 at z = 0 and y = 1 at * = 1. First
find the rescaling for the boundary layer near » = 0, and obtain the leading order inner
approximation. Then find the leading order outer approximation and match the two
approximations.

4.  The function y(x;e€) satisfies
(z+ey)y +y=1 with y(1)=2.
Find y(0) correct to ord(1).

5. Find two terms in € in the outer region, having matched to the inner solutions at
both boundaries for

2. 1

ey —y"=-1 In —-l<z<l,

withy=y' ' =0atr=-1land x=1.

1 Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A * indicates a
question included for those who find the rest of the sheet too easy.



6. The function y(z,€) satisfies
ey +yy’' —y =0 in 0<z<1,
and is subject to the boundary conditiony =0at z =0andy =3 at z = 1. Assuming

that there is a boundary layer only near = = 0, find the leading order terms in the outer

and inner approximations and match them.

Suppose now the boundary conditions are replaced by y = —% atz =0andy = %

at = 1. Show that the boundary layer moves to an intermediate position which is
determined by the property of the inner solution that y jumps within the boundary
layer from —M to M, for some value M. Find the leading order matched asymptotic
expansions.

7. TFor 0 < 2 < oo, the function G(z;¢) satisfies the differential equation
(3 +26)G" + (1 +26)GG" + (1 —26)G* =0,
and the boundary conditions
G(0;e) =0, G'(0;¢)=3%, G"(0;¢) =0, G(x;€) ~ 22 )\"% as z—o00.
If 0 < |¢| < 1, determine the eigenvalue ) to leading order. Hint. In a regular expansion
of the form G = Gg + €G1 + ... it is sufficient to identify the asymptotic behaviour of

G, as @ — oo (i.e. you do not need to solve for Gy for all z). The following results may
prove useful:

1
/ a:—(’c—z— = tanh™" (z/a) ,

/__L = atanh (z/a) (1 — % (tanh (J:/a)]g) )

cosh? (z/a)
8. Consider the following problem which has an outer, an inner and an inner-inner
inside the mner

2y = e(l+er+2)y? in 0<z<l,
with y(1) = 1 — e. Calculate two terms of the outer, then two of the inner, and finally
one for the inner-inner. At each stage find the rescaling required for the next layer by
examining the non-uniformity of the asymptoticness in the current layer.
9. The function y(z;e€) satisfles

(e+a)y =ey with y(l)=1.

Find y(0) correct to ord(e?).

10. For 0 < z < 1, the function ¢(z;€) satisfies the differential equation
b (2 + ) + (x + €)@ +1)be — 26 =0,

and the boundary conditions
$(0;) =0, H(Lie)=2.
On the assumption that 0 < e < 1, find the solution correct to, and including. terms

of O(e) in three asymptotic regions (which are to be identified). The following integral
may prove useful

2] exp(—2q'5]dq:1—(1+2r%)exp(—2z%).
0



11. The function f(r,e€) satisfies the equation
Frotife+ld1-f) =0 in r>1,
and is subject to the boundary conditions
f=0 at r=1 and f—1 as r—o0.

Using the asymptotic sequence 1, €, € ln %, €2, obtain asymptotic expansions for f
at fixed 7 as e Ny 0 and at fixed p = er as e N 0. Match the expansions using the
intermediate variable n = e®r with 0 < a < 1.

Hint. You may quote that the solution to the equation

-2z
" . B

Yoz + ZY2—Y = oo

subject to the condition y — 0 as z — oo, is
e~ % 1 [=~] e—r—f . Cr—:}!
= A - —_—dt,
¥ i & 2z J, t ‘

with 4 a constant. Further as ¢ — 0

2A+1n3

y ~ ———— +Inz—A+y+3n3-1.

2z



Mathematics Tripos Part I
Dr P.H. Haynes, Michaelmas 1996

Perturbation Methods: Sheet 47
1.  Obtain equations for the drift in the amplitude and phase in the solution to
i+ ex(2® —1)+ (1 4+ ek)r = ecost,

with & = ord(1) as € N, 0. [The tough part is then to show that a slave oscillator will
lock onto the forcing from a master if the slave is not detuned too much, i.e. if |k| < k.
then R tends to an equilibrium, while if |k| > k. then R oscillates (the free oscillations
beating with the forced response).]

2. Find the leading order approximation to the general solution for z(¢;€) and y(t; )
satisfying

d’z 4 dz bz = 0
B Ty =
J _
% == %6111:132._

which is valid for ¢ = ord(1/¢) as e = 0. You may quote the result

27

‘)i lncos’?6df = —1In4.

3. Solve the Mathieu equation
§+ (w? 4+ ecost)y =0,

for the case when w = % + €ew; + .. .. Identify the stability boundary correct to ord(e).

* Explain why it is necessary to introduce a slow time 7 = €3¢ in order to calculate
the stability boundary correct to ord(e?) and perform the calculation.

4. The function u(t;€) satisfies the governing equation

d?u 2 fa’u n o du
— — A t— tu = eyut—
di? g g
and the initial conditions
u=2a, and d—uﬁﬂ at t=0
dt

where 0 < € < 1, and A, v and a are order one constants. By ascertaining at what
order of € a secularity first appears in the regular perturbation expansion for u(t; €),
or otherwise, find a solution for |u(z,#)|? that is uniformly valid for large times. If

7 Comments can be emailed to me at P.H.Haynes@damtp.cam.ac.uk. A #* indicates a
question included for those who find the rest of the sheet too easy.



A > 0, sketch typical solutions for |u|* for both 4 > 0 and 4 < 0. Sketch the squared
amplitude as a function of time for different values of a, with special emphasis on the
case |a| < 1.

5. Find the leading order approximation which is valid for times ¢ = ord(e”!) as
e — 0, to the solution z(¢; €) and y(t; €) satisfying
dx

— 4+ z’ycost = e(z — 22%),

dt
dy ) sint
a - € = ’

withz=landg=0ati=0

6. Use the transformation

2(t€) = R [r(et,e)exp (i / o, dq)] |

to obtain a higher order approximation correct to O(€*) to the equation

zZ+ f(et)r=0.

7. Find the large eigenvalue solutions of the equation
yrr+/\(1 —:c2)2y =0 s

subject to y = 0 at * = +1. At the ends z = £1 you will need to use turning point
solutions like

(1= 2?1231 a(N (1 = 2?)?/4),
and then use
Ji/a(z) ~ (2/7z)}? cos(z — 37/8) as z — oo.
8. Sound waves propagating through a slow-varying mean flow satisfy the equations
PO('&? + (Uﬁ)z) = _C(Z)ﬁz i PEeF (Uﬁ)z = —pol: ,

where the wavespeed ¢p and the undisturbed density po are constants, a(z,t) and p(z, )
are the perturbation velocity and density respectively, and U (ez, et) is the slowly-varying
mean flow. By seeking solutions of the form,

(p,u) = ((Ao, Bo)(ez, et) + e(A1, By)(ez, et) + ...) exp(if(ez, et)/€) + c.c. ,
show that the wave action E,/w, is conserved, where

3| Aol?

E, =
2p0

, and w,=w-—-kU.

9. Repeatedly apply the Shanks transform to the 6 terms

) 1+l 1+1 1
3 ) 7 9 11

to obtain an estimate for /4. What is the error?



