Perturbation Methods 1: Algebraic Equaltions]L

1.1 Regular expansions and iteration .

Consider
> +ex—1=0. (1.1)

1 1,)\2
:c_—gs:t(l—ki\e) .

If |e] < 2, then can expand in a convergent series:

Exact solution:

1 1 1
1—§E+—62——€4—|—"'

3 T 128
€T =
o1, 1,
Yt T Lo
5~ g% Tt T

Since the series is convergent, for |¢| < 2 we can increase the accuracy by taking more
terms. We have

SOLVED THE EQUATION and then APPROXIMATED THE SOLUTION

However, we cannot always solve the equation exactly, so can we

APPROXIMATE then SOLVE THE EQUATION?

Iterative Method (liked by Pure Mathematicians)
Tnt1 = G(Tn)
Suppose z, = z* + §, where z* = g(a:*).. Then by Taylor Series
St = o' (2™) 8 +O (531) .
If we have a good guess, so that |d,| is small, this is convergent if
lg'(z")f < 1.

Rearrange (1.1):

P =1—cx.

t Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam.ac.uk.
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~ For the root near z = 1 try

wa=

Tpni41 = (l —= 6.’En)

Zo=1

Hard work for the higher terms — also, how many terms are correct?

Expansion Method

For ¢ = 0, the roots are x = £1. For the root near x =1 try
z(e) =14exy Lgtmy 4ty oo
Substitute into equation (1.1):

142z + 2e%2y + €222 + 26323 + 2edz1ag + - -
+e 4ty + 324 SRR
-, | =0

Equate powers of ¢:

&R 1-1 =0

1. 9 1 = —_1

S ._.CL']_+ = 3 r = 2
1

g” 1 ng—i-:cf-l—:cl =0 R Ty = 3

g* i 223 + 2122 + 12 =0 . z3 =0

Easier than the iterative method for higher terms, but you need to guess the expansion
correctly.

1.2 Singular Perturbations and Rescaling

Consider
ext+z—-1=0. (1.2)

=10 : one solution
=10 - two solutions

m O
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The limit process ¢ — 0 is said to be singular.

[SIE

-1+ (14 4e):

Exact solution:
2e

Expansion for |¢| < :

3

1—¢e+2e% -5 +---

¥
—=—1+e—-2e%+---
&

The singular (i.e. extra) root — oo as € — 0.

Iterative method

(a) For the non-singular root try

Tp41 — 1"“&"[:3! .

(b) For the singular root, we need to keep the ‘cz?’ term as a major player.

leading order approximation is
ezl +z=0;

so try rearranging (1.2) to

1 1
T, & gy ===
€ Eln
Exercise: Confirm (1.3) by iteration.
Note that in (b)
w1 =g(en),  where  glz) =+
Tnt1 = g(xn) , where glz) = "k
Hence
1 1 .
g (z) = — = 5 g'(——)’———5<1 if 0<ex<l.
ET E

Expansion method

For one root try
T =29 + €21 +€2$2 g G

and for the other try

T—1
= +To+Ex1 4

3

(1.3a)

(1.35)

The



Substitute (1.4b) into (1.2):

2
ol
=L 42z 1%0 +¢ (2 +2z_121) + -+~

+= 4+ wo+t exy + -
- 1 =1
gL s 2,4z =0 ; < — 0 . =
e (2$_1+1)$0 -1 = : To = 1 . —1
E 3:3 +2z_qx1 4+ = : Ty = -1 4 1
T T
(1.3a) (1.3b)

Rescaling before expansion
How do you decide on the expansion if you do not know the solution?
Seek rescaling[s] to convert the singular equation into a regular equation. Try

= §(e)X

need to choose suitable § i

N strictly order ‘unity’; say X = ord(1).

(1.2) becomes
e X2 +6X-1=0.

Consider the possibilities for different choices of § (|g| < 1):

d << 1 small 4+ small — il = 0 -

8 = I small + X — 1 = & regular root
1€k % H;—Si = small + X 4+ smal = 0 *

(since X = ord(1))

§=1: I‘Jﬂ = X? 4 X 4+ smal = 0 singular root

é > %: lé?zs = X? 4 smal 4+ small = 0 b
The distinguished choices are therefore:
g = 1s €X2+X— = () : X:JY0+EJY]+€2X2+--‘
5:%: Ko e : X=Xo+eXs 4+ X+ ...



1.3 Non Integral Powers

Inter alia, double roots can cause problems. Consider
(1-¢g)z®-2z4+1=0. (1.5)
When ¢ = 0, there is a double root at z = 1. Try an expansion:

;c=1+sml+52:c2+...

then
1 -k 25.’1!1 +62 (2.1‘2-!—.’12‘%) +
— e —¢e*(22)
— 2 — 2exy — 2%xy + =
+ 1 =0
g0 1-241 =0
el 201 —1—-22; =0 *
We need ‘cz;’ to be larger.
14 et
Exact solution: 5= li o}
—f

We should have expanded in powers of £2:

b
r:l—i—eiré—i—ewl—i—s r%Jr--
1
1 + 2%z + 2e71 + ex}
]
—~ 9 25%1% — 2z,
+ 1 =0
gY 1—-24+1 =1
b5 . .
£2 : 2:1:% — 2:::% = () no information
B 2e14+ 23 —1-22; =0 zy =1
2

We must work to O(e) to obtain the solution to O(e2).

Ct



From the original equation

(x —1)% = ez?,

we see that a change in the ordinate by ord(e) changes the position of the root by
ord(e%).

YA

~ 9* f!")“

o \ ‘r-f\u

Y o)

1\3:111

In general we must derive (guess) the expansion required, e.g. try

z(€) = 1+ dyle) &1 +02(8) g +~ -
1386 >60>-
Ty = grd{1).

Substitute into (1.5):

1+261$1+252{I‘2+ +(5%I’% + - +25162’I}1$2+

—€ — 2eh 114+ -+
-2 — 2(5111 —252$2 + .-
+1 =0
The leading order terms are 6222 and —e.
Hence take § = 5%@1

allow z1 to absorb any multiple roots.

Exercise: Show that the choices 62 > ¢, or §? < ¢, lead to a *.

Cancelling off these two terms, the leading-order terms become

261(521.'1;172 and = 28511’1 .

Repeating the argument = §; = ¢ (and z, = 1).
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1.4 Logarithms

Solve

we™" =€ . (1.6)

One root is close to & = ¢, the other root is between

and

1
x-——lng (ze™® =¢elni >¢)
! - 21, 1
o =2~ (ze™® = 2e°In ¢ < ¢, for € small).
- c

Note: doubling z reduces the e™* factor by an order of magnitude.

The expansion method is unclear, so try the iteration scheme.

Consider a rearrangement that emphasises the e™* factor:

so try

Then

e =

M| =8

1
Tnt1 = log — +logzn .

1
zg = log —
€

1 1
z; = log — + loglog —
L . ¥

L, Lo
o = L1 +log(Ly + La)
=L1+L2+%—2?%+%+---
$3=L1+log(L1+L2+i—j—%+%+..
= I, +L2+%+ ‘%LE; L %L%L}%L%

7
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The iterative method can give more than one term per iteration.

Numerical Disaster Percentage errors for the truncated series:
€ Ll L2 Lg/Ll —L%/QL% LQ/L%
1! 36% 12% 2% 4% 0.03%

10 24% 3% 0.02%  0.04% 0.04%
10~° 19% 1% 0.04% 0.1% 0.001%

~ J

Do not separate terms

like —L2/2L2 & L,/L2.

A very small ¢ is needed before this is tolerable.

Check convergence

Tats = g(en)

1
g(z) = log . + logz

1
g'(x) = =
T
1
’ v o
T

need ¢ very small for |¢'| < 1.



Perturbation Methods 2: Asymptotic Approximations i

2.1 Convergence and asymptoticness

An expansion Y - fa(z) converges for a fixed z if, given ¢ > 0, 3 N(z,¢) s.t.

<E Vm,n>N.

Z fa(2)

Convergent series can be useful analytically, but hopeless in practice. For instance, consider

erf(z) = %/0 e dt .

We know that

S )
e :Z n!
0

is analytic in the entire complex plane. Hence we have uniform convergence on any bounded
part of the plane = we can integrate term by term:

0
‘Lalso has oo radius of convergence

To obtain an accuracy of 1073 we need

8 terms up to z =1
16 terms up to z =
31 terms up to z =
75 terms up to z =5

However, intermediate terms can be large = problems due to round-off error on computers.

An alternative for large z is to proceed as follows. First rewrite the integral:

9 [>®
erf(z) =1 — %/ e~ dt .
™ z

Then integrate by parts:

f Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam. ac.uk.
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_(,_ L, 13 135 e-Z""JrR
a 222 1 (222)F  (222)° ) 22

%105 et
H= — dt
/z 16 8
o0 ——-,‘52
& 105 J (we_iz) _ 105 ¢
= 3229 J, 32 29

The series in 271 is divergent (due to the odd factorial in the numerator), but the truncated
series is useful, e.g. 107° accuracy with 3 terms for z = 2.5
2 terms for z = 3.

where

“Pirst term is essentially the answer, while subsequent terms are minor corrections.”

Problem: What if the leading term is not sufficiently accurate (e.g. in reality ¢ is not
sufficiently small)? Adding a few extra terms may help, but there is a limit to the number
of useful extra terms if the series diverges as N — oo at fixed e. It is not sensible to
include extra terms once they stop decreasing in magnitude. By suitable truncation, one
can obtain exponential accuracy (see §3.1 and Q5 on example sheet 1).

2.2 Definitions

The expansion Zév fn(€) is an asymptotic approzimation of f(c) as ¢ = 0, ifVm<N,

>oa fule) = fle)
fm (&)

i.e. the remainder is less than the last included term.

— 0 ase — 0

If we can let N — oo (in principle) then we have an asymptotic ezpansion.

If f, = anc", then we have an asymptotic power series; however we frequently need more
; : ; . -1 .
general expansions involving terms like £, (Inl) ', etc. We write these as
N

> andne) (2.1)

n=0



where the §, form an asymptotic sequence:

571—}—1
Jn

Note that sometimes we need to restrict to one sector of the complex ¢ plane to keep the
0, single valued.

— 0 ase — 0.

Often ¢ is real and positive. A useful set of asymptotic functions are then Hardy’s
logarithm—exponential functions obtained by a finite number of +, —, *, /,exp & log oper-
ations, with all intermediate quantities real.

This class has the property that it can be ordered, i.e. either f(¢) = o(g(¢)), or g(e) =

o(f(e)) or f(e) = ord(g(e)).

2.3 Uniqueness and manipulation

If f can be expanded asymptotically for a given asymptotic sequence, then the expansion
is unique. For if the expansion exists it has the form

f(e) ~ ) andale) ,

and o)
. FlE
S o So(€)
n—1
ety { OB ).
£—0 511

However, a single function can have different asymptotic expansions for different sequences:

tan(e) R
an(e) ~ e+ =¢° + —
3 T 15°

b g 3, .
~ sine + 5(51ns)3 - 3 (sms)5 4.

=

ﬁ h\/§ 31 h\/§ ’
~ £ COS §5+% £ COS ge e

Part of the ‘art’ of obtaining an effective asymptotic solution is choosing the most appro-
priate asymptotic sequence.

Worse: two functions can have the same asymptotic expansion:

>x
expe~ Y
0
1 oo
exp6+exp(—g)~2—’ as € (0.
0

3

|(T|
3

ase —= 0

2

3| ™



4 a2 Logd . . €
Exercise: Does f = 2% +e™* (1-sin#) have an asymptotic expansion as £ — 007

Asymptotic expansions can be added, multiplied and divided to produce asymptotic ex-
pansions for the sum, product and quotient (if necessary one may need to enlarge the
asymptotic sequence).

If appropriate, one can try to substitute an asymptotic expansion into another — but care
is needed, e.g. if

then

F(2(e)) = exp [-1- +2+£2]

4
~e1/€2e2{1+52+%+---} ;

but if we just work to leading order
1

e

€
f(z) # €1
Tnrliss"mg e?; the leading-order approximation in z is
inadequate for the leading-order approximation in f(z).

Integration w.r.t. € of asymptotic expansions is allowed term by term producing the correct
result.

Differentiation is not allowed in principle because O and o estimates do not survive differ-
entiation. For instance:

(a)

f:e”z:(’)(l) as r — o0

d .

4 = iz’ = O(z) as & — 00

=

(b)
2 2
f=l—i—e'1/JC sin(elfx)wl—i—--- asz — 0

df _ 2 1/2* 2 —1/2% _: 1/z2
e —k—:c—g cos (e )J+m—3€. sin (e )

No asymptotic expansion as  — 0.
However: (i) If f/(z) exists and is integrable, and Flz) ZnNzo anx™ as z — 0, then

oo
i~ E napz™ as z — 0.
n=1

4



(11) If f(z) is analytic in 6; < argz < 6, 0 < |z| < R and

waanz" as z — 0 (6 <argz < 6;)

n=0
then

o0
i~ Z na,z" ! as z = 0 (0; <argz < 6,).
n=1

(iii) There are lots more special cases. For instance

e Asymptotic expansions of solutions to differential equations. Suppose that y is the
solution to

yﬂ _*_ qy = O (*)
where ¢ has an asymptotic expansion as z — 0.

Assume y has an asymptotic expansion as @ — 0;

then from (%) y” has an asymptotic expansion (multiplication OK)
thus y’ has an asymptotic expansion (integration OK)
thus y has an asymptotic expansion (integration OK)

Hence if y has an asymptotic expansion, the equation ensures that its differentials
have asymptotic expansions (the proof that y has an asymptotic expansion is often
tricky).

2.4 Parametric Expansions

For functions of 2 (or more) variables, e.g. f(z,¢) (as might arise in solutions to pdes,
etc.), we make the obvious generalisation of (2.1) to allow the a, to be functions of z:

N

flz,e) ~ Z an(z)d,(g) as € — 0. (

n=0

)
)

If the approximation is asymptotic as € — 0 for each z, then it is called a Poincaré/classical
asymptotic expansion.

The above pointwise asymptoticness may not be uniform in z, e.g. it may require ¢ < x
(restrictive as ¢ — 0). Such problems sometimes need a further extension:

f(z,6) ~Y " an(z,)dn(c) o (23)

e.g anlz;€) = by (£).

Uniqueness extends to (2.2), but not to (2.3), etc.

5



2.5 Stokes Phenomena in the Complex Plane

If a power series is asymptotic to a single valued function as z — zo in a 27 disk about
2 = 2o, and if zo is at worst an isolated singularity, then the series is a Taylor series. Thus
if an asyvmptotic power series is divergent, it can only be valid in a sector of angle < 2m.
Hence a single function may possess several asymptotic expansions, each restricted to a
different sector: the Stokes phenomenon.
E.g.

e

Tz

One can extend this approximation into the complex plane as long as the contour for

20 2
f et dt
z

— 0 as z — oo. Hence

erfz ~1— as z — 00, z real .

is kept in the sector where e

.2
62

Tz

erffz ~1-— as z = oo, |arg z| < 7/4.
But erf is an odd function, so

e

Jrz

For n/4 < argz < 3r/4 use erf z = % s e~ dt to find that

erfz ~ —1— as z —+ 00, 37 /4 < |arg z| < 57w /4.

i
eZ

Jrz

erf is analytic everywhere, but there is a non-analytic essential singularity at co.

erf z ~ — as z — 0o, T/4 < |arg z| < 3m/4.

Terminology.

e The line where a term that is subdominant in one sector becomes comparable with a
term that is dominant in that sector, is called an anti-Stokes line by some (e.g. Stokes
and modern trendies), and a Stokes lines by others (e.g. Bender & Orszag). In the case
above the anti-Stokes lines are at

argz = (2n + 1)m/4 .
e The lines where the leading behaviours of the two terms are most unequal are called

Stokes line by some (e.g. Stokes and modern trendies), and a anti-Stokes lines by others
(e.g. Bender & Orszag). In the case above the Stokes lines are at

args =ar/d .

Stokes lines are important since the coefficient of the subdominant term can jump at
them.



3. Asymptotic Expansions of Integrals

3.1 Elementary Examples

Example 1.

Then

Example 2.

Then

Then

where

Rewrite an integral so that we can use a Taylor series. For instance:

o0 4
Izj e b dt as z—0.

Ooe—t
I=/ dt as T —00.
0

- =1
1 t
Iz—/ e_t(l—i-—) dt
T Jo T
1 [ t 2t
:—/ e_t(l———-l-—2——3+)dt
T Jo T T I
1 o2 3 naughty, since invalid for ¢ > z
== (1-=+5 -5+,
& T T 2 -




Hence

I:%(l_l+°_'+ (_TZ;m+O((—n;:—J)!)>

Truncate the series when the remainder has the smallest bound, i.e. stop one before smallest
term when = ~ m. The error when we truncate is then

x! (27)1/2e~=
+1 2372 )

|Rn| ~
I

i.e. the error is exponentially small.

3.2 Integration by Parts

Integrals of the form [ f(t)g(t) dt can be integrated by parts and may so yield asymptotic
expansions; one automatically obtains the remainder.

Example 1. See §2.1 for erf(z).

Example 2. Consider the exponential integral

oo _—-t oo -t ]
Eq(z) E/ e—f—dt: e‘I/ 5 +(: .
s , o T+t

Then integrating by parts

—tq0 % o=t
Ey(z) = [—T]x —j; Tz—dt
- e: (1—i+;—+.. +(_T:; )-i—rm( ),
where
rm(z) = (=)™ (m + 1)! /:o ;:2 dt .
As in §:;.1, the size of this remainder e&n—be-s.bm]in_te-be asymptotically smaller than the
retained terms.
Example 3. The sine and cosine integrals.

—Ci(z) —isi(x) = —=Ci(z) +1 (— - Sl(.’E f .

Cz'z'

= = (1+l+( )2 +( )m)—}—rm(:c),

where

[SV]



: > eitd
rm(z) =1(m+ 1)! / (:t)miZ ;

If we proceed as before

= dt m!

irm| S (m ¥ 1)1 /J; tm+2 = rm+1 = O(laSt term) !

but this does not demonstrate asymptoticness. We seek an improved error estimate by
integrating by parts: ®
¢

C[m+1)M>™ < it dt
-[m—f itm+21 | g

T

hence

3.3 Integrals with Algebraic Parameter Dependence

Example 1. Consider the integral
1
1
I(¢) =f ———dr =2(V1+¢e—5).
0 (x+e)?
The leading-order (¢ — 0) estimate is just
!
o) = —dz=2.
0 T2

global contribution from
all of integration range

In order to obtain an improved estimate, one cannot expand (1 +¢/x —1/2 a5
P
(1-}--5/.1f)—1/2 =1—c/2z+...,

throughout the range; for instance when 0 < z < ¢ the expansion is not convergent.

Further, we note that when z = ord(¢), the integrand is ord (¢7!/?) = contribution to the

integral for this range of = with be ord (s!/2).

To account for this correction, one could subtract the leading-order estimate exactly; then

1
I 1
I=2+/ [*—'——] dx
0 (rc—i-s)% z3

-

z = ord(), integrand = ord (¢71/2), contribution to [ = ord (¢!/2)
r = ord(1), integrand = ord (¢) , contribution to [ = ord (¢)

3



The major contribution is from near z = 0, so put x = £ (£ = ord(1)), then
lxeo
. 1 1
/ TR T d&
0 (1+&)= &2

Further corrections can be obtained by now subtracting out this contribution, but this
method is tedious and difficult! There must be a better way.

(8]

I=2+c¢

[Av]
B

2
L

s
=

Alternative 1: Solve a differential equation. Let

. 1
Jlp) = —_—
(=) /o (q+¢) E

Then we need to find J(1). This can be done by solving the differential equation

R

a7 1

subject to the initial condition .J(0) = 0. We will discover how to do this in §4.

Alternative 2: Divide & Conquer. In this method we split the range of integration.

Split [0,1] at £ = § where e € § < 1.

)
g L €
225% £"25é+2—25%+€—5—%+0(:2,§—%—)
-2
=2—2€%+E+(’)(52,c—3)
62

The error term is definitely small if £3 « § < 1, but in fact since § is arbitrary, all terms
containing a é must cancel.

To organise the algebra it is sometimes helpful to tie § to ¢, e.g.

dele

8 = Ke+t |

4



and then the answer must be independent of I\.

Example 2. Suppose that we wish to estimate the integral

T

) in%6
I(m,e)=/ o o df D= m=x oo,
0o (1—m?cos?8)” sin” 0 + &2

for 0 < ¢ < 1. It turns out that there are three cases to consider: 0 < m < 1; jm — 1| < 1;
> L.

(a) 0<m<1

6 I integrand I contribution to [
ord(1) ord(1) ord(1)
ord(¢) ord(1) ord(¢)

T (1 — m? cos? 9)2 sin® @ ~ g2

We will find the solution correct to O (52); to thisend let 0 < ¢ <« § < 1. Then

7‘.!']

£
I /? S/m-z'(yu) dit 4+ ]% sin” 6 a6
o (1 —m2cos?(eu))’ sin®(eu) + e2 5 (1 —m?cos?6)” sin® 6 + &2
b . D ,_‘?Ml
3

' u? du i’
= 2 -+
0o (1—m2)"u?+1 s (1 —m?cos? 92‘

5 & Wi ve D9,

o[t (Gt 2ot [ B g
. 0o (1-m *

- df + O (%)

AT
(‘-c(“'d ®

(1 —m?2)3 4(1 —m?)2 2 cos? 6)

viaa tanf =t =(1—m?)2tany substitution

4] EW (2 —m?)x ) 5 g B
= - , — O (e, 8%, —
(1 —=m2)2  2(1-m?2)3 T 4(1-m?)z  (L—-m?)? + (6 )
B (2 —m?)7 em
1_4(1_m2)%—2(1_m2)3+... (3.1)
globsl Tiseal

Note that this is a non-uniform approximation as m — 1. There is a loss of ordering of

the series solution when

i.e. when
1
€



(b) This suggests that when |m — 1| < 1, we should introduce a scaled parameter: viz.
m=1-—¢e3\. (3.2a)

First let us examine the local contribution from near # = 0 (since on the basis of the
estimates above it will be leading order). Put 8 = ¢%u, then

2 .
(1 — m? cos® B)QSinQG—i-az = (52ﬁu2+25%)\) ePul fe¥ 4... (3.2b)
7 'sin 8

1
2 V=AM
All leading order terms balance if § = 3; this is referred to as a distinguished scaling. As
a first guess, let us assume that this is the scaling in 8 to consider. Then

= ord(e3 . integrand = ord (&3 /2 ;  contribution to [ =ord(1/e
g

6 =ord(l) ; integrand = ord(1) ;  contribution to [ = ord (1)
The ‘local’ contribution dominates. Hence introduce €3 < § < 1, and split the integral:
8% o ,
; : I A S S
I:fo ...dﬁ—l—/; e dd T T e (it )h2)
1 o 2d 1
u® du
~ _/ 2 2 ~ ""f(’\)
€ Jo (W2 42 )" uw?2+1 €
where il e ST 1 P
£ [ Jhﬁhz;\)t?“ k=Yg T))] ‘ :

6



u? du

) :/o (u? +20)° w2 +1°

Hence for a given A (and m), we have a leading order asymptotic estimate. However, we
should check that as A — oo, we obtain the same estimate as in (a). In particular, when
A>1

u=ord(1) , integrand = ord (1/A?), contribution to | = ord (1/A2?)
u = ord(\?), integrand = ord (1/A%), contribution to [ =ord (1//\'%)

This suggests that the largest contribution will come from where v = \~3y = ord(1).
Hence estimate f in this range:

£ 1/0°°( dv _ ‘.'T%’

Moo @+u) 42y
and
T ot g L (3.3)
4c(20)2  4(1 —m?)?
I

agrees with (3.1) for m ~ 1

We might also be interested in the other limit, i.e. A — —oo. This estimate is a little
more tricky, since (u? + 2)\) can now have a zero (when |A] > 1, this term normally
dominates the denominator). First we test for a significant contribution from near this
zero by introducing a scaled coordinate:

wj=

u= (=212 + (=A)"w .
Then
1+ u? (u? +2)\)2 ~ 1+ (=2)) (2(—2,\)% (=A)"w +. ..)2
~ 14 1602 (=N)2Tw? 4 ... .
There is a distinguished scaling for the choice ¥ = —1, in which case the contribution to

the integral from near the zero can be estimated as follows:
= (—2)\)% +ord (1/|A]); integrand = ord (|| /1); contribution to f =ord(1) .

This is a much larger contribution than we found for A > 1. In order to estimate the
contribution set

[V

u=(-2)\)? + — (3.4)

(=)

then



00 (=2A+...)dw
/\ == ~ —
f( ) /:21/2(“A)3lzz—oo (—-A) [1 + 16UJ2 e .] 2

Hence as A — —o0, the value of the integral tends to a large constant, viz.

(c) Finally consider the case when m > 1.

The limit A -+ —oco (i.e. 0 < (m — 1) < 1) suggests that the main contribution will be
local, and will come from the region close to the point where

m2cos?f=1.

0, = cos™? (%) (0 < O < g—) .

In order to deduce the coordinate scaling that is appropriate close to 8,,, we note from
(3.2) & (3.4) that the ‘inner’ scaling for 0 < m — 1 < 1 can be written in the form

Define

Ew 2ew
(m-1) "™ 62, °

w

((-29%+ 25 ) = 2tm-1)

=

(S
_|_

O=¢

This suggests that for (m — 1) = O(1) we should try the scaling

0 =06, +c¢ct,

in which case
(1- m? cos?® 9)2 sin? @ + &% ~ 4e2m?sint 0,82 + ... + &2

and
; /%(%—Gm)”"'m esin® (0, + t) dt
—1gm—oo g2 (4m2t2 sin* 0., + l) S —
1 =
mary (3.6)

We note that (3.6) agrees with (3.5) in the limit m — 1.



3.4 Logarithms

Consider
a ord (™) 2 = ord(e)
f flz,e)de with f(ze)l=4a™@ ezl
g ord(1) m =sard[1).
e.g.
1 1
/= (z+e)* 14z

There are 3 possibilities for the leading-order contribution depending on the value of a:

(3] o=l Dominant contribution from z = ord(1), e.g.
/Oo dx /OO dx
o (z+¢e)2(1+2) o zi(l+z)
(i1) a>1. Dominant contribution from z = ord(e), e.g.
> dz - d
f 5 = / L (z=ef) .
0 (T+E)2(l+$) 0 52(1+€)2
(i) =1 Dominant contribution not from z = ord(e) or = ord(1) but from

the intermediate region between. Easiest to see by splitting the inte-
gration region:

o d o de a0 dz
/0 (9«"+6)(1+:ﬂ)_/o (1+§)(1+€§)+/a @+l + «]

g
€

= [log(1 + &)~ [e —log1 + ) + ... |

: z+1 o
‘ [

~(1+s)(10g5—log€)+£+...

&
—logé—g—slogé—l—...
1
N(l—l—e)iog(j)"l-... :
c
T

‘fortunate’ ord(1) cancellation



3.5 Integrals with Exponential Power Dependence

General case: limit as A — oo of integrals of type

b
A= / (3 f(z,\) dz
‘ T
weak algebraic
dependence on A

paths in C

3.5.1 Watson’s Lemma

Assume a, b, A\, ¢, f, and the path of the integral, are real.

There are then different cases to consider depending on whether the maximum of ¢ is
at an end point (Watson’s Lemma), or in the interior of the integration range (steepest
descents).

In this section we assume the maximum is at an end point; wlog z = a. Write
z
z=¢(a) —¢(z) , F(z)= —Me’\é(“) , c=d¢(a) —¢(b) >0,

then

L A= /C e M F(z)dz .

0
Assume that F'is analytic in some sector S of the complex plane, and that as z — 0,

N
F(z)NZak:UO’“ ~l<ag << own »
k=0

Also assume that ¢ is in S, and that F is bounded in S; let Fipar = 1n€a§:|F(z)|. Then

N

L I(an +1)
A
/(; e" " F(z)dz ~ E an@Aan+l )

0

Proof. For a given € > 0, 3 §(¢) s.t.

N

F(z) - Z TR

k=0

< gz V z in S with |z] < 4.

Split range of integral at §(¢). Then
c
/ e F(z)dz < Faze ™,
)

10



N

\/5 e M F(z)dz — 2 ak)\—“’*'—lf(ak +1)
0

k=0

é N oo
- \] o™ FlgYds ~ Z ak/ 2% e dx
0 k=0 0
é o
5[ 3 2™ da z ak/ £ e~ dg
0 é

k=0

I‘-(—f‘fii)\ 4 [em0-04] ﬁmi\awlle—ml do
k=0

,\C“N+1

=

+

<eg

Hence as A — o0,

£
error = O (W,cxp) :

This proves the result since & can be arbitrarily small (and A arbitrarily large).

This proof can be extended to the case when A is complex, by deforming the integration
contour so that zA is real.

How to obtain a practical answer!/

The introduction of the coordinate ¢ is not always simple. If all that is required is a few
leading-order terms, then it is possible to proceed as follows (for ¢'(a) < 0):

b
er9(2) f(z) dx

a

Mb—a) d
/0 f(a+§)exp()\¢(a+r;—>); (w:a-}-—t):)

A(b—a) 9
L \:f(a) - %f'(a) + .. ] exp ()\d)(a) +td'(a) + T‘lz»t—)\—qb”(a) L ) %\i

& e s t Ap(a) té' (a) = dt
0 v - e

11



3.5.2 Intermediate Maximum (Laplace’s Method)

b
I:/ e’\"s(r)f(:c)drc .
Suppose that (a) Ierfa}%] @ = ¢(c);

(b) ¢'(c) =0, ¢"(c) < 0;
clrz=c+ i
(©) 3

The scaling (c) can be justified by expanding ¢ close to the maximum at = ¢

d(z) ~ d(c) + (z — e)d'(c) + —;—(:c - c)qu”(c) + é(:r: - c)sqﬁm(c) 4+

We introduce a rescaling such that A(z — ¢)? = ord(1), so that the decay of the exponential
occurs over an ord(1) scaled distance.

Ry t_,)c‘(n“)
L\
@ ‘C b P
Then
= [ (e e (e 55))
= — [ & _— €X C ——
M Jiameppd 2) X
1 A%(b—CJ f . t? "
= — fle)+ —f'(e) +. exp | A¢ —I— " : ... ) dE
7 o (e e+ e (3ot + 500+ Sram@) + )
s /\ / f(c qu(c) 12¢u(C) (1+O(/\ é)) dt_}_e\:p

%

12



Example: Stirling’s Formula

flz)=— ¢(z)=1loge

max ¢(z) = oo for 0 < <00
Method seems invalid! Write

T\ = / lexp(—:a: + Mog ) da
0 \___..\,——-—/

T

Let © = As.

o ds

T(\) = / = exp(—As+ Mog A + Mog s)
0

% , ¢(s) =logs—s
-1 ;5 e=l
§ =k . #)=-1

3.5.3 Stationary Phase

Let ¢(x) = ip(z), with (x) real. Consider

b
I(z) = f f(z)e™™®) da
Generalised Fourier Integral.

a) ¥ #0on[a.b In this case integrate by parts:
g p

SN O AV L A (O i DU
(z) = i)\zb’e WY € ®

_i[fa) e’Aw(a)__ﬂ_blei»\w(b)] i b(,f_)’eiw
A [w'(af ¢'(b) ' /\fa % e

13
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Riemann-Lebesgue Lemma

b b
/ f(z)e?* de — 0 as A—=oo if / |f(z)| dz exists .
,/\/\}\/\%Qv[“ ocigjinal

A \ w1
lﬁ%ﬂd ¥ U(\\JAU(‘JHUHU”U“\}”UA\% ~ on N ool lage osallabos becous
| waoe \r'&f"d, onvd  ots counced ot .

AY, UCP\_}CA&WA - Cane (), bekow, ilere 4 ey al

' & ot ?oﬁu\}.

Generalised Riemann-Lebesgue Lemma

I(z) =0 as A— oo,

if (a) |f(z)] is integrable,
(b) % () is continuously differentiable, and
(c) ¥(z) is not constant on any subinterval.

J satisfies the conditions for the generalised Riemann-Lebesgue Lemma if f(z)/¢’(z)
is smooth; hence

L) v _ SO) v
I@~3 v@° ()

If we can continue to integrate by parts, we can obtain higher order terms.

¥’ =0on[a,b] Assume a unique zero at = = ¢:

11),(6) =0, d’”(c) #0.
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B

(b—c)A% y y dy
Hz) = c—l——l)ex (i)a,b(c»&—))—
( ) /(a—c))\]ﬁ f( Az g - /\%

(b—c))\%zoo ; 5 .5
= /( 1 [f(C) Ai%f-"(c) +.. :l exp [1/\¢(C) = 2 %w"’(c) a2 zi_%"-bm(c) 4

a—c)AZx—oo '
_ f/\(c) SA() /: exp (Elbﬂz.c_)_-‘fi) dy (1 +0 (,\—%))

substitute y = ( : ) t, s=sgn(y"(c)]

3=

[N

4" (c)| ‘

9 % (o7} I é{—a o

L . tAg(c) ist? dt B o . .
(A |¢'”(C)|> flee /;ooe e 2 B g o (¥ - fa.-.
i L :
r3eiem/d by contour deformation

27 3 . . - ™

~ ()\ |¢H(C)I> f(c)exp (2)\1,[)((3) + isgn [y (c)] 4) ;

T leading order; next order approximation

can come from end points, etc.

Note that one can tighten up the ‘proof’ by changing variables at the start:

$(@) = ple) + (Y

3.5.4 Steepest Descents

This is a method for estimating integrals of the form

Jas f f(2)e*? dz |
c

where C is a contour in the complex z-plane, f and ¢ are analytic functions of z, and A is
complex.

(a) The idea is to deform the contour and then use Laplace’s method or Watson’s Lemma.
Let & = u + v.

Then (1) Uz =wy, Uy =~ Cauchy Riemann
(i) VZu=0=V?.

15
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u(x, y)

Figure 3-13 Topography of the surface y = Re f(z) near the saddle point z,, for a typical function f('z). The heavy
solid curves follow the centers of the ridges and valleys from the saddie point, and the dashed curves
follow level contours, v = u(x,, y,) = constant. The curve A4’ is Jthe path of steepest descent
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(b) From stationary phase we have seen that rapid oscillations can cause cancellation.
This makes estimation of the integral difficult and in particular means that the dom-
inant contribution to I may not come from the part of C where R(A¢(z)) is largest.
We eliminate such oscillations by choosing a contour with

3(¢) = v = constant .
The Cauchy-Riemann equations imply that
Vu-Vv=0.

Thus the v = constant contours are || to Vu. It follows that the v = constant contours
are paths of steepest ascent/descent of u. [Note that we need the steepest descent
path to obtain ‘all’ terms of the series].

(¢) The major contribution to the integral I then comes from close to the ‘highest’ point
(w.r.t. u) on the contour. Those of you who already know about the method of
steepest descents need to remember this — do not just go for the nearest turning
point!

(d) For the case of an interior turning point (when it is appropriate to apply Laplace’s
method) we are interested in points where

R(¢'(z)) =u'(z) =0.
Since V2u = 0, these points can only be saddles:

A = uggttyy — (Uay)® = —(usz)” = (uzy)* < 0.
Example. Find an asymptotic expansion for

1
.y 2
I:/e‘)‘z dz as A — oo .
0

The leading-order approximation can be obtained by a stationary phase calculation
near z = 0. To obtain a full expansion try to use steepest descent contours. From

above
¢ =iz’ =i(z? —y*) — 2ay ,
u=—2zy, v=x2—y?.
Hence
steepest contours through z= 0: wv= 0, ==y, u= F2y
S.D. contour through z = 0: z = +y, u = —2y?
steepest contours through z= 1: v= 1, z==%/14y2%, u=F2y/1+y?
5., eontour through == 1: ! r= +/14y% u=—-2y/1+y?

16



j " ) !«
/ Lek Wmax =2 2 Then . -» O

The contribution from C3 vanishes as ynax — 00; thus

I= f e 4z + / e* 4,
Cl 03

« [ > i [ etre 9 ds

= (i) [ ey [TEE 0

0 2 Jo (1+1s)2
substitute iz2 =i — s

_(mNE w i e & (—is) T (n+ 1)
= [ ¥ -5 /0 dse™ ), niT (1)

The Local Contribution from a Saddle

S
7
- (\ - \w @ = coustaut,

< 5

al\

Close to the saddle at z = z,

B(2) ~ $(za) + (z — 25)¢'(25) + %(z — 224" (25) + %(z 23" () s

17



As in Laplace’s method introduce a rescaling such that A(z — ze)* = oed(1);

AG(2) ~ M(z5) + %¢"(zs)w2 +0 (3h)

z =25+

/\_151
A6(2) g, — Ap(ze)+ 16" (20)w? [ -1 dw
]Cf(z)e dz—/cf(zs)e (1+o(xt)) &

o\ 3
~ Ad(zs)
f(zs)e (/\qb”(za)) +....
by evaluating the integral using Laplace’s method on S.D. path.

The Airyv Function and Stokes Phenomenon

1 ,
AN = 5 Ce*\z—ﬁzs dz

C starts from oo with arg(z) = —27/3
ends at co with arg(z) = +2n/3.

A¢:©=Az—%z3

U — saddles at z, = £\2

B(z,) = ﬂ%)\% .

It is only necessary to go over the lower left hand saddle to go over the ridge separating
the fixed end points of integration.
Seek a local contribution from near the saddle. Write:
g )8 +i\Pw
L3

2 1
}\Z e §Z = —gA% — )\%+2Bw2 -+ Eg)\sﬂw:; %

18



arg (\) = dm/4

—
\c\ -:-'5355-:

The changing contour C for Ai when A\ is complex.

Confommons Convta @ Posthire vobeeg 4y e (A= - §3?)
Doted cunts : M{)Muﬂm 8 [ZQ_CA%_}E%E)



To apply Laplace’s method put 3 = _i;

2w A\d A% 18\2
o B
e~ 372 5
oy 1_48,\% larg A| < 7 .

e Consider complex values of A.

o Positions of saddles rotate anticlockwise. Saddles swap dominance at

2
arg(\) = % - 3N -

—2mi/3 2mi/3 only need to go over left-hand

e To go from valley at coe to valley at ooe

saddle up to arg A = 7.

e For arg A = 7w we need to go over both saddles:

M. B (g(—/\)%-l-%) . (%)

e For m < argA < 57/3 we need to go through the other saddle, but (%) is still an
asymptotic approximation. (When arg A = 57/3 the second saddle becomes subdom-
inant.)

e An example of the Stokes phenomenon.

19



Perturbation Methods 4. Singular Perturbation Problems:
Matched Asymptotic Expansions (MAES).T

These are mainly used for solving differential equations. They are often needed when
the highest-order derivative is multiplied by a small parameter. We will apply them to
ODEs, but they are equally applicable to PDEs.

4.1 Regular Perturbation Problems: An Example.

i
y' +2y +(1+edy=1, y(0)=0, y(E):[].
4.1.1 Exact Solution
1 —e(r—m[2) _: —&x
y:1+2[1—e sinz — e cos T
€
:(1-sin3:~cosx)+£[(w—g)sinm—l—mcosm]

211 = i 2 T\ g L2

— € COS$—81H$+2($-2) SIDIL-|—2.’E cosz| + ... .

4.1.2 Perturbation Solution

Try
y=vo+ey +€y +... .
Then
1 . . ™
Yo t ¥ =1, yO(U)—U, yO(-r)—)_Oa
T
yif‘i'yl :—25’6 ) 91(0):0’ Y1 (5) =0,
T
Yo + Y2 = —2y1 — o ¥2(0) =0, (5) =0
Hence

Yo=1—sinr —cosz ,

TN
Y, = (:c— 3) smz+zxcosc ,

i

) 1 o T 1,
y2:—1+cos:c+sma:—§(:c—§) MG 28 08 . 0

4.2 Singular Perturbation: Example.

ey’ +y' = —€e7", y(0) =0, y—0 asz— oo.

f Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam.ac .uk.
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4.2.1 Exact Solution

Limit e — 0, z fixed:
y~e T (1tet+el+...) . (4.1)

This expansion satisfies the boundary condition as z — oo, but does not satisfy the
boundary condition y(0) = 0.

The limit € — 0, with z fixed, is a non-uniform limit since
e7*/* < e™ onlyif |z|> meloge ;

hence we cannot put ¢ = 0 in (4.1).

For z small we obtain an asymptotic expansion by first setting z = &£, and then
expanding:
1
y~(1-ef)+e(l—e=¢)+¢? (1—6‘5—“552) +... (4.2)
Now

y(0) =040 +€20+... ,

y—>1+5(1—§)—|—52(1—§+%§2>+... as £ = oo.

‘Outer’ (¢ — 0, z fixed) expansion satisfies the £ — co boundary condition,
‘Inner’ (¢ — 0, £ fixed) expansion satisfies the £ = 0 boundary condition.

1

FEzercise: Put z =e¢2n in (4.1) and expand to O(e);
§=c"inin (4.2) and expand to O(g).
Compare the results.

4.2.2 Expansion Solution

Outer Approzimation. Pose a Poincaré expansion for z fixed (# 0) and ¢ — 0:

y= Y e"yalz) .
n=0

Then ;
yozﬁe"-x’ y0:A0+€—r,
Yo +y1 =0, yp = A1 +e77,
yr 1ty =0, y, = Apn+e7 7.

We wish to apply two boundary conditions at each order, but have only one unknown
constant. From comparison with the exact solution we choose not to satisfy the bound-
ary condition at ¢ = 0. From applying the boundary condition as z — oo, it follows
that A, = 0, and

y=e*(l+e+e’+...) . (4.3)

This is in agreement with (4.1).

o



Inner Approzimation. Since we wish to apply two boundary conditions, we need the
ey” term to be important somewhere at leading order. Note that

" ey
ey ~ ——
T — To)
( this suggests rescaling for (z — zq) ~ €.
g g

Hence try

T = &g +Et

y=3 Ya().
n=0

From substituting into the governing equation it follows that

Y +¥ =0 , Yo = Bo + Coe™ ¢,
Ylﬂ + Yl’ == _6_:60 3 Y.]_ = B]_ + Cle_E - geMIO .

Since we need to satisfy the boundary condition at « = 0, take zg = 0. Then

Yo=Bo(1-¢¢), i
Vi=Bi(l-e) ¢,

4.4
YQ:Bg(l—e_E)—f-f-%E?, (4.4)

Match.

We have two asymptotic expansions valid in « fixed, i.e. (4.3), and ¢ fixed, i.e. (4.4).
They must represent the same function in the intermediate region

e€r€l,lelwtxe?.

/

¥

—\ —30
o \f

: . :

J' f ] (

S A — X

Forcing the two expansions to be identical determines the B;. To this end introduce
an ‘intermediate variable’

nza%zal_aﬁ, O<a<l eg a=

).

B =



When n = ord(1), then as required ¢ < = <« 1. Expand both outer and inner asymp-
totic expansions in powers of 7:

Outer:  y~1 —e%n 4 fe?op? e ledapd 4 .
+ ¢ — gltay +elt2aln? 4
+ ¢? —etop 4.
[6]
+e+...
Frrr s
Tofigs  gredly  ~fop
+ebB, — €% + exp
bt By gty + 1e?*n?  +exp
7+ e

After reordering the expansions should be the same; hence
Bozl, Blzl BQ:].

Terms jump order when matching. This indicates that there are terms in the governing
equation that, although small in one region, are to be treated as dominant in the next
region.

2= 0() £ =0(1)
—ey' =e T4y y' +ey = —e7F
—— ——
small small

cominon term

Note that if the largest ignored term in the inner expansion, i.e. the O (¢(@*t1e) term,
is to be formally smaller than the last retained known term, i.e. the O (EQ) term, we
require
Q
Q+1

i.e. for ) = 2 we require % <a<l

<a<l;




4.3 Van Dyke’s Matching Rule.

This can be simpler than using an intermediate variable, but sometimes fails (beware
of logs).

Notation

E,y = Outer limit (z fixed, € | 0) of y retaining n terms = Z e"yr(z)

r=0

Hony = Inner limit (¢ fixed, e | 0) of y retaining m terms = »  &"Y;(z)
r=0
Van Dyke’s rule is
EnHmy = HynEny .

T Take (m + 1) terms of the inner expansion, re-express
¢ in terms of z, and then take (n + 1) terms of the

resulting expansion.

Forcing equality determines the unknown constants. We illustrate this using our model
problem:

EiHiy=E (Bo(1—¢ %) +eB; (1 —e™%) —&f)

= By (Bo (1 - e—fff) +eBy (1-e72/) - 27)
=By—xz+¢eB; ,

H\Eyy=H; (e + Ee_m)
= H,y (e_EE + ee™%¢)

=1—-ef+e¢.
Hence
B0—$+EB1:1-— 55 +5,
——
T
and
BQ—].:B:[

Ezercise: Do for general m and n.

4.4 The Choice of Scaling.

There 1s no magic law that enables one to make the correct choice of scaling. However,
there are tips:T

T Ina forest, a fox bumps into a little rabbit, and enquires, ‘Hi, what are you up

5



(a)

First find ‘the’ regular solution:

y=yo=yo+ey +&y2+...
If for some z it happens that, ey; ~ yo or e2y; ~ ey or ..., then the solution is
no longer asymptotic. This often suggests a rescaling for z. For instance suppose

that the regular-perturbation solution yields

2e Te?

(z — z0)? = (z — zo)

4

This breaks down when (z—zg) ~ 3, which suggests that an appropriate rescaling
would be z =z + £2£.

Look at the equation and see if one can predict the scaling from there, i.e. seek
distinguished limits. For instance consider the problem

($+Ey)'—y+y:1, y(l) =2.
dzx

This has the leading-order (i.e. € = 0) solution

d 1
mﬂ—l—yozl, Yo =1+ —. (4.5)
dr b

Now, using(4.5), compare the size of the terms in the equation:

y ey’
1(—) ; oy
e —

x
comparable when y ~ =

Hence the neglected term is comparable with the largest retained term when

p 1
%N 2, 1.6 when @ ~g3,

to?’.

‘I'm writing a dissertation on how rabbits eat foxes’, says the rabbit. ‘Come now

rabbit, you know that’s impossible’, replies the fox. ‘Well, follow me and I'll show you’,
says the rabbit. They both go into the rabbit’s dwelling and after a while the rabbit
emerges with a satisfied expression on his face.

Along comes a wolf who asks, ‘Hello, what are you doing these days?’. ‘I'm writing
the second chapter of my thesis, on how rabbits devour wolves’, says the rabbit. ‘Are
you crazy! Where is your academic honesty?’ explodes the wolf. ‘Come with me and
I'll show you’, says the rabbit. As before the rabbit comes out of his dwelling with a
satisfied expression on his face, and with a diploma in his paw.

Switch to the rabbit’s dwelling to find a huge lion sitting next to some bloody and furry
remnants of the fox and the wolf. The moral: it’s your supervisor that really counts.

6



4.5 Where is the ‘Boundary Layer’?

The ‘boundary layer’ could be anywhere! One way to try and track it down is to look at
regular solution and see where it breaks down. However, this method does not always
work, as illustrated by the following examples.

Ezample 1. Consider the problem
ey —y=0, y0)=y(l)=1.

For £ > 0 this has solution

1— e—l/a% 1 1
y = . I:e—.r/sz + e(.r—])/.e?] .
1 — e 2/e2

There are boundary layers at both z = 0 and = = 1.

Now consider the case ¢ < 0. This has solution
sin (3:/ |z-:|%) — sin ((m - 1)/ |£|%)
y= : 1 .
sin (1/ =] 2)

Crus

3 s l:ad\U“ ﬂaﬁl"’"
" wiiole dowmain
{‘ \
U VA V20 V A ‘ e

In this case there are boundary layers everywhere. What happens if sin (1/ [E|%) = (}¢

Ezample 2.
- f(fF-1)=0, floo)=1, f(-00)=-1.

7



= K f(f*=1)=0, hence f=-lor0Oor+l

m

e#0 : the exact solution is f = tanh (i—) : (4.6)
| £
| (ﬁ'é}

/ ;

u-L—- — taner No‘yﬁov\ \S

(s wetesor

There is a boundary layer in the interior of width O(e). Within the ‘boundary layer’
€2fff Nf(f2 ”—1) 9
i.e. the boundary layer is confined to a region where (x — zo) ~ €.

Ezercise: Is (4.6) unique?

4.6 Composite Expansions.

The outer solution in (4.3) fails as ¢ — 0 due to the missing e~%/¢ term.

6?1£7l

-~ terms.

The inner solution in (4.4) fails as £ — co due to the missing

By correcting either one we can obtain a uniformly valid asymptotic expansion called
a composite ezpansion — this is useful for real answers/comparison with experiment.

It takes little effort to obtain the composite when using Van Dyke’s matching rule —
just use the composite operator:

Cnmy = Eny 7 Hmy = EnHmy .
Note:

Encnmy = Eny 5
HpyCrmy = Hay .

For the example we have been considering
cny = BY + "9

£, My
Cry=(e"+ee™®) + ((1 —e_I/E) +e (1 - e_"’/s) f:c) —1+z—¢

=(14¢) (e_‘r == e—"‘/":) "

(i) This is correct to O(e). Such expansions tend to be accurate to O (gmintm.n)y,

(ii) The expansion is not of Poincaré form — so it is not unique.
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Other rules exist, for instance multiplicative composition:

EnyHmy

Cnmy = EnHmy

Alternatively, suppose that F is a sufficiently smooth functional with an inverse, then
a composite expansion can be defined by

Cloect) == B {F(Eny) + F(Hmy) — F(EnHmy)} .

Additive composition corresponds to F' = 1, while multiplicative composition corre-
sponds to F' = log.

4.7 Matching Involving Logarithms.

4.7.1 Model equation

We consider a model equation which can be thought of representing heat conduction
outside a spherical cavity with a weak nonlinear heat source. The equation can be
written in two forms. In the first form the small parameter € occurs in the equation

frr—f—(nT_l) frteffr=0 , f(1)=0, f—=1 as r—o0, (4.7q)

while in the second form, with p = er, € occurs in one of the boundary conditions

fpp+(n—;i> fotffo=0 ; fle)=0, f—=+1 as p—oo. (4.7b)

4.7.2 The casen = 3

First seek a regular expression (r fixed, ¢ | 0):

flr,e) ~ fo(r) +efa(r)+... .

Then from substituting into (4.7a) we find that

)

2
0. 1 =
< 0+'7:f0—0,



fo=1—-, fo(1) =0, fo—1 as r — oo;

= 5 () = ~fofs-

On integrating and applying f2(1) = 0, we obtain

o= 4 (1 - %) ﬁlnr(l + %) | (4.8)

The boundary condition at oo, i.e. fo — 0 as r — oo, cannot be satisfied for any choice
of Ay. As a result the expansion cannot be uniformly asymptotic at large r. In fact for

r> 1

€
o ™~ T3 > Efoc’)"‘r_.a_-

Hence the O(¢) term is no longer a small correction to the equation when

i
r=0 (—) .
€
Since efy ~ In(1/e) when r = O(e™!), we try the asymptotic sequence

1, gln(lfe), & ::s+

Note that we can view the In(1/¢) term as coming from the particular integral:

== [ 5 [ frono.

—> 00

Asymptotic expansion for r fized and € | 0. Try the Poincaré expansion:

f~foteln(l/e)fi+efa+..., fi(1)=0. (4.9a)

Substitute into (4.7a) and solve:

o fo=(1—%> ;

eln(1/e): The same linear equation is obatined as for fy, hence

h=4 (1—%) ;

This is the same as (4.8), viz.

f2:A2 (1“%)—1117'(14-%) s

The constants A; & A are to be determined by matching.

n
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Asymptotic expansion for p fized, and € | 0. Try the Poincaré expansion:

f~1+eln(l/e)gi(p) +eg2(p)+... s gjlo0)=0. (4.90)

We obtain the same equation for ¢; and gs:

2
g7 + ;9}+9} =0,
/4
(p*e?gf) =0,

C)Oe—'r
ngij sz, _g]'(oo):o.

p T

Match by ‘ntermediate variable to fix Ay, Ao, By & B;. First observe that

g T 1 1
/ d’rw;—l—(lnp+’“{—1)~§p+0(p) as p— 0.
p
Introduce n = e%r = £*~1p, with 0 < a < 1. Take the limit of n fixed, ¢ | O:

(4.9a) f~1 = +... -l—z-:ln(l/E)Al(l —i)+...

EO’
n 7

+5[A2(1—%) - (aln(l/e)-l—lnn)(l—i-%) +] TR

(6]

a—1

(4.9b) f~1+51n(1/5)BI[6 +(a-1)1n(1/s)+1m;+(7—1)+...]

m

—}—(a—l)ln(l/s)-i-lnn—i-(’)f—l)-i—..w Fass s
6] [6]

Make the expansions agree:

@
P : 1=1; * ot
e ln(l/e) 0=8 7 B =0;
e : —1=B,, By = —1;
e(ln(1/€))? : 0=8;, consistent ;
eln(1/e) 2 A —a=(a—-1)B;, My =1
€ : Ay —Inn=B;lnn+(y—-1)By, Ay =1—+.

11



Hence

r fixed: f~(1=-1%)+eln(1/e)(1-7) +E((‘1 —y)(1=1)—Inr (14 %)) +.oy

p fixed: le—E/ ezd'r....
i T

Match using Van Dyke’s rule.

Identify E and H with the coordinates r and p respectively. Then

H\E:f = H, [(1 = %) + eln(1/€) A; (1 _ %)]

= 1+61I1(1/E)A1 5
E1H1f=E1(1+6111(1/6)31/ e " d—T>
. T
=1+ —B;—lln(l/e) —¢eln®(1/e) By + Bieln(l/e)(Inr + v —1) .

If these two expansions are to agree then A; = 0 and By = 0, which is WRONG. The
trouble is a In p in the ¢ term when p = O(1) — this changes to a eIn(1/¢) term in the
intermediate scaling.

In general, terms like (Inr)? lead to failures near to the diagonal where [n —m| < p.
However, in general there is success sufficiently far from the diagonal, e.g.

Ha B = 1 4 eln(fajds — < |
p

E1H2f:E1 <1+(€1H(1/E)Bl+532)/ 61_2 dT)
p
1
=1+~ (BiIn(1/e) + Bz) —eln(1/e) (In(1/¢) B1 + Ba)
+eln(l/e) By (Inr+v—1) ;
so By =0, By = —1, and A; =1 as before.

It is best to apply Van Dyke’s rule (and composite expansions) only at changes in the
power of e:

1 eln(1/e) 5 e21n*(1/¢) e?1n(1/e) g2
T T 1
Apply Van Dyke’s rule only at the arrowed orders — DO NOT SPLIT LOGSY{ .~ 4 /
4.7.3 The casen =2 ‘

In this case the governing equation is

f'r‘?'"'%fr‘i"fffr:oa f(l)ZO . f—)]. as =3 00.

12
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Try a regular expansion, f ~ fo +¢f1 +...; then
1
60: 6’+;f6=0 y fo=A0].IlT‘+CD.

No choice of Ag or Cy will satisfy the boundary conditions both at » = 1 and as r — oc.
Choose to satisfy the boundary condition at » = 1, i.e. set Cp = 0.

1
e {"i‘;f{:—fofc') , fi=Ailnr+C; — A% (rlnr —2r +2) .

Again satisfy the boundary condition at » = 1 (i.e. f1(1) = 0) — this time by setting
C; = 0. Note that if Ag # 0, then f; has even worse behaviour as r — oo than fo.
By comparing where the expansion for f becomes non-asymptotic, it follows that we
should introduce p = er as the stretched variable.

Note that when r = O (1),

E

fg (a4 AD 111(1/6) :
Since fo ~ 1 as p — 00, this suggests trying Ap = m, and the asymptotic sequence

1 1

1, { T
In(1/e) (In(1/¢))

Asymptotic expansion for r fized and ¢ | 0.

We propose the asymptotic expansion

fi(r) i fo

f(r,e) ~0 = (4.10a)
In(1/¢)  (In(1/e))
Then .
f: +-f,=0, and fo=Anlnr.
r
Note that the eff’ term never enters into the expansion.
Asymptotic expansion for p fized and € | 0.
In this case we propose
fare Bl el (4.100)

In(1/e) (In(1/e))*
Then

1
gi’+<;+1)gi=0,

oo e—r
g1 = 31/ dT = BlEl(p) 3
P

T

1
g2 + (; =+ 1) 92 = —9191
92 = B2Ex(p) — B} (¢7?E1(p) — 2E1(2p)) -

13



Match using the intermediate variable
n~e*r=e*"1p (< agl),
and the asymptotic expansion

Ei(p) = —v—lnp+p+0(p?) as p—0.

Then
1
(4.10a): f~ (1/ )./-‘11 (aln(l/a)-l—lnn)—l—m/ig (aln(l/e) +1nn) +...
| (4.11a)
(4.100): le-*—ln(li’l/E) (—(a=1Dn(l/e) —lnp—y+e " n+...)
1
— [ By[-(a—1)In —Ilnn—
+(1n(1/6))2(3[( 1)ln(1/e) ~lan — v+ ..
+ B? [—(a — 1)In(1/e) —'y—lnn—ln4+...]> : (4.11b)

On equating equal orders of ¢ we find that
lno(l/s): ady=1—(a—-1)By,

—_ if this is true Vo then By = —1, A; = 1;
In'(1/e):  Ailnn+ady =—Bi (Inn+7)—Bz(a—1)=Bi(a-1),

— if this is true Vo, n then By = —(1+ ), A2 =17.
Match by Van Dyke’s Rule (if you must).

Put @ = 1 and n = pin (4.11a), and @ = 0 and n = r in (4.11b). Then Van Dyke’s rule
gives

EsHo =1, HoEo =0, WRONG ;
E\Hy=1, HoEy = Ay, A =1,
E(]Hl:l—i-Bl, HIE():O, 31:—1
Similarly
E\H, = B, — 1
1Hi =1+ 5B, (1/)(nr+*r)
1 A1 WRONG;
np 1inr
o ( " (1/5)) In(1/2)
E.H,=1+B Inr+7) ,
1 = g o)
Ailnr Ay
HiE,=A (Ayl A .
3 1+1n(1/5) o+ o) = L7y Y mi/e)
hence

As before, Van Dyke’s rule works if n # m.
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4.7.4 A ‘terrible’ problem

Consider the equation with n = 2 plus a new term:

frot 2fok f2effo =0, f1)=0, f=1 as r-oc0.

First compare the size of terms using the solution calculated in §4.7.3:

1 1Y .-
r = ord(1), g In(1/e) fe = (111(1/8)) L In(1/e) ’

— ord(1 1 : ’ﬂ”( : >2 ~ 0
p =ord(1), J o J fpwln(l/a) 2 R In(1/e) )’ Tow In(1/e) -

From this comparison of terms we might expect a small perturbation to the previous
answer.

Asymptotic ezpansion for r fized.

As in § 4.7.3 propose the asymptotic expansion

1 1 1
Fi+ 5 f2 + sfa+.... (4.12a
In(1/¢) ' (In(1/¢)) (In(1/e)) ’ )

The from substituting into the equation we find:

f~

1

In~'(1/e):  fi+=fi=0 , fi=Alnr,
r
1

In"%(1/e): g = " , fa=Aylnr—14%210%r,
r

In~*(1/e); Y+ Ef;, =-2fifs s fi=A;lnr+3A}Iln*r—A 4, In"r.
r

By induction, one can show that as r — oo,
n 1 nij.n n—2 n—1
fo ~ (=) _EAI In"r4 Ay Ay In" "0 ],

and hence by summation that

( Ay Ay ) ] .
1+ + Ay f JLE as T — 00 .
In(1/e)  (In(1/e))

Lemma (for future reference).

f~In

Instead of adopting the above approach, ignore §4.7.3 and assume

= fgds e in s

Then i
6’_|_;f6+f62:(} = fo=hh(l+Alnr) if fo(1)=0.
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If A= O (In"'(1/e)), this suggests that the natural variable is

Inr
. 4.13
In(1/¢) ( )
Asymptotic ezpansion for p fized.
In this variable & does not appear in the equation:
1 2
fpp'*_;fp'l'fp +ff,=0.
We pose the Poincaré expansion:
[N D R S (4.120)

In(1/e) (In(1/e))’

Substitute, equate, etc:

1
In~!(1/e): g7 + Egi +g¢1=0,

00 o—T
gy = Bl] - dr (setting g1(o0) = 0);
p

- 1 _
In=2(1/e): g = ByEy(p) + B} (2E1(2p>— L B2(p) — e ”El(m) .
As p — 0 we have

91~ By (=lnp—1),

1 1
gy~ By (=Inp—7)+ B (~;1n29~(7+1)1np—§vzﬂ7—1n4> :

The leading-order behaviour as p — 0 comes from the balance

1 ., B?
" ! ! 1
g ,_l.._g ~ _g ~ o—_—,

2 p 2 1 PZ

Similarly we can show that for small p

1 In
o+ 2gh ~ _2gg} ~ —2B? p_f — (2B¥(v+1) + 2B, B,)

1
gy ~ _EB% In®p— (B} (v+1)+ B,B,) In%p .
By induction it is possible to conclude that as p — 0
1 n e = n—
g~ —=BIn"p— (BMy+1)+ B} %B,)In" ' p.
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Match using the intermediate variable

n= EGT’ :pé_ofwl )

Then

(4.12a) :  f ~ A; (aln(1l/e) +1nn)

L
In(1/e)

1 1 2
% ! (H)nﬂA”( In(1/¢) +lnn)" + + :
W i/e) | n 1 (aln n .
4.12b):  f 1+——J—%—[—( —Din(l/e) —lnp—~+...]
(4.12b): B a—1)In(l/e nyg—=4+...
1 B? ,
S [—7 (((a—l)ln(l/e)—l—lnn) +) +} ¥
LB (o m mn(y/e) tam)m |
+1n"(1/s) — 0 Ug n(l/e nn EE B
Equate these two expansions. At leading order
0 1 90,1 3,3 1o 2
In"(1/¢): aAl—ia Aj +§a ;‘-‘11—}—...:1—Bl(oz—1)—§}31 (a—1)"+....

or from summing the series
In(l4ad))=14+h{[l-(a—-1)By] .
This must be true Va, hence
e(l+B;)-1=0 , A1 +eB;1 =0,

1.e.

Blz—(‘?;l) . A= (e=1).

Note that in matching an infinite number of terms jumped order — hence the need for
general expressions for f, & gn.

Is there an easier way?

Recall from earlier that a natural variable is

Inr

In(1/e)

g (4.14)

Note that
{fr=1}={t=0} ,
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and that

k
p = ord(1) when 7= " for k=ord(1),
l.e. when ok
=l for k= ord(1).
" In(e~1)

finite value

Let 7 = 1 —t, so that p = ord(l) when 7 = ord(In"!(e71)), and substitute into the
equation:

oo+ f2=—In(1/e)e ™"/ ff

Seek a Poincaré expansion for 7 > 0 (so that the r.h.s. is exponentially small):

f=fi+—7—=

,. s (1/ yfite (4.1}

then
fO'r'r + fgr =0.

If we require fo(1) = 0, then
fo=log(l+ag(l—1)) .
We need to match with the outer solution that is valid for p = ord(1), ie. for
r =ord(In"?(¢71)). Since
Inl/r  Inl/p
In(1/e) In(1l/e)’

r=1
introduce
s=Inp=—(In(l/e))r

and seek an expansion

Gi(s) |, _Gals)

Fe In(1/e)  (In(1/¢))’ .
As before .
Gl = Bl/ c dr 5
w7
Gy — By (—s—~v+...) as 8§ — —o0o.
Now try matching by Van Dyke’s rule using s = —(In(1/¢e))7:
HyE  f = Hy [log (1 + ag + 1/ )>] =In(l 4+ o) + T aj())fn(l/c)
EH,f = By [1+ ol ((ln(l/E))T —q+...)} T .
In(1/¢) In(1/e)

Hence, as before,
1—e

€

Ofo:E"—]. y B:L:

4.7.5 Strained coordinates

The method of strained co-ordinates is a better, but less general way, of solving certain
singular perturbation problems. However, usually such problems can also be solved
either by using MAEs, or by means of the method of ‘Multiple Scales’.
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Perturbation Methods 5. Method of Multiple Scales.

MAE: Two or more ‘processes’ with different scales; processes act separately in dif-
ferent regions.
MS : Two or more processes each with own scale; processes act simultaneously.

Multiple scales is a useful technique for a number of problems. For instance, it underlies
much of the theory of ‘ray-tracing’.

One of the simpler, if important, uses of multiple scales is to describe the evolution of linear
waves through slowly varying media (e.g. sound waves through the atmosphere). For such
examples, the different scales are often immediately apparent (e.g. the wavelength of sound,
and the depth of the troposphere). For further discussion of such problems see the Waves
and Stability course.

We will concentrate on nonlinear problems where the need for two (or more) scales is
necessary, but not immediately apparent.

5.1 Van der Pol oscillator.
The Van der Pol oscillator is described by the equation

iF+ex(z?—1)+z=0, 120, (5.1)
| —
nonlinear friction

—ve: |z|<1
+ve: |z|>1

Typical initial conditions are z =1, £ = 0 at ¢+ = 0. Solutions are found to tend to a finite
amplitude oscillation, during which energy losses when |z| > 1 are balanced by energy gains
when |z| < 1.

5.1.1  Regular perturbation.

Try

D=0 F EL] Fwuus «
Then at leading order
Tot+xz0=0 = 129 =cost.
At the next order

1+ a1 = $o(1 —:rg) = —sin’ ¢

= —i—sint—l— isin3t ,

T Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam.ac.uk.
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and

tcost —sint) — == (sin 3t — 3sint) .
32

|

Iy =
Note that the expansion loses its asymptoticness when
ez; = ord(zg) i.e. when ¢=ord(1) .

The ‘problem’ is that the e-damping term slowly changes the oscillation amplitude on a
time scale of ord(e™!) by the slow accumulation of small effects.

5.1.2 Moultinle scales ezpansion.

The oscillator has two processes:

Harmonic oscillation on Slow drift in amplitude (and possible

time scale of ord(1). phase) on time scale of ord(s™).
yal—a T =c¢t

The ‘fast’ time scale. The ‘slow’ time scale.

We treat 7 and T as independent variables:
o the rapidly changing features are modelled by 7,
¢ the slowly changing features are modelled by T'.

Hence we seek a solution with the form
wltie) = g(7,T;€} ,

where the two variables are introduced as an artifice in order to remove secular effects. We
use the chain rule to compute derivatives:

d a 7]

= a(tie) = 5-(r, Tse) + e 55(r, Tie)
i=a;, +2z,7+ T .

We now seek an asymptotic expansion of the form

w =aeln T + ezl T) e s

and require the expansion to be valid for T = ord(1), i.e. ¢ = ord(¢~!). Then at leading
order

e%: Torr oy =0, +20,

ga=l ; Zer=0, af t=0.

2



This has solution

Tg = RO(T) COS (T + GO(T)) ?

where, in order to satisfy the initial conditions,

The functions Ry and 6y are not fixed at this stage — we need equations for them. At next
order we have that
C—'l: Tyrr + Ty = —Zpr (x(z) - 1) - ?‘wOT’T
= 2R cos (T + 6p) + (2R0T + iRg - Ro) sin(7 + 6o)
+ 1R} sin3(7 + bo)

together with the initial conditions
T =0 3 T1r :—.TUT:—RQT at t=0.

The solution is

1 = Robor Tsin(7 + ) — % (QROT + iRS - Ro) 7 cos(T + o)
— 55 REsin3(r + 6o) + Ry sin (7 + 6:(T)) .

However, the asymptotic expansion will not be valid for 7 = ord(e™!) unless
Robor =0 , 2Rep+ %Rg —Ry=0. (5.2)

This is the ‘secularity’ or ‘integrability’ condition of Poincaré. Using the initial conditions

we deduce that 5

bo=l , Bo=m———71-
(1+3e~T)2
In particular note that Ry —+ 2 as T' — oo.

It follows that the solution for z; becomes
z1 = Ry sin (1 + 6:(T)) —;%Rg sin 37 ,
while the initial conditions for R; and €; become

R4(0) sin(6:(0)) =0,
R1(0) cos (6:(0)) — & R3(0) cos (361 (0)) = ~ Rz (0)

1.e.

6:(0)=0 , R:(0) :_% .

The equations governing R; & 6, are determined by the secularity condition for the z»
problem. However, we then find that there is insufficient freedom in R; and 6; to avoid
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breaking the asymptoticness when T' = ord(1). This problem can be avoided by introducing
a super slow time scale, T, = g%1.

o Alternative approach to deriving (5.2). Instead of solving explicitly for =y, we could
use a condition that requires z; to be periodic over the time scale 7. For instance, we
could require that (cf. inner products and Sturm-Liouville operators)

COS

27
/ (177 + 1) S0 (7 + B) dr =0,
0

i.e. that

2w
/ (2o, (23 — 1) + 224,7) e (r+to) dr.
0

On performing the integrals, (5.2) is again recovered.

5.1.3 A simple exzample of super slow time scale.

Consider the exact solution to the equation
r+2ex+zx=0,

l.e.

b=

x=e"*" cos((1—e?)

t) .

This has:

(a) an oscillation on the time scale t = ord(1),

(b) an amplitude drift on the time scale ¢ = ord(¢™!), and
(c) a phase drift on the time scale t = ord(c™?).

In general. when working to ord (ek) on a time scale ord (sk_"'), one must expect to have
a hierarchy of n slow time scales.

5.2 Mathieu Equation.

As a further example of multiple-scales consider solutions to the Mathieu equation:
i+ (w2+£cost)y: 0.

The coefficients are 27-periodic. This equation describes the small amplitude oscillations
of a pendulum whose length changes slightly in time. If the natural oscillation frequency
is near a multiple of half the forcing frequency, then the amplitude of the pendulum will
increase in time. This is an example of parametric excitation.

4



5.2.1 Floguet Theory (for second order ODEs).

First note that, since the coefficients of the Mathieu equation are 2r periodic, if y(¢) is a
solution, then y(t + 27) is & alsozsolution. Further since the equation is second order, we
can write the general solution as

y = Ayi(t) + Bya(t) .
Combining these results we see that
yi(t +27) = a;yi(t) + Biya(t) ,
and hence

y(t +27) = (Aay + Bay) y1 (t) + (ABy + Bp2) y2(t)
= Alyl -+ nyg .

(5)-62)6)

In matrix notation

Suppose (A, B) is an eigenvector of P with eigenvalue A; then
A'=34 . B'=)B,

and

y(t+27) = Ay(t) forallt. (5.3)

Let 4 =InA/27 and define
o(t) = eHyt)
Then from (5.3)
p(t+27)=(t) forallt,
and hence

y(t) = e'olt) ,

where (1) is a 2n-periodic function. The solution is said to be

unstable if  R(y) > 0, and
stable if  R(p) <0.

In the case of the Mathieu equation, if y(¢) is a solution, so is y(—t). Thus for stability we
must have Re(yu) = 0.

It is possible to show that there are regions of the (w?,¢) plane where solutions are stable,
and other regions where solutions are unstable. We will attempt to find the ‘stability
boundaries’ when |¢]| < 1.



5.2.2 w#n/2.

Try the Poincaré expansion
y=go(t) +eya(t) + 2pa(t) + ... .

From substitution into the Mathieu equation we obtain:

e o +w’yo =0,

1.

>
~ .

i +w?y1 = —yocost .
If we seek a real solution, then

Yo = Ag exp (iwt) +c.c.,

and
i+ wly = —1 49 exp (i(w - l)t) — %Ag exp(i(w - l)t) +c.c.

It follows that there are ‘secular’ terms if w £ 1 = Fw, ie. if w = F; (without loss of
generality, henceforth assume w > 0). Further, it is possible to show that higher-order
terms are secular only if w = n/2. Thus if w # n/2, we can solve at all orders to show that

y(t) = exp(iwt) (1) + c.c. ,

where ¢ is 2m-periodic.

We conclude that for ¢ < 1 and w # n/2, the solution is stable.

52.8 |w?—1]«1.
w221+6a1+820‘.2+...

However, from §5.2.2 it follows that resonance will only occur at second order. Hence if
a; # 0, we expect there to be no instability; thus we set a; = 0.

¢’ . 1% harmonic
el 0th & 274 harmonics
¢2 : 1%t & 3™ harmonics

can force resonance

This suggests that we should consider an ord(¢7?) slow time scale. Try

P e
y=1y(7,T)+ ey (7, T) +52y2(T,T) . S

Gl —y

6



At leading order the governing equations is

50: yOTT+yO:01

with solution

yo = Ao(T)e™ + c.c. .

At next order
el Yirr T Y1 = —YoCoST

= —%AQ(EZiT +1) +c.c.,

with solution
1 = —%AU + %Aoezir + ¢.c. 5

where any homogeneous component can [usually] be absorbed by a suitable redefinition of

Ap. At next order

2
6% i Yorr + Y2 = —2YorT — G2Yo — Y1 COST

= (—21AOT + ('é— = Ct.z)A.o + i.{io) GiT = 1]—2Ao€31T + .G

For asymptoticness not to be lost when T = ord(1), it follows from the secularity condition
that

28r+(F—a)a=0 , 2ar+ (& +a)p=0,
where 4y = a + ifJ. Hence the oscillation is unstable on the slow time scale T if
({7 —a2) (F +a2) >0,

1.e. if

5.3 WKBJILG' Theory.

This theory is concerned with asymptotic solutions to equations with slowly varying coef-
ficients, e.g.
i+ flet)z=0. (5.3)

Its generalisation to two or more independent variables is called ray theory.

T Omit the J if not in Cambridge; omit the LG if a physicist.
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5.9.1 Leading-order solution -

Initially assume that f =w? > 0, and seek a multiple scales solution:

=1, T =&

w= ofr,T) = wgir,T -|-E.’L‘1£T,T) +....
Then at leading order
Torr + Wi (T) 2o =0,
with solution
zg = Ro(T) cos (w(T) T + 6o(T)) .
At next order

2
Tirr +W'T1 = —20pr

= 2(wRo) 7 sin(wt + 6y) + 2wRy (6o + Tw) cos(wT + bg) .

The secularity condition implies that

e}

0r(T) = —twr(T) ,

but this is ‘impossible’, because the fast variable appears in the ‘drift’ equation for the slow
dependence. In some sense we want ‘0 to be larger’. Instead we try

zo(1,T) = Ro(T) cos(8(T)) ,

where

0= 100(T)+01(T) +... ,

so that small variations in Og produce O(1) changes in 8. Since
Or = O + 017+ ...,

it follows that
(@)

7
T = "*Rosle sin 6 + E(ROT cos @ — Ro©Oy7sin 9) + ..,
%o = —Ry@p cos 8 — e((2RyrOpp + RyOppr) sin 8 + 2R, 0,70, cos ) + ... .
On substituting these expansions into (5.3) we find that

2 2 .
Oor=w”, le. Gypr=w,

8



where w > 0 wlog. On applying the secularity condition to the equation for x; we obtain

2R0©® 1700 =0 0y =const.
2RorO07 + RoOorr =0

Rjw = const.

Note that while the ‘energy’ E = 1 RZw? is not conserved, the ‘action’ E/w is conserved.
Hence the multiple scales solution has the form

T ~ W (acosf + bsinf) (5.4a)

where a and b are constants, and

= /O e T dg .

A similar analysis is possible if f < 0, except that exponentially growing/decaying solutions
are found rather than harmonically oscillating ones. In particular

1 = B
T T T (Ae? + Be™%) (5.4b)

where and A and B are constants, and
t 1
@ =f [—f(eq)] 2 dg .
0

In order to obtain higher order approximations, at first sight it might appear that super
slow time scales, T}, = £"t, are needed. However this is not so because of a dirty trick (see
the last example sheet).

5.3.2  Turning points

What if f = 0 at some time? The solutions (5.4) are then singular. In order to investigate
this case, we assume without loss of generality that f(0) = 0 and f'(0) > 0.

We recall that when et = ord(1), we have (5.4a)as solution for ¢ > 0,
(5.4b)as solution for t < 0.

In order to have a complete solution we need the relationship between (a,b) and (A, B). To
this end we observe that when |et| < 1, then

T+etf'(0)z=~0.
Therefore, all times are of a comparable scale when

1
L nef Ot =t~ (ef(0)7F.



Thus we introduce ‘medium time’, 7, defined by

F = —t(ef(0)7

and scale by
1

T = —lfg + ...,
€6
The leading-order governing equation is then Airy’s equation,

Torr —TZ0 =0,
with solution
To = a Ai(F) + B8 Bi(7) , (5.5)

where o and [ are constants.

This solution must match with those valid when ¢ = ord(1). First we match to (5.4b) as
7 — oo and et — 0—. From the asymptotic expansions for the Airy function, etc.

(5.5) Tg ~ ;(%aexp ( s %1’-%) + Bexp (%%%)) ,
(54b) oL 1
[—etf'(0)]®

where

Hence from matching

e A I} B

Qﬁ - [f.r(o)]lfﬁ’ Hﬁ - [],_,,(0)}1/6

Note that the determination of B this way is ‘dangerous’ since that part of the solution is
exponentially small in (5.4b).

We can similarly match as 7 — —o0, 1.e. as et = 0+4. From above

. 5 1 A . . 3
(05) $ONW(QSIHO+ﬁCOS®) 3 @2%(—7')2 +iﬂ' S
13 3
(5.4a) Ty ~ [—1]1—/1 (acos@+bsinb) , 6~ 2[ef(0)]2t2 = 2(—7)2
etf'(0)
These two expansions match if:
a _(a+)f) b (a-p)

O O [ e
We therefore have the connection formulae

a+b a—>b
2v2 V2

A=

10



5.4 Ray Theory.

Consider waves propagating through a slowly varying medium. Assume that they are
governed by

L(8;, 0;; €z, €1)Q = eN(0y, Oy, Q; €3, €8, €) | (5.6a)

where L is a linear operator,
N is a nonlinear operator,

and X = ex and T = et represent the slowly varying nature of the medium. For instance

I D I

Seek a solution of the form
0
Q=[AX,T)+eA(X,T)+..]exp (z?(X, T)) +c.c. .
Then . _
Q¢ = 107[Ap + €A1 + .. .]e”}/E + e[Aor + €A1 + .. .]53“9/E +c.c.,
and the leading order approximation to (5.6) becomes
L(Z’HTaigX;Xa T) =0,

or
L(—iw,ik; X, T) =0, (5.7a)
Dispersion Relation

where w = —87 is the real frequency, and k = 8y is the real wave number.

(5.7a) is often rewritten in the form
w=Qk;X,T) . (5.7b)
Also if |AT|,|AX| < 1, then

0 (X, T 156 1
exp (i—(X + AX, T+ AT)) ~ exp (M) exp (E—AeAm + ... Z—TEAf)
€ € € €

0(X, T . :
R exp (7’(—’)) exp (thAz —iwAt +...) ,

€
hence the definitions of w and k are consistent with convention. Further, because

@xT—0rx =0,

it follows that

kr+wx =0,
and hence from (5.7b) that
o0
k kx = ——= !
T4+ CgRX a 3 (5 8&)

u

where ¢; = %‘E is the group velocity.

11



In characteristic form

dk 09 dxX
T~ ox % 4T~

A ray is a path along the characteristic tranversed with speed ¢,. In general rays are
curved.

By (5.80)

Exercise. Show that

dv 09
Hamilton’s Equations.
Consider the transformations:
X = gq
KX, T) — p
Ok X,T) - H(gpT),
then (5.8b) becomes
4 __0oH ag¢ ©OH
dI' 9q ' dT  d8p
These are just Hamilton’s equations; hence waves move like particles with speed c¢,.
Further, from (5.7b)
06 o6
— +H(q,=—,T)=0.
This is the Hamilton-Jacobi equation with the phase, 0(q,T), as the action.
5.4.1 Example
Consider the equation
o? a( , 0]

Substitute

= (A (X T + €A1 (X,T)+...)exp (EQ(ET) +c.c. .

Then
2 —w?Ag+ k%A =0 ;
gl — WZAI == i(wTAo + 2wA0T) — 2cextkAg
+ (32]\72:4.1 = iCz(kX.Ao -+ QkAOA) =1{.
Hence



w = +ek , Dispersion Relation

and

(wAg)T -+ QCCXnICAg + cQ(kAg)X =0,

or
(WA + (cqwAl)x =0, (5.9a)

where ¢, = *¢ = Z. In this case no further information comes from the complex conjugate

cquation. Write

- 1
AO = Tg€ ¢ )

then

¢’OT + Cg’vbOX =0 3

and
(wrd)r + (cqwrd)x = 0. (5.90)

The energy density of a wave satisfying (5.60) is

1
E - 50.’2?"(2),

hence (5.9b) represents conservation of wave action w™'E.

[To see that E is the energy density show that

d

d 27!'/1: lqbz_l_lczqsg dm_o ]
dt J, L o

13



Perturbation Methods 6. Asymptotics beyond all orders.

Sometimes it is not sufficient to consider the asymptotic expansion of a solution. Indeed
even a solution obtained to all orders can fail to give an accurate answer.

6.0 A model equation.

Consider the asymptotic solution to
Foy + (L +1y) f = =)2, f-+Daslyl »00, (6.4)

for large |A|, and real y. Try

f | f  fn
=0
Then )
: d f 0,1,2 f In
= — T = - n = e
fo o ¥ y Lyt frt1 L 40
Hence
9
= - ~te. .
A e LA

Thus an asymptotic expansion can be found to all orders, irrespective of the sign of
A. Further, the expansion satisfies the boundary conditions as |y| — co. However the
expansion (6.B) is only valid Yy if A — —oo. To see this note that the exact solution is

fly, ) = /exp (,\(1 +1y)z — %:3> dz , (6.C")

where ¢ starts from z = 0 and extends to z = oo in the sector |arg(z)| < 7/6.
If A\ = —o0, (6.B) is recovered by Watson’s Lemma.

If \ = 400, and |y| > /3, then (6.B) is recovered, but if A — 400, cmd ly| < v/3, then
) ; (6.D)

To understand this result, note that the equation has a turning point at

wfw

L. _
- eXp (gf\ﬁ(l + 1y)

which 1s exponentially large.

1+ =0.

A
y:?+<:\?> S,

T Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam.ac.uk.

Set
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then

fss —sf=—13% .

The complementary functions are Ai(s) and Bi(s). which have Stokes lines at

1

qrg s = —

| A

)

We plot these Stokes lines in the complex y plane:
U‘wﬂv\f&*ﬁ a.»v‘)

lewoye

A¢©O

e

Upanul,;‘u,,
Longe

Hence when A > 0, we see that since two Stokes lines cross the real y axis, the solution
that decayvs as |y| — oo can be exponentially small as A = oo for [y| > V3, but
exponentially large for |y| < v/3. This is not possible when A < 0, since only one Stokes
line crosses the real y-axis. Note that in the case when A > 0, it is possible to get from
y = —oc to y = —oo without seeing the exponentially large solution, by deforming into
the complex y-plane.

O]



6.1 A model of crystal growth

A simple geometric model of crystal growth is:

20" + @' = cosf —~ 00 & 8 < 0F | (6.1a)
€ represents surface tension;

8  —— arclength along the solid-liquid interface;
0(s,¢) = the angle between the local normal and

the direction of propagation of the crystal.
A ‘needle crystal’ is a monotonic solution satisfying

B(s,e) = += as s— Foo. (6.10)

6.1.1 Regular perturbation
Try
0=00+e*0 +e'b+... . (6.2)

We fix the apex at s = 0 by requiring that 8,;(0) = 0.
e’ Gy —cosby =0,

By = —% + 2tan~(e%) ,

T
90—>:}:; as § — Foo,
8y increases monotonically.

2. 96 -+ Sin90 &, = —96” ]

f; = (2tanh s — s)sech s,

n

6 -0 as s— +co.

4 6, = (—3s’tanhs+ 55— 4s sech? s — 2 tanhs + 3 tanh s sech? s) sechs |

m

f, -0 as s— too.
It is possible to prove that: (a) #;(—s)= —0;(s) = 67(0) =0,
(b) S €¥8i(s) F /2 — 0 as s = +soo,

(¢) the solution is monotonic for small ¢.

Hence we appear to have a solution correct to all orders!

3



6.1.2 Too many boundary conditions

How many boundary conditions are implied by (6.1b)7

Suppose we linearise about s = —o0 by setting

We find that

1—&%4... decays as § = —o0
m = ;
+i-2 4. grow as § — —oo.

Hence we have effectively imposed 2 boundary conditions as s — —o0. Similarly, we
have imposed 2 boundary conditions as s — +00.

Thus we have imposed 4 boundary conditions on a 3rd order ODE!

6.1.3 A well posed problem

Suppose that we just impose
T
Pe =B BB 8§, (6.3a)

Then a one-parameter family of solutions will exist. We fix the solution by requiring

that
6(0;e) =0 . (6.3D)

The question is: ‘Does this solution satisfy (§ — 3) — 0 as s — +o0?’
Suppose that it does. then a second solution is
O(s;e) = —0(—s;¢) .

© and @ differ by at most a translation, hence 6 is antisymmetric about some point.
However, € is monotonic, analytic and vanishes at s = 0, thus )

B(s;¢€) is antisymmetric about s =0 .
We conclude that a needle crystal satisfies
6"(0;¢) =0 . (6.4)
6.1/ Analytical continuation into the complez plane

We analvtically continue solution into the complex s-plane; the continued solution still
satisfies

28" 4.8 = cost .
For future reference we note that if §(s; ) is antisymmetric, then

oo

8(5;5) = Z a1r52n+1 ;

0

4



and hence R(#) = 0 if s is pure imaginary.

Next we analytically extend the asymptotic expansion (6.2) into the complex s-plane.
We note that this asymptotic expansion breaks down near

S:i(zﬂ-}—l)g e 01,80

because sech s = oo near such points. We seek an asymptotic expansion near to one of

the points closest to the real axis, i.e. s = % In particular, if we let

T
=TT,
then

6o = ——g + 2itanh™'(e%) ,

2
60 ~ 1ln (—‘"> =
a

Further, from HOT (i.e. higher order terms),

em_gﬂ[hl(_;).ﬁg(g):%(g)u...] —

This expansion becomes disordered for o = O(e).

and

+ ... as o — 0.

o]

When o is this small we rescale:

§ = 5 F-EF ,
P | 2 7
=gln| — | — = +aplz,e
5) 2 (=€)
Then ,
H_pm -+ g‘g" =e¥ — (%) g s (6.5(?)
and from matching we require that
2
g+ =In{-z)— s +... as R(z)—>—oo

We seek asymptotic solution to (6.5):
p=wot+etor+...,

then



o b= e (6.5
and
2 .
wo = —In(—z) — 5 as R(z) > —co. (6.5¢)

It is possible to prove that 3 a unique solution for o in R(z) £0.
Strategy (a) Integrate (6.5b) from f(z) = —oo to R(z) = 0 along a line on which
S(z) = constant < 0,

(b) Continue this solution down R(z) = 0 to s = 0 and compute 6”(0, ¢).

W

Write
f)

po=—In(=2)+ 5 +...+&, (6.6)

and linearise (6.50) for large |z|. We find that
¢ = agy + Bor + 793 ,

where

The matching condition (6.5¢) implies that if we let (z) — —oc along F(z) = constant,
then we deduce that in this ‘direction’

= ==

This does not mean that a = 8 = v = 0 in the direction specified by $(z) = —oc with
R(z) = 0. In particular, while we might expect that

a=8=0 for S(z) > —o0, R(z)=0,
it is possible that v # 0 because p3(2) is exponentially small.

G



Exponentially small terms often do not matter, but on R(z) = 0, the algebraic terms
in (6.6) are real valued, hence as S(z) — —oo with R(z) =0

S(po()) ~ — 2 +Tlsfze (140 (1217)) |

Lo

where T’ = § (4 e_i’rfd‘).

Numerical solutions to (6.5) show that
=211,

a result that can also be obtained analytically using Borel summation. Hence
& b -
R(8(s,e)) ~ —Tlz]2 e (140 (I217))

as S(z) — —oo with R(2) = 0 = R(s).

But this is non-zero! Hence (s, ¢) is not antisymmetric, and hence 1t does not represent
a needle crystal! Indeed, no needle crystal solutions exist for small .

Further analysis shows that by integrating along %(s) = 0 back to s =0
6"(0,¢) ~ 2I'e ™2 exp(—m/2¢) ,

which is exponentially small.

|



Perturbation Methods 7. Magic: Summation of Series.|

How do we sum series? E.g. how do we find the value of
bis

S.n:Z:ar as n —r oo .
r=0

For instance what are the sums of
f o1 1

@  1-+i-i4e

(b) 1—-141-1+4...,

(c) 14+24448+... .

Note that
S=1—-14+1-1+4...

s 1, o [ Lo = ]
=1-5;

hence
!

S =

| =

The value of the sum depends on the definition of the sum:

B lIim So+51+...+5n_

Cesaro Sum. = oo |

Euler Sum. Define

o0

flz) = Zarmr .

r=0

Suppose that this series is convergent for |z| < 1; then define the Euler sum to be

lim

S = f(z) .

r—1-"

For instance:

(b) ar  =(=)",

=
=
S
I
b | =t

f(z) :Ziczo(zx)r: 1_12_,5 ’
B =l = 1 R Bp

T Corrections and suggestions can be emailed to me at P.H.Haynes@damtp.cam.ac.uk.
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fla) = 2ora” = e "

Hence the Euler sumof 1 +24+ 344 4+ ... is not defined.

Borel Sum. If the coefficients a, grow too fast, then Euler summation is not ap-
plicable. However, the power series may still have meaning as an asymptotic series.

Define o
arx’
OED P
n=0 '
Bli) = / e 'p(xt)dt
0
Define the Borel sum to be: i
= " B).
T % 1—

Inverse of Watson's lemmal
For instance consider the prototype Stieltjes series:

oo

flm) = Z(—)"rlwr , ar = (=)"rl.
r=0
Then
S r T __ 1
¢(w)w§(—) 2=
o -t
e
B(m)—fo 1+xtdt'
Hence
o0 e—f
0= 1142314+, . :/ t.
WEEE

Padé Approximants.

Suppose we only know partial sums. Let

N+M N
_n Apa™
Y et = —zﬂ’,}_o — = Pole)
r=0 Em.-() Bm
Often if
o0
f($) = Z arwf‘ k]
r=0
then
Pﬁ(:ﬂ) — f(z) as N,M — oo,

even if 3 - ayz” is divergent.

[SV]



(a) fa, = 1, then

1
PN(z) = exact !
l—=z.
(b) Stieltjes series, ar = (—)"!
P2(1)=10,59738.., 11 terms
PL(1)= 0.59638.... 21 terms

B(1) = 0.59635. .. .

Padé Approximants work because they put
e poles near poles
e a cluster of poles at essential singularities

e sequences of poles and zeros along branch cuts.

Continued Fractions.

A variation of the Padé method of summing power series. Define

Co

c1r
1 + 14cox

FN(.’L) =

CN—-1T
l4+cnz

There are fast numerical methods for the evaluation of continued fractions.

Shanks’ Transformation.

Suppose
n

Sn:Zar:.~1+BC” :

r=0

then
Sy Sy — 52

Sa41— 284+ Sua

Can apply repeatedly, e.g. S(S(Sn)), to remove higher transients. For instance, con-

S(Sn) =

sider ! ! 1 1
In2=1l==4— = =4 — < _ =10, 147 ...
n 5 - 371 + 5 + 0.693147

Partial Sums 1-Shanks 2-Shanks 3-Shanks

1

0.5

0.833 0.7000

0.583 0.6905

0.783 0.6944 0.693277

0.617 0.6924 0.693106

0.760 0.6936 0.693163 0.693149
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Richardson Extrapolation.

Suppose instead

QL+Q_22+Q—2—|—_.. as n — oo .
n n '

Sn""’QO"‘

Then if truncate at Qn,

N n 4 EYN (kN
QO:ZSH-H“( +]v) ( ) ‘

— KN — k)!

Other Methods.

For instance: Neville tables;
Domb-Sykes plots (to find the nearest singularity);
Euler transformations, etc.



