MODULAR FORMS 1
REB 1997

Reminder: the questions on the final exam will be based on example sheet questions.
Some of the questions need facts which have been stated but not yet proved in lectures.

. Define the complex projective line P*(C) to be the set of pairs (w; : ws) with wq, w2
complex numbers not both 0, modulo multiplication by nonzero complex numbers A
(so (wy : we) = (Awy, Awz)). Show that P}(C) can be identified with the set of lines
through 0 in C?. Show that the action of SLy(C) on C? gives an action on P(C)
(identified with a set of lines in C?) by (22) (wy : w2) = (awy +bws : cwy +dws). Show
that P*(C) can be identified with C'Uco by mapping (w; : wy) to wy /w,. Show that
this induces an action of SL2(C) on C U oo given by (“0)(7) = (ar + b)/(cr + d) for
7 € C'Uco. Show that this restricts to an action of SLy(R) on the upper half plane
H, given by the same formula.

. Show that S((ar+b)/(cr+d)) = det (20 |cr+d|~2S() for (%) € GLy(R) (where ()
is the imaginary part of 7). (So 3(7) is some sort of “non holomorphic modular form”.)
Deduce that if w;, w9 is an oriented base for a lattice L then aw; + bws, cw; + dws for
(22,) € GLy(Z) is oriented if and only if (‘c’g) € SLa(Z). Show that I(7) is the area of a
fundamental domain of the lattice spanned by 1 and 7. Show that (non holomorphic)
functions f on H with f((a7 + b)/(cT +d)) = |eT + dl’“'ﬁvo'r (22) € SLy(Z) can be
identified with functions of lattices that are invariant under rotation and are real
homogeneous of degree —k. Show that the area of a fundamental domain of a lattice
is such a function (with k = —2).

. Define an action f — f|p of SLy(R) on functions on the upper half plane by
f|(a3)(7—) = (er +d)~*f((ar + b)/(cTt + d)). Check that flyn = (f|m)|n. Show
that modular forms of weight k are fixed by this action.

. Given that the space of modular forms of weight 8 is one dimensional and that
E4(t) = 1+ 240 03(n)q" and Eg(r) = 1+ 4803, o7(n)q™ are modular forms
of weights 4 and 8, prove that E4(r)? = Eg and deduce that o;(n) = o3(n) +

120 Zlgi<n 0'3(’1-)0'3(71 — 'L)

. The Eg lattice is defined to be the lattice of vectors (z1,...,zs) such that the sum of
the z;’s is even, and either they are all integers or they are all integers +1/2. Check
that this is a unimodular lattice such that the norm (v, v) of every vector v is even.
(Unimodular means that the volume of a fundamental domain is 1.) Calculate the
number of vectors of the Fg lattice of norms 2 and 4 in two ways, either by counting
them explicitly, or by writing the theta function of the lattice in terms of Eisenstein
series Ey. (Recall that its theta function ) o ¢¥)/2 is a modular form of weight 4,
and the space of modular forms of weight 4 is 1-dimensional and spanned by Ey4(7).)
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If f(7) is a modular function then show that g(7) = f(27) + f(7/2) + f((v + 1)/2)
is invariant under 7 — 7 4+ 1 and 7 — —1/7 and hence is also a modular function.
Find a generalization of this where 2 is replaced by 3. Assuming that any modular
function which is holomorphic on the upper half plane and meromorphic at infinity is a
polynomial in j(7) = ¢~ 147444196884¢+. . . prove that j(27)+j(7/2)+j((7+1)/2) =
§(7)%—14885(1)+162000. If j(7) = Y, c(n)q"™, use this to find some relations between
the coefficients c(n).

Prove that any modular form of odd weight is 0. (Hint: (_01 _01) € SLy(Z2).)

Prove that any modular form of weight not divisible by 4 vanishes at . (Hint:

((f —Ol) (i) = i.) Prove that any modular form of weight not divisible by 6 van-

ishes at w = (=1 + v/3i)/2. (Hint: (_11 é) (w) = w.) Prove that j(w) = 0 (where

§(r) = E4(1)%/A(r)). Prove that j(i) = 1728. (Hint: first find a linear relation
between E3, EZ, and A, given that they are all modular forms of weight 12 and the
space of such forms is 2-dimensional.) Prove the stronger statements that j(7) has a
triple zero at w, and j(7) — 1728 has a double zero at i. We will see later that it is
possible to find an exact expression for j(n) whenever 7 satisfies a quadratic equation
with integer coefficients.

Find a linear relation between Eff, Ey5, and A, and use this to prove Ramanujan’s
congruence 7(n) = o1;(n) mod 691 (where Ramanujan’s function 7(n) is defined by
A(r) = 3, 7(n)g™; the two 7’s in this equation have nothing to do with each other.)

. Define the Bernoulli numbers B, by z/(e® — 1) = 5. B,z™/n!. Prove that B, =0 if

n is odd and greater than 2, and calculate By, for 0 <n < 12.

Let E(1,5) = (1/2) 3 (c.d)(0,0) Im(7)%/|er +d|* (with 7 € H). For which values of s
does this converge absolutely? How does this function transform under SLy(Z)? Show
that for any fixed s, E(r, s) is is an eigenvector of the operator y?(9%/dz* + 9%/9y?),
where 7 = z + iy. What is its eigenvalue? (This function is called a real analytic
Eisenstein series.)

Prove that every element of H is conjugate under the action of SLy(Z) to an element
7 with || > 1, |Re(7)| < 1/2. When can two elements 7 of this form be conjugate
under SLo(Z)?
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1. Show that if k£ is an even positive integer then ¢(k) = (2m)*|Bk|/k!2 by comparing the
coefficients of powers of z of both sides of (e = U2+ ms0 (1/ (2 = m) + 1/(z + m)) i
Show that if k is a large even integer then |Bg| is about k!2/(2m)*.

a Show that for any integer m, m3 = m® mod 24 and deduce that o3(m) =

os(m) mod 24.

b Define A(7) to be (EF — E§)/1728 (where E4(7) = 1+ 2403, ., 03(n)g™ and
Eg(r) = 1-504), .,05(n)g"). Show that A has integral coefficients in its q
expansion.

¢ Deduce that 1/A has integral coefficients.

d Show that every modular form with integral coefficients can be written as a
polynomial in Ey4, Eg, and A. (Hint: first show that if f is a modular form
with integral coefficients which vanishes at ico then f/A is a modular form with
integral coefficients of smaller weight.)

e Show that j = E3/A has integral coefficients in its ¢ expansion.

3. Define E3(7) to be 1 — TB'%; Y m>101(m)g™ (where By = 1), and define A(7) to be

qI1,50(1—g™)?%. Show that 21iEs(7) = £ log(A(7)). Assuming that A is a modular
form of weight 12, show that Eo(—1/7) = 72E5(7) + 127/2mi. More generally, show

that
ar +b

12¢(cT + d)
ct+d "

2T

Es ) = (eT + d)2Ey(7) +

a Show that a formal Dirichlet series ) ., a(n)/n® has multipliciative coefficients
(i.e., a(m)a(n) = a(mn) whenever m and n are coprime) if and only if it can be
written as an Euler product [[ (3, a(p™)/p"*).

b If a(n) and b(n) are the coefficients of two Dirichlet series f(s) and g(s) then show
that the coefficients of f(s)g(s) are the numbers 3, a(d)b(n/d). Deduce from
part (a) that if a and b are multiplicative functions then so is Zcﬂn a(d)b(n/d).

¢ Show that the functions ox(n) = 3, d* are multiplicative functions of n.

d Show that ) ,0ox(n)/n® = ((s)((s — k) and write this Dirichlet series as an
Euler product.

e Show that the product decomposition

o) -
Z ns 1;[ 1—7(p)p=s + pli-2s

n>0

is equivalent to the statement that 7(n) is multiplicative and satisfies the relation

n—l) n—2)

(") = r(p)r (") — p'ir(p
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for all primes p and integeré n > 2.

5. A ring R with a bilinear map from R x R to R, denoted by [r, s] for 7, s € R, is called
a Poisson algebra if it satisfies the conditions [a,a] = 0, [ab, ] = a[b, c] + [a, c]b, and
[[a,b], ] + [[b,c},a] + [[c,a],b] = O for all a,b,c in R. (In particular it is a Lie algebra
under [, ].)

a If R is any ring and [a, b] is defined to be ab— ba show that R becomes a Poisson
algebra. If R is the ring of smooth functions of 2 variables p and ¢ and [f,9] is

defined to be %5%3 - %g%g show that R is a Poisson algebra.

b If f(7) is a modular function show that f’ = g{ transforms as if it were a modular
form of weight 2.

¢ Show that if a and b are modular forms of weights m and n then [a,b] = (na’b —
mab')/4mi is a modular form of weight m + n + 2. (Hint: a™/b™ is a modular
function.)

d Show that the ring of modular forms is a Poisson algebra under this operation.

e Show that if a and b have integral coefficients in their ¢ expansions then so does
[a,b]. (Recall that 4 = 2mig4%).

f Show that if @ and b have zeros of order j and k at ioo then [a,b] has a zero of
order j + k if nj # mk, and a zero of order at least j + k+1if nj = mk.

g Show that [E4, E¢] = 1728A by using the fact that A is the unique modular form
of weight 12 whose ¢ expansion starts off ¢ —.... Show that [E4, A] = —2EgA
and [Eg, A] = —3E2A by using the fact that 1728A = E§ — E¢ and the formula
[ab, c] = a[b, ] + [a, c]b.

h Show that

127(n) = 5nos(n) + Tnos(n) + 840 Z (2n — 5i)o3(1)os(n — %)
1<i<n

and deduce that 7(n) = no3(n) mod 7 and 7(n) = nos(n) mod 5.

6. A derivation 8 of a Poisson algebra R is an additive map from R to R such that
8(ab) = adb + (0a)b and d[a,b] = [a, 8D] + [Ja, b].

a If a is a modular form of weight k define da to be 2%3% — kEsa where Ej is
defined in question 3. Show that & is a derivation on the Poisson algebra of
modular forms. (Do not forget to check that da is a modular form.)

b Show that da = 2[a, A]/A.

¢ If @ and b have weights m and n then show that 24[a, b] = nbda — madb.

¢ Show that 0E4 = —4FEg, 0Eg = —6E%, and A = 0.

d Show that

2105(n) = 10(3n — 1)os(n) + o1(n) + 240 Y o1(j)oa(n - j)-

1<j<n

e Show that (1-n)r(n) = 24 3", <, ., 01(i)7(n—7) and use this to show that the first
few coefficients of A are g —24¢° +252¢° — 1472¢* +4830¢° —6048¢° —16744q" ... .
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. Show that E4 and Eg are algebraically independent. (First show that modular forms
of different weights are linearly independent, so it is sufficient to show that the forms
EJ'Eg are linearly independent for 4m + 6n = k. There are several ways to show that
these forms are linearly independent; you can either do this by using the fact that
the only zeros of F4 and Eg in the fundamental domain are at w, —1/w, and 1, or by
showing that the dimension of the space of modular forms of weight k is at least equal
to the number of solutions of 4m + 6n =k, m > 0, n > 0.)

. Let A16(7) = E4(7)A(7) and define Ty6(n) by Ag(7) = 3, T16(n)q™.
a Show that Aj6(7) spans the vector space of cusp forms of weight 16. (Recall that
a cusp form is one that vanishes at ic0.)
b Show that 716(n) is an integer, and that m¢(n) = 7(n) mod 240.
¢ Show that |
Tls(ﬂ.) = 0'15(?’&) mod 3617.

(Hint: write A4 as a linear combination of E1g and something else. The Bernoulli
number Bjg is —3617/510.)
. aIf f(r) is defined to be 3, ,n°/(e~2™"" + 1) show that

504f(7’) = —EG(T) + 2E5(2T) —1.

b Show that 3,5, oag /(€72 + 1) = f(7) — 32f(27).
¢ Show that
1 3° 5°

| e"+1+837"+1+e57"+1+
. Draw a picture of the fundamental domain D of SLs(Z) and of some of its conjugates.
Let I'(2) be the subgroup of SLs(Z) consisting of all matrices congruent to (é?) mod
2. Show that SLy(Z)/T(2) is a nonabelian group of order 6. Find a fundamental
domain of I'(2). (One solution is the union of 6 copies g;D of D where the g;’s run
through a set of 6 representatives of the cosets of I'(2) in SLy(Z). Another solution

is the set of complex numbers T with Im(r) >0, -1 < Re(r) <1, [t £ 3| > 3.)

.. = 31/504.

. Use the Jacobi triple product identity

[[a-@a-g" )= 2) = Y (-1 2"

n>0 nez
to prove the following formulas.

n(r) =g/ [I (A -q") = Y (-1t d”

n>0 nez

H(l _ q2n)(1 i q2n—1)2 = Z an

n>0 nez
[T(1-g™% =) (-1)*(@n+1)g"n+1)/2
n>0 n>0

=1-3¢+5¢° —7¢° +9¢% —--.
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(Hint: for the last one, replace z by z/q in Jacobi’s identity, then divide both sides by
1 — z, then set z equal to 1, then replace g by q%.)

6.-Show that i ' ,
n(r) =Y (-1)rgxm+8 = N g/

nez n>0,n=x1mod6

where in the second sum the sign is +1 if n = £1 mod 12 and —1 otherwise.
Apply the Poisson summation formula »7 . f( J = Znez f(n ) to the function

f(z) = exp(3mit(z + 3)? + zmi) to show that n(—1/7) = \/7/m(r

7. a Show that

=Y p(n)q"

n>0 nez

where p(n) is the number of partitions of n, i.e., the number of ways of writing n
as a sum of positive integers. (Hint: write 1/(1 — ¢™) as >, -, ¢™" and multiply
everything together.) a

b Use one of the identities from question 1 to show that if n > 1 then

p(n) =p(n—1) +p(n—2) —p(n—-35) —p(n—7) +p(n —12) +---
¢ Use this to work out p(n) for n < 12. (You should find that p(12) = 77.)

8. This question is part of Conway’s proof that there is essentially only one even self
dual lattice in 24 dimensions with no vectors of norm 2.

a If A is such a lattice and ¢, is the number of vectors of norm 2n in A, use the
fact that cg = 1, ¢; = 0 to express the theta function of A in terms of E;5 and A.

b Show that By . i - o

ahg Ty gy =Y

¢ (This part may be rather harder than usual.) Use part b to show that if 2v € A
then exactly one of the following 4 possibilities occurs:

1. v e A

2. v = A+ v/2 where A € A, and v, is a norm 4 vector in A, and there are exactly
2 possible choices for v, (whose sum is 0).

3. v = XA +v3/2 where X € A, and v3 is a norm 6 vector in A, and there are exactly
2 possible choices for v3 (whose sum is 0).

4. v =X+ v4/2 where A € A, and v4 is a norm 8 vector in A, and there are exactly

48 = 2dim(A) possible choices for v4. Any 2 of the 48 possiblities for vy are either
orthogonal or have sum 0.
(Hint: out of the 224 elements of $A/A, show that exactly one has property 1, ex-
actly ¢2/2 have property 2, exactly c3/2 have property 3, and at least c4/2dim(A)
have property 4, and show that no element has more than one of these properties.
You will need to use the fact that A has no vectors of norm 2. Then use part b
to prove part c.)

d Show that every vector of A is congruent mod 2A to a vector of norm at most 8.
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. If f is a modular form of weight k, the Hecke operator Tx(n) is defined by

at + b
ct+d

(Te(m)f)(r)=nFt YT (er+d) TR

(ch)eMi\M,

).

. Show that Tx(n)f is well defined, and is a modular form of weight k.

. Show that a set of coset representatives for M;\M, is the set of matrices (82) with
ad=n,0<b<d. '

I f(r) = >, ¢™c(m) show that

(Te(m))(T) =D _"q™ Y ¥ 'e(mn/a?).

m al(m,n),a>0

. Suppose that f is an eigenvector of Ty(n), and is normalized so that ¢(1) = 1. Show
that the eigenvalue of T(n) is c(n).
. Show that the Eisenstein series Ej, is an eigenvalue of Ty (n) with eigenvalue oj_1(n).

. a. Prove that Ty (m)Tk(n) = Tx(mn) whenever m and n are coprime.

. Prove that Tk (p")Tk(p) = Tk(p™*1) + p* 1Tk (p*~!) whenever p is prime and n is an
integer.

. Use parts a and b to show that Tx(m) commutes with Tx(n) for all m and n.

. Suppose that f = > ¢(n)g™ is a cusp form with ¢(1) = 1 which is an eigenvector of
all the operators Ti(n). Show that

c(n) i
Z ns H 1 —c(p)p=* + pk-1-2s"

n>0 p prime

. Show that A(r) satisfies the conditions of part d, by using the fact that Tx(n)A is a
cusp form of weight 12 and the fact that A is a basis for the cusp forms of weight 12.
. Show that 7(n) is multipliciative, and 7(p"*!) = 7(p)7(p") — p*'7r(p™~1).

. Define an inner product on the space of cusp forms of weight k by

(f,9) = fD F)5(r )y 2de dy

where 7 = z + iy and D is a fundamental domain for SLy(Z).
. Show that this is an hermitian inner product.

b. Show that Tx(n) is a self adjoint operator, in other words, (Tx(n)f,9) = (f, Tk(n)g).

. Show that the space of cusp modular forms of weight k£ has a canonical basis of forms
which are eigenvalues of all Hecke operators and whose coefficient of ¢! is 1. (Recall

1



that any finite dimensional Hilbert space acted on by a set of commuting self adjoint
has a basis of eigenvectors for all these operators.)
_ Find this basis when k = 24. (Hint: find two cusp forms f and g of weight 24 and look
for linear combinations of the form Y ¢(n)g™ with ¢(1) = 1 and ¢(4) = ¢(2)® — 2%.)
_ Show that all the coefficients of the elements of this basis are totally real algebraic
integers. (Hint: If T is a self adjoint operator on a finite dimensional Hilbert space
H such that H = L ®z C for some free abelian group L acted on by T', then the
eigenvalues of T are all totally real algebraic integers. We can take L to be the cusp
forms all of whose coefficients are integers.)
_ Show that if f = 3 ¢(n)g™ is one of the elements of this basis, then there is a finite
extension field K of the rationals such that all the coefficients of f are in K. Ifois
any field homomorphism of K into C then show that > o(e(n))g™ is also an element
of the canonical basis of cusp forms. (Hint: use the fact that there is a basis of forms
with integral coefficients.)
. Show that
Tk(m)Tk(n) = Z dk_lTk(mn/dz)

d|(m,n)

for all positive integers m, n. (Hint: show that this follows from the cases m, n coprime
and the case when n is a power of the prime m.)
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Warning: some of the problems on this sheet (2,5) are rather hard.

. Find all Dirichlet series L(s) = Y. ¢(n)/n® with multiplicative coefficients such that

L(s) converges for Re(s) sufficiently large and L*(s) = I'(s)(27)~°L(s) extends to a
holomorphic function on C which is rapidly decreasing in vertical strips and satisfies
L*(24 — s) = L*(s).

. Let L*(s) = (2m)~°T'(s) >_,, 7(n)/n®. The (unproved) Riemann hypothesis for L* says

that all zeros of L* have real part 6. In this question we will show that L* has an
infinite number of zeros with real part 6. It is based on Hardy’s original proof of the
corresponding fact for the Riemann zeta function.

Use the functional equation of L* to show that L*(s) is real whenever Re(s) = 6.
Show that ‘

, e—6i6 oo
A(ie?) = / L*(6 + iy)e¥®dy

2r J_

whenever @ is real and |6| < 7/2.

c. Show that A(ie'®) tends to 0 as 6 tends to m/2.

B

® e @

Show that if L*(6 +4y) is never 0 then 1t is always positive, and show that in this case
the integral in part b does not tend to 0 as # tends to 7/2.

Show thai L*(6 + iy) = 0 for some real y.

Show that sll derivatives of A(ie'?) tend to 0 as 6 tends to /2.

Deduce that if p is any nolynomial then

f ) p(y)L* (6 + iy)e*’dy

—00

tends to 0 as 6 tends to 7/2.

Show that if L*(6 + iy) has only a finite number of zeros and p is a real polynomial
with the same zeros, then the integral in part g does not tend to 0 as 6 tends to 7/2,
and deduce that L*(s) has an infinite number of zeros s with Re(s) = 6.

Let L(s) = >, 7(n)/n®.
Show that this series converges for Re(s) > 7, and can be extended to a holomorphic
function on C which vanishes for s = 0,—1,—2,.... (Recall that 7(n) = O(n®).)

b. Show that the product [, 1/(1 — 7(p)p~° + p**~2*) converges for Re(s) > 7.

a

b

Show that the only zeros s of L(s) other than 0,—1,—2,... have 5 < Re(s) < 7.

If a/c is a rational number or co let S,/ be the image of the line Im(7) = 1 under

the map 7 — 228 for some (2%) € SLy(2).
Show that S,/ is well defined and is a circle tangent to the real axis touching it at
afc. '

Show that S,/ touches Sy/q4 if and only if ad — be = £1.

1



¢ Draw a picture of the circles S/, for 0 <a/c<1,0<c<T.

5.

a. Show that

—2minT 2mi(d—na)/c
e 2me o
dr = 21 /c) 3+ 2nd [51(13 + j)!
I > (2 /e) (13 + )
a/c JZO
where d is any integer with ad = 1 mod ¢, Hint: use the functional equation of A to
convert the integral over each circle into an integral over a line, then work out the
integral over the line as a residue.

Show that if A()™! =3 paa(n + 1)g" then

I13(4 .
paa(l +n) = 2en=192 3 IUTVA/E) S anita-nal/e
c>0 ¢ 0<a,d<c¢,ad=1modc

where I13(z) = 3;50(2/2)"**%/51(13 + j)!. Hint: show that the integral from 4 to
1+ is equal to the sum of the integrals over all the circles of question 4 which touch
the real time in a rational point between 0 and 1. Then use part a.

. We define numbers o, and 8, by =2 — 7{p)z +p'" = (z — ap)(z — Bp)-

Show that () ,
2 T Tl) -
2 n* H (1= opp=®)(1 = Bpp™*)
Show that i1 ft1no
’r’(pk)2 — (aP+ - ‘BP+1)
(ap = JB;D)2
Show that
Z ’T(pk)z B 1 +p11—s o
= g* (1—a2p2)(1 — apfpp~®)(1 — Bip~)
Show that

T(n)? _ ((s—11) 1
Z nt  ((2s—22) 1;1 (1—02p=*)(1 — apfpp*)(1 — B2p=*)’

n



