Lie algebras - Examples sheet 1

All Lie algebras and modules are finite dimensional, over an arbitrary field k unless otherwise stated.

Definition chasing questions

- 1. Let L be the real vector space \mathbb{R}^3 . Define $[xy] = x \times y$ (cross product of vectors) and verify that this makes L into a Lie algebra. Write down the multiplication table for L relative to the usual basis for \mathbb{R}^3 .
- 2. Let $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ be an ordered basis for $\mathfrak{sl}_2(k)$. Write down the multiplication table for $\mathfrak{sl}_2(k)$ relative to this basis. Hence, compute the matrices of ad e, ad h and ad f with respect to this basis.
- 3. (a) Show that there is precisely one Lie algebra of dimension 1 (up to isomorphism).
- (b) Show that there are precisely two non-isomorphic Lie algebras of dimension 2 (one is abelian, the other is not).
- (c) Let L be the Lie algebra over k with basis $\{x,y,z\}$ and relations [xy]=z,[yz]=x,[zx]=y (compare with question 1). If $k=\mathbb{C}$, show that L is isomorphic to $\mathfrak{sl}_2(k)$, but that this is false if $k=\mathbb{R}$.
- (So, the classification of 3-dimensional Lie algebras depends on the ground field k.)
- 4. Prove that the centre of $\mathfrak{gl}_n(k)$ is the set of scalar matrices. Prove that $\mathfrak{sl}_n(k)$ has centre 0, unless char k divides n, in which case the centre is again the set of scalar matrices.
- 5. Show $\mathfrak{sl}_2(k)$ is simple if char $k \neq 2$. What happens if char k = 2?

(*Hints:* Work in the basis of question 2. By applying ad e twice or ad f twice, show that if $0 \neq ae + bf + ch$ lies in an ideal I of $\mathfrak{sl}_2(k)$ then one of e, f or h lies in I, hence $I = \mathfrak{sl}_2(k)$.)

Derivations

- 6. Prove that the set of all inner derivations ad $x, x \in L$ is an ideal of Der L.
- 7. Verify that the commutator of two derivations of a k-algebra is again a derivation. Is the ordinary product always a derivation?

The PBW theorem

- 8. If L is a free Lie algebra on a set X, show that U(L) is isomorphic to T(V), where V is the vector space with X as basis.
- 9. Describe the free Lie algebra on the set $X = \{x\}$.
- 10. Let L be an arbitrary finite dimensional Lie algebra. Use the PBW theorem to show that U(L) has no zero divisors.

Soluble and nilpotent Lie algebras

- 11. Let $\mathfrak{d}_n(k)$, $\mathfrak{n}_n(k)$ and $\mathfrak{t}_n(k)$ be the set of all diagonal, strictly upper triangular (ie zeros on the diagonal) and upper triangular (ie anything on the diagonal) $n \times n$ matrices over k respectively. Show that these are Lie subalgebras of $\mathfrak{gl}_n(k)$.
- 12. Let $L = n_n(k)$ as in question 11. Show that the lower central series of L is

$$L = L^0 > L^1 > L_2 > \dots > L^r = 0$$

where L^s equals $\{M \in \mathfrak{gl}_n(k) \mid M_{i,j} = 0 \text{ for all } 1 \leq i, j \leq n \text{ with } j - s \leq i \leq n\}$. Deduce that $\mathfrak{n}_n(k)$ is nilpotent.

- 13. Using question 12, show that $t_n(k)$ is soluble.
- 14. Show $\mathfrak{sl}_2(k)$ is nilpotent if char k=2.
- 15. Let L be nilpotent and K be a proper subalgebra of L. Show that $N_L(K)$ is strictly larger than K.

The mis a nestinal

16. Let k be a field of characteristic p > 0. Let $x, y \in \mathfrak{gl}_p(k)$ be the following $p \times p$ matrices:

$$x = \left(egin{array}{ccccc} 0 & 1 & 0 & 0 & \cdots & 0 \ 0 & 0 & 1 & 0 & \cdots & 0 \ dots & & & dots \ 0 & 0 & 0 & 0 & \cdots & 1 \ 1 & 0 & 0 & 0 & \cdots & 0 \end{array}
ight), y = \mathrm{diag}(0, 1, \dots, p-1).$$

Show that x, y generate a 2-dimensional soluble subalgebra of $\mathfrak{gl}_p(k)$ but that they have no common eigenvector. Hence, Lie's theorem is false in general in non-zero characteristic.

The Killing form

17. Using question 2, compute the Killing form explicitly for $\mathfrak{sl}_2(\mathbb{C})$ and hence verify directly that it is non-degenerate on $\mathfrak{sl}_2(\mathbb{C})$.

18. Let k have characteristic 3. Show $\mathfrak{sl}_3(k)$ modulo its centre is semisimple but has degenerate Killing form.

Jon Brundan, 5/1/97.

Lie algebras - Examples sheet 2

L denotes a finite dimensional, semisimple Lie algebra over \mathbb{C} , unless otherwise stated.

Representations

- 1. Show an L-module V is completely reducible if and only if every L-submodule W of V has an L-stable complement W' such that $V = W \oplus W'$.
- 2. If V and W are L-modules, we made $\operatorname{Hom}(V,W)$ into an L-module by setting (x.f)(v) = x.f(v) f(x.v) for all $x \in L, f \in \operatorname{Hom}(V,W), v \in V$. Verify directly that this gives a well-defined L-module structure on $\operatorname{Hom}(V,W)$.
- 3. Show that if L is a nilpotent Lie algebra, the only irreducible L-module is the trivial module. Show that if L is a soluble Lie algebra, the irreducible L-modules are all 1-dimensional. Describe the irreducible modules for $\mathfrak{t}_n(\mathbb{C})$ explicitly.
- 4. Using the fact that the Lie algebra $L = \mathfrak{sl}_n(\mathbb{C})$ is simple, show that the Killing form $(x,y) := \operatorname{tr}_L(\operatorname{ad} x \operatorname{ad} y)$ is related to the form $\langle x,y \rangle := \operatorname{tr}(xy)$ by $(x,y) = 2n\langle x,y \rangle$.

Representations of $\mathfrak{sl}_2(\mathbb{C})$

In these exercises, V(m) denotes the irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module of dimension m+1.

- 5. Embed $\mathfrak{sl}_2(\mathbb{C})$ into $\mathfrak{sl}_3(\mathbb{C})$ in its upper left hand 2×2 position. The restriction of the adjoint representation of $\mathfrak{sl}_3(\mathbb{C})$ defines an 8-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module V. Show that $V \cong V(0) \oplus V(1) \oplus V(1) \oplus V(2)$.
- 6. Let V = V(1) denote the natural $\mathfrak{sl}_2(\mathbb{C})$ -module, with its usual basis x_1, x_2 . Let $P = \mathbb{C}[x_1, x_2]$ be the polynomial algebra in two variables, and extend the action of L on $\langle x_1, x_2 \rangle < P$ to all of P by the rule

$$z.fg = (z.f)g + f(z.g)$$

for all $z \in L$, $f, g \in P$. Show that this makes P into an infinite dimensional L-module, and that the subspace $P_m < P$ of homogeneous polynomials of degree m is an L-submodule of P. Show $P_m \cong V(m)$.

7. Let $0 \le m \le n$. Prove the Clebsch-Gordan formula:

$$V(m) \otimes V(n) \cong V(n-m) \oplus V(n-m+2) \oplus \cdots \oplus V(n+m-2) \oplus V(n+m).$$

The Jordan decomposition

- 8. Show that L is nilpotent if and only if every element x of L is nilpotent (ie $\operatorname{ad}_L x$ is a nilpotent endomorphism of L). Give an example to show that the statement "L is semisimple if and only if every element x of L is semisimple" (ie $\operatorname{ad}_L x$ is diagonalisable) is false.
- 9. Let L be the Lie algebra \mathbb{C} with multiplication [xy] = 0 for all $x, y \in \mathbb{C}$. Every element of L is both semisimple and nilpotent. Verify that the following maps $L \to \mathfrak{gl}_2(\mathbb{C})$ are representations of L:

(a)
$$x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$$
; (b) $x \mapsto \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$; (c) $x \mapsto \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$.

Show that in (a) every non-zero element of the image of L is semisimple but not nilpotent and that in (b) every non-zero element of the image of L is nilpotent but not semisimple. In (c), show that the semisimple and nilpotent parts of every non-zero element of the image of L are not even elements of the image of L. Thus, the Jordan decomposition is false in general if L is not a semisimple Lie algebra.

10. Let L' < L be two semisimple Lie algebras. For $x \in L'$, show that its abstract Jordan decomposition regarded as an element of L' agrees with its abstract Jordan decomposition regarded as an element of L.

The Cartan decomposition

- 11. Compute explicitly the Cartan decomposition of the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ taking H to be the set of all diagonal matrices (ie verify all the details from the lectures). This is the most important example on this sheet!!
- 12. Compute the restriction of the Killing form on $\mathfrak{sl}_n(\mathbb{C})$ to the set H of all diagonal matrices directly (without using question 4). Hence verify directly that the restriction of the Killing form to H is non-degenerate.
- 13. Calculate explicitly the *Cartan integers* for $\mathfrak{sl}_n(\mathbb{C})$: the numbers $\frac{2(\alpha,\beta)}{(\beta,\beta)}$ for all α,β in the root system Φ (they should all be 0,2 or $\pm 1!$).
- 13. If L is semisimple, H a maximal toral subalgebra, prove that $H = N_L(H)$.
- 14. Prove that every maximal toral subalgebra of $\mathfrak{sl}_2(\mathbb{C})$ is one dimensional.
- 15. Prove that every three dimensional semisimple Lie algebra is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$.
- 16. Using just the Cartan decomposition, prove that no 4,5 or 7 dimensional semisimple Lie algebras exist.

Jon Brundan, 9/2/97.

Lie algebras - Examples sheet 3

- 1. Let $(a_{i,j})_{1 \leq i,j \leq l}$ be the Cartan matrix of an abstract root system. Prove directly from the definition that
 - (i) $a_{i,i} = 2$;
 - (ii) $a_{i,j} = 0$ if and only if $a_{j,i} = 0$;
 - (iii) if $i \neq j$ then $a_{i,j} \leq 0$.
- 2. Prove that the only abstract root systems of rank two are

$$\begin{pmatrix} A_1 A_1 & A_2 & B_2 & G_2 \\ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} & \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} & \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix} & \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$

3. Let $\Phi \subset E$ be an abstract root system with base Δ . For $\alpha \in \Delta$, show that $s_{\alpha} \in W$ stabilises $\Phi^+ \setminus \{\alpha\}$. Deduce that $s_{\alpha}(\rho) = \rho - \alpha$ for all $\alpha \in \Delta$, where

$$\rho = \frac{1}{2} \sum_{\beta \in \Phi^+} \beta.$$

- 4. Let $\Phi \subset E$ be an abstract root system.
 - (a) Show that

$$\Phi^{\vee} = \left\{ \frac{2\alpha}{(\alpha, \alpha)} \,\middle|\, \alpha \in \Phi \right\}$$

is also an abstract root system in E, known as the dual root system.

- (b) Show that the Weyl group of Φ^{\vee} is isomorphic to the Weyl group of Φ .
- (c) Show that Φ^{\vee} is irreducible if and only if Φ is irreducible, and that the double dual of Φ is isomorphic to Φ .
 - (d) Show that the dual root system to A_l, B_l, C_l or D_l is A_l, C_l, B_l or D_l respectively.
- 5. Let $\Phi \subset E$ be an abstract root system.
- (a) Let $\Phi' \subset \Phi$ be a subset such that if $\alpha_1, \ldots, \alpha_n \in \Phi'$ and $\alpha = \sum a_i \alpha_i \in \Phi$ for certain coefficients $a_i \in \mathbb{Z}$, then $\alpha \in \Phi'$. Show that Φ' is a root system in the subspace E' < E that it spans. Such subsystems of the root system Φ are called *closed subsystems*.
- (b) Verify that the set of long roots in the root system of type G_2 is a closed subsystem of type A_2 , whereas the set of short roots in the root system of type G_2 is not a closed subsystem.
- (c) More generally, show that the set of long roots in any irreducible root system is a closed subsystem.

- (d) What subsystem does one obtain from the long roots in type B_l ? Type C_l ?
- 6. Let Aut Φ be the set of all automorphisms of the abstract root system Φ , that is, all bijections $\theta: \Phi \to \Phi$ such that $\langle \theta(\alpha), \theta(\beta) \rangle = \langle \alpha, \beta \rangle$ for all $\alpha, \beta \in \Phi$.
 - (a) Show that W is a normal subgroup of Aut Φ .
- (b) Let Γ be the set of all $\theta \in \operatorname{Aut} \Phi$ such that $\theta(\Delta) + = \Delta$, where Δ is a fixed base of Φ . Show that $\operatorname{Aut} \Phi$ is the semidirect product of Γ and W, that is, $\operatorname{Aut} \Phi = W\Gamma, W \cap \Gamma = 1$.
- (c) Show that Γ can be identified with the set of all automorphisms (of directed graphs) of the Dynkin diagram of Φ .
- (d) Prove that the map $\alpha \mapsto -\alpha$ ($\alpha \in \Phi$) is an automorphism of Φ . For which irreducible root systems Φ is this map an element of the Weyl group W?

 Jon Brundan, 24/2/97.

Lie algebras – Examples sheet 4

Notation Always, L is a semisimple Lie algebra. Fix a maximal toral subalgebra H of L, with corresponding root system Φ . Let Δ be a base for Φ , Φ^+ the corresponding positive roots, W the Weyl group and $\varepsilon:W\to\{\pm 1\}$ be the sign representation of W relative to the simple reflections $\{s_\alpha \mid \alpha\in\Delta\}$. Writing $\Delta=\{\alpha_1,\ldots,\alpha_l\}$, let ω_1,\ldots,ω_l denote the corresponding fundamental dominant weights, so that $\langle\omega_i,\alpha_j\rangle=\delta_{i,j}$. Let X and X^+ denote the integral and dominant integral weights respectively.

- 1. Let $L = \mathfrak{sl}_2(\mathbb{C})$ with standard basis e, f, h. Let τ be the endomorphism of L defined by $\tau := \exp(\operatorname{ad} e) \exp(\operatorname{ad} (-f)) \exp(\operatorname{ad} e)$. Verify explicitly that the automorphism τ acts on L as conjugation by the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Deduce that $\tau(e) = -f, \tau(f) = -e, \tau(h) = -h$.
- 2. If V and W are finite dimensional L-modules, show that $\operatorname{ch}(V \oplus W) = \operatorname{ch}(V) + \operatorname{ch}(W)$ and $\operatorname{ch}(V \otimes W) = \operatorname{ch}(V)$. $\operatorname{ch}(W)$.
- 3. Show that $\rho:=\frac{1}{2}\sum_{\alpha>0}\alpha$ can also be written as $\sum_{\alpha\in\Delta}\alpha$.
- 4. For $\lambda \in X$, prove that $\operatorname{ch} M(\lambda) = \frac{\dot{e}(\lambda)}{\displaystyle\prod_{\alpha>0} (1-e(-\alpha))} = \frac{e(\lambda)}{\displaystyle\sum_{w \in W} e'(w\rho \rho)}$.
- 5. For the root system of type B_2 , order the base $\Lambda = \{\alpha_1, \alpha_2\}$ so that the Cartan matrix is $\begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$. Compute the corresponding fundamental dominant weights $\{\omega_1, \omega_2\}$ in terms of α_1 and α_2 . Do the same for A_2 , verifying the calculation in section 8.1 in the lectures.
- 6. Apply Weyl's character formula to compute the dimension of all weight spaces of the module $V(2\omega_1 + \omega_2)$ where $L = B_2$ and ω_1, ω_2 are as in question 5. Verify that the sum of the dimensions of all weight spaces equal the dimension as computed by Weyl's dimension formula.
- 7. Let $L = \mathfrak{sl}_3(\mathbb{C})$ with fundamental dominant weights ω_1, ω_2 . Abbreviate $V(m_1\omega_1 + m_2\omega_2)$ by $V(m_1, m_2)$. Use Weyl's dimension formula to show

dim
$$V(m_1, m_2) = \frac{1}{2}(m_1 + 1)(m_2 + 1)(m_1 + m_2 + 2).$$

- 8. With notation as in question 7, show that $V(1,1) \otimes V(1,2) \cong V(2,3) \oplus V(3,1) \oplus V(0,4) \oplus V(1,2) \oplus V(1,2) \oplus V(2,0) \oplus V(0,1)$.
- 9. Use Weyl's dimension formula to show that a faithful, irreducible, finite dimensional L-module of smallest possible dimension has highest weight equal to ω_i for some i. Hence verify that the smallest dimension of a faithful, irreducible G_2 -module is 7.

Jon Brundan, 7/3/97.

Part III Lie algebras - tripos-like questions

Attempt TWO questions from section A and TWO questions from section B. Questions in section B are worth twice as many marks as questions in section A.

Throughout, L denotes a finite dimensional Lie algebra over the field $\mathbb C$ of complex numbers.

Section A

1. Let $L = \mathfrak{sl}_2(\mathbb{C})$. Show that L contains elements e, f, h such that [ef] = h, [he] = 2e, [hf] = -2f.

Let V and W be two irreducible, finite dimensional L-modules. Show that $V \cong W$ if and only if $\dim V = \dim W$.

(You may assume any results you need about the Jordan decomposition of L providing you state them clearly.)

2. Let L be semisimple. Show that all associative bilinear forms on L are symmetric.

Let V be a faithful L-module and suppose that the bilinear form (.,.) on L defined by $(x,y) = \operatorname{tr}_V(xy)$ is non-degenerate. Let x_1, \ldots, x_n and y_1, \ldots, y_n be bases for L such that $(x_i, y_j) = \delta_{i,j}$. Show that the operator $\sum_{i=1}^n x_i y_i$ commutes with the action of L on V.

Deduce that if V contains an irreducible L-submodule W such that $\dim V = \dim W + 1$, then there is an L-stable submodule W' of V such that $V = W \oplus W'$.

3. Let L be a semisimple Lie algebra with Cartan decomposition

$$L = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$$

where H is a fixed maximal toral subalgebra of L. Show that the restriction of the Killing form on L to H is non-degenerate.

Stating any results that you use from the representation theory of $\mathfrak{sl}_2(\mathbb{C})$, show that

- (i) dim $L_{\alpha} = 1$ for all $\alpha \in \Phi$;
- (ii) if $\alpha \in \Phi$, the only other scalar multiple of α which is a root is $-\alpha$.

Section B

- 4. (a) What does it mean to say that $\Phi \subset E$ is an abstract root system? What is a base Δ of Φ ? Define the Dynkin diagram of a root system Φ , and show that Φ is determined (up to an isomorphism of abstract root systems) by its Dynkin diagram.
- (b) Now let L be the Lie algebra $\mathfrak{sp}_4(\mathbb{C})$, that is, the set of all 4×4 matrices of the form $\left(\begin{array}{c|c}A & B\\\hline C & D\end{array}\right)$ as A,B,C,D run over all 2×2 matrices satisfying $A=-D^T,B=B^T,C=C^T.$ Show that the set H of all diagonal matrices in L is a maximal toral subalgebra, and describe the Cartan decomposition of L with respect to H.
- (c) By computing the Killing form, show that L is a semisimple Lie algebra.
- (d) Compute the Dynkin diagram of L. Hence, show that L is the simple Lie algebra of type \mathbb{A} .
- 5. Let $L = \mathfrak{sl}_3(\mathbb{C})$.
- (a) Give an explicit Cartan decomposition of L. Show that the Dynkin diagram of L is of type A_2 . List all the roots in terms opf the simple roots α_1 and α_2 . Show that its Weyl group is isomorphic to D_6 , the dihedral group of order 6 with presentation $\langle x, y | x^2 = y^3 = 1, x^{-1}yx = y^2 \rangle$.
- (b) Let H denote the maximal toral subalgebra of L in (a). Let $t: H^* \to H$ be the bijection induced by the Killing form. Put $t_i = t(\alpha_i)$ for i = 1, 2. Let V_{m_1, m_2} denote the irreducible L-module of highest weight λ , where $\lambda(t_i) = m_i$ for i = 1, 2. Assuming $m_1 \geq m_2$, prove

$$V_{m_1,0} \otimes V_{0,m_2} \cong V_{m_1,m_2} \oplus V_{m_1-1,m_2-1} \oplus \cdots \oplus V_{0,m_2-m_1}.$$

(Hint: consider symmetric powers of the obvious modules!)

6. Write an essay on Weyl's character formula.