Proof of the Poincaré-Birkhoff-Witt Theorem

Notation so far

L a finite dimensional Lie algebra over k.

T(L) = D,,>0 @™ L - the tensor algebra.

S(L) = T(L)_/I, I the ideal generated by {z®y—y®z|z,y € L} — the symmetric
algebra.

U(L) = T(L)/J, J the ideal generated by {z®y —y® z — [zy] | z,y € L} — the
universal enveloping algebra.

m: T(L) = U(L) — the quotient map.

Let T, = @0, _, @™ L. Let Sy, Uy, denote the image of Ty, in S(L), U(L) respecti-
vely. Then, Uy < Uy < ... is a filtration of U(L).

Let U™ = Uy [Uin—1; rU = ®m20 U™ is the associated graded algebra.

¢ : T(L) — grU is induced from the maps @™ L = Uy — U™ = Uy /Up— for
each m. Since ¢(I) = 0, ¢ induces a surjective algebra homomorphism 6 : S(L) — grU.

The PBW Theorem 6 : S(L) — grU is an isomorphism.

To prove it, we need a technical lemma. Let zi,...,z, be a fixed basis for L. Let
I(m) denote all m-tuples i = (iy,...,4m) with 1 <4; < n. Let z; be the element z;, ®
.-.@z; € T(L), and Z; be its image in S(L). Say i is increasing if iy < --- < 4p. Then,
{z;| m € Z>o,i € I(m)} is a basis for T(L) and {Z; | m € Zxo,i € I(m),1 increasing}
is a basis for S(L). Write 1 <jifi < jsforall1 <s <m.

Technical Lemma For each m € Zx there ezxists a unique linear map fmm : L&Sy —
S(L) satisfying

(i) fm(z:i ® T35) = T;7; for i <j,j € I(m);

(i) fm(zi @ T3) — T;Z; € Sk for k < m,j € I(k).

(3i) fm(2i ® fm(z; ® Tx)) = fm(xj @ fm(Zi ® k) + fm([ziz;] ® Tk) for all k €
I(m—1).
Moreover, the restriction of fm to L ® Sy_1 equals frm_1.

(The expression in (iii) makes sense given (ii).)

ProOF. First, note that the restriction of f,, to L ® S;,—1 automatically satisfies
(i)—(iii), so it must coincide with f,,—1 by the asserted uniqueness. To verify existence
and uniqueness, we proceed by induction on m. For m =0, fo(z; ® 1) = Z; is the only
possibility, and the induction starts. Now suppose by induction that a unique fp—1
satisfying (i)-(iii) has been constructed. We wish to extend fp,—1 to a map fn; for
this, it will suffice to define fy,(z; ® Z;) when j € I(m) is increasing.

If i <j, (i) cannot hold unless we define fr,(z; ® ;) to be z;z;. If i < j fails,
then j; < i. Let j = j1,k = (J2,---,Jm) € I(m — 1). Then, by (i) and the induction
hypothesis, Z; = Z;Zx = fm-1(z; ® Zx). Since j < k, fm(z; ® Tk) = Z; is already
defined, so the left hand side of (iii) becomes f,(z; ® Z;), which is what we are trying
to define. By induction, fn(z; ® Zx) = fm—1(z: @ Zk) is already known; it equals



#;Zy + y for some y € S;y_1. So, the right hand side of (iii) is already defined to be
2jZiTk + fm-1(2; @ Y) + frm-1([zi75] © fic)-

This shows that f,, can be defined, and in a unique way. Moreover, (i) and (ii)
clearly hold. So, it suffices to show that (iii) holds. This is clear in case j <1, j <k,
hence (as [zjz;] = —[ziz;]) in case i < j,i < k. Ifi =7, (iii) is obvious. So, it
remains to consider the case where neither i < k,7 < k is true. Let k = ki,1 =
(kg,...,km—1) € I(m —2), where k < Lk < i,k < j. Abbreviate Tmlz @ %) by =&
whenever z € L, € Sp,.

By induction, z;Zx = z;j(zxZ1) = zx(z;T1) + [zjzx]%) and z;Z) = T;71 +w for some
w € Spm—z. Since k < 1,k < j, (iii) already holds for z;(zx(Z;Z1)). By induction, (iii)
applies to z;(z;w) hence to z;(zx(z;Z;)). Consequently

sci(:cjzik) = :r:k(:r,- (:EjCE[)) + [ximk](xja’sl) + [:szrk](mii"]) + [a:,-[:cj:ck]]i:l.

Now, interchange i,j in this expression and subtract the two resulting equations
to obtain:

(7)) — o(z:i5k) = Tr(@i(z;31)) — e (@i (@:iE)) + [2ilz;2e]]21 — [5[zize]] 2
= oy ([ziz;]T1) + [zilz;ze]]Tr + [zj[zezi] ]
= [ziz;) (k1) + ([z[zizs)] + [zilzjze]] + [z5(zexil]) 2
= [Zm;] 8k

This proves (iii) and the lemma. O

We can now prove the PBW Theorem. Let t € @™ L. We need to show that
7(t) € Up—1 implies that ¢ € I, so that 6 is indeed injective. So, suppose w(t) € Up-1-
Then, there is some ¢ € Ty,_; such that m(t) = m(t'), hence that ¢t —¢' € J. Now,
t —t € T,, N J and the homogeneous component of degree m of t —t' is ¢. So, the
result follows if we can prove:

Claim Let t € T,, N J. The homogeneous component t,, of t of degree m lies in I.

PROOF. By the technical lemma, we can define a linear map f : L® S (L) = S(L)
satisfying (i), (ii), (iii) for all m. Property (iii) then ensures that this makes S(L) into
an L-module, and property (ii) shows that

(f) z:-%; = Z;%; (modulo Sp,) for j € I(m).

So, (L) is a T(L)-module such that J acts as zero, by the universal property of U (L).
Consequently, t acts as zero on S(L). So, t.1 =0.

Now suppose t,m = D ;¢ I(m) %iTi for a; € k. Then, using (f), ¢.1 is a polynomial
whose term of highest degree m is 3 ;c () 6iZi- As t.1 =0, this is zero in S(L), which
shows precisely that t,, € I as required. O

This completes the proof of the PBW theorem. It is also valid (with essentially the
same proof) for L infinite.



Two results from linear algebra

Throughout, the base field is C. A linear map 6 : V. — V is semisimple if it is
diagonalisable, or, equivalently, if all the roots of its minimal polynomial are distinct.
It is nilpotent if ™ = 0 for some n > 0.

Theorem Let V be a finite dimensional C-space, 8 € End V. Then, there ezist unique
6,,0, € EndV such that

(i) 0 =65 +6y;
(11) 85 is semisimple, O, is nilpotent;
(111) 6, and 0, commute. _
Moreover, 8 and 0, can each be written as polynomials in 0 without constant term.

PRrROOF. Let ay,...,a; (with multiplicities my, ..., mg) be the distinct eigenvalues of
0, so that the characteristic polynomial is [[(T — a;)™. If V; = ker(0 — a;.1)™, then
V is the direct sum of the subspaces V1,..., Vg, each stable under . On V;, @ has
characteristic polynomial (T — a;)™:. Now apply the Chinese remainder theorem for
the ring C[T'] to find a polynomial p(T) such that

p(T) = a; (mod (T — a;)™); p(T) =0 (mod T).

Set ¢(T) = T — p(T). Evidently, each of p(T'),q(T) have no constant term as p(T) =
0 (mod T).

Set 85 = p(f),80, = q(#). Since they are polynomials in 8, §; and 8, commute with
each other. They also stabilise all subspaces of V stabilised by 6, in particular, each
Vi. The congruence p(T) = a; (mod (T — a;)™) shows that the restriction of 85 — a;.1
to V; is zero for all 7, hence that 6, acts diagonally on V; with single eigenvalue a;. By
definition, 8, = # — 6; which makes it clear that 8, is nilpotent.

It remains to prove the uniqueness assertion. Suppose 8 = @), + 6/, is another such
decomposition. So, 85 — ¢, = 6], — 6,. All endomorphisms commute, and sums of
semisimple (resp. nilpotent) endomorphisms are semisimple (resp. nilpotent). But, 0
is the only endomorphism that is both semisimple and nilpotent, forcing 0 = 8, — 8, =
9.; == 611- I:]

The decomposition # = 6 + 0, is known as the Jordan decomposition of #, and
05, 0, are known as the semisimple and nilpotent parts of 8 respectively.

The second result from linear algebra is really a corollary of the Jordan decompo-
sition. We have already used this — without giving a proof — when we proved Cartan‘s
criterion.

Theorem Let A C B be two subspaces of gl(V'), V finite dimensional. Set M = {z €
gl(V) | [z, B] C A}. Suppose z € M satisfies Trace(zy) =0 for ally € M. Then, z is
nilpotent.

PROOF. Let z = s+ n (s = z5, n = z,) be the Jordan decomposition of z. Fix a
basis vy, ..., VU, of v relative to which s has matrix diag(a;,...,am). Let E be the
vector subspace of C over Q spanned by the eigenvalues ay,...,an,. We have to show



that s = 0, or equivalently, that E = 0. Since E has finite dimension over Q, it will
suffice to show that the dual space E* is zero, ie that any linear map f : E — Q is
Zero.

Given f, let y be that element of gl(V) whose matrix relative to our given basis
is diag(f(a1),...,f(am)). If {e;;} is the corresponding basis of gl(V’), check that
ads(eij) = (@i — aj)eij,ady(e;;) = (f(ai) — f(aj))eij. Now let r(T) € C[T] be a
polynomial without constant term satisfying r(a; — a;) = f(a:) — f(a;) (which exists
by Lagrange interpolation). So, ady = r(ad s).

Now, ad s is the semisimple part of ad z, so by the Jordan decomposition, it can be
written as a polynomial in ad z without constant term. By hypothesis, ad z maps B
into A, so ad s does, and so ad y does too. So, y € M. So by hypothesis, T'race(zy) = 0,
so 3. a;f(a;) = 0. The left side is a Q-linear combination of elements of E. Applying
f, we obtain 3 (f(a;))? = 0. Since the numbers f(a;) are rational, this forces them all
to be zero. O



Some corrections/omissions

1. Several people had trouble showing that if L is semisimple and V' is an L-module,
then tr, z = 0 for all z € L. To prove this, note that  ~ tr,, z is a homomorphism
of Lie algebras, so the kernel of trace is an ideal of L, with L/kertr,, an abelian Lie
algebra. So, the kernel of trace contains the derived algebra L' of L. So, the result
follows once we've checked that L' = L if L is semisimple.

For this, note that L can be written as L @ --- @ L; as a direct sum of simple
ideals. Moreover, the ideal L’ is a sum of some subset of these ideals (since any ideal
of L is of this form). So, L/L' is isomorphic to the sum of the remaining simple ideals.
But L/L' is abelian, whilst simple Lie algebras are not, so this implies that L = .

2. T've proved that if z € gl(V) is a nilpotent matrix, then adz is nilpotent (using
the binomial expansion). But in Theorem 4.5, I also assumed that if z € gl(V) is a
diagonalisable matrix, then ad  is diagonalisable. I didn’t prove this... So, pick a basis
for V so that z is a diagonal matrix. Now check that ad z acts diagonally on the basis
ei j, where e; j is the matrix with a 1'in the ij-entry, zeros elsewhere, of gI(V)) when
written with respect to this fixed basis. Consequently, ad = is diagonalisable, because
we've exhibited a basis of eigenvectors.

3. Proof of Lemma 5.4(ii): want to show that (tq,ts) # 0.

Suppose that (ta,t,) = 0. Consider the three dimensional Lie subalgebra § =
(€asta, fa) of L. One shows that tr,(ads zadsy) = 0 for all z,y in the basis eq, ta, fa
for S. So, by Cartan’s criterion, S is a 3 dimensional soluble Lie algebra. Consequently,
S’ is a nilpotent Lie algebra (indeed, the derived algebra of any soluble Lie algebra
over C is nilpotent). So, ady, s is nilpotent for every s € S'.

On the other hand, ady, ¢, is semisimple. So, ady t, is actually 0 (as it is both
semisimple and nilpotent). So, [ta, Lg] = B(ta)Lg = 0. This implies that « lies in the
radical of the Killing form on H*, but this is non-degenerate, a contradiction.

Jon Brundan, 21/2/97.



