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Colin Sparrow Dynamics of Unimodal Maps

The style of these notes will not suit everyone; I have deliberately
avoided doing things in the pure mathematical style, with lists of
definitions and theorems you are meant to already know. There are lots of
words and relatively few symbols, and I have been quite happy to skip
details or whole proofs where they would take up a lot of space and
prevent me getting to interesting results as quickly as I would like. The
development is probably not one that would be preferred by someone
hoping to introduce you to the most modern technigues in the subject, who
might well prefer to get more quickly to the heart of the matter. Rather, ]
have tended to assume that you know almost nothing and tried to build up a
picture of a subject in easy intuitive steps. Some details have been
included enclosed in parentheses, *%[  ]*%; these can be omitted on
first reading. These choices have some inevitable bad consequences; if you
already know a lot you will probably be infuriated by an occasional lack of
precision, and the lack of an index may make it hard to find the definition
you want, though I hope the use of bold type will have helped. But I do
hope that for some of you, this approach will make for easier
understanding and will lead you to want to know more. ‘.

None of the results below are my own, and I have therefore felt free
to treat the subject as an established field where it is no longer necessary
to give credit to evergo'ne'who has made contributions. The books and
papers listed in the bibliographg are more scholarly, and contain many

references.
‘1. Introduction
We will study the dynamics of certain maps of the interval to itself.

In particular, we are interested in continuous unimodal maps,
f:{-1,1]»[-1,1] satisfying f(-1)=f(1)=-1. We say a map f is unimodal (has
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one mode) if it is strictly increasing on an interval [-1,c] and strictly
decreasing on an interval [c,1] We usually call the point ¢ the critical

point of f. We want to understand the properties of orbits of such maps:-

that is, given an initial condition xoe[—l,l], we generate the orbit of x,
O(xg)= {xo, Kqs Xg, Kz, Kgs Xy 3 Xip1 = f(xi), i>0}

by repeatedly iterating the map f. Fig. 1 below shows examples of such

orbits for particular choices of map f. Notice that it is easy to generate

the orbits geometrically. Given a choice of x5 we find f(xy) by moving
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Fig.1  Orbits of the unimodal map f(x)=p—l—px2 for

(a) p=1.0, (b) H=1.6, (c) H=2.0
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vertically up to the graph of f. We then move horizontally across to the

diagonal to obtain an x-value of x, = f(xg), and then by moving vertically to
the graph of f again we find f(x;) = x;. We can then proceed, moving

alternately horizontally to the diagonal and vertically to the graph of f, to

generate the sequence of points x; which makes up the orbit €(xg). Incase

(a) the orbit looks fairly simple; the points x; are tending towards a fixed

1
point x*=f(x*) where the graph of f intersects the diagonal. In case (b), it
seems that the orbit is tending towards a periodic orbit consisting of two
pointsy, and Y, such that f(g1)=g2 and f(g2)=g1. In case (c), the behaviour
looks more complicated and it is not clear that the sequence of points in
the orbit is settling down to any kind of regular behayiour at all. Inno

case are we particularly interested in the exact sequence of values x;, but

we will be interested to see how much we can understand about the
topological properties of the orbits (such as whether they tend to an
attracting fixed point, or periodic orbit, or not), how these differ for

different choices of initial condition x,, how they change as the map f

changes, and other related questions. But first there are a few more
introductory remarks to make which will set our study into a historical

and mathematical context.
(i) Historical

It was an interest in unimodal maps in th“‘_e 1970's that was
responsible for kindling much of the modern intérest in Nonlinear
Dynamics, particularly amongst applied mathematicians, physicists, and
other scientists. Unimodal mapé are simple and yet provide examples of

dynamical behaviour typical of much more complicated systems; for
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example, they can, as in case (c) above (Fig. 1), behave “chaotically" (we
will return to this later). This, and other interesting forms of behaviour,
can easily be observed by anyone with a computer, however small. In fact,
many interesting results about these maps, and many new ideas in
Dynamical Systems more generally, were motivated by and only obtained
after extensive numerical simulations on maps like ours. Thousands of
papers have been published on unimodal maps in the last fifteen years, and

more are still published every year.
(ii) Completeness and robustness of the results

For the pure mathematician (and for the many others who have
become pure mathematicians whilst studying unimodal maps), unimodal
maps present a collection of problems ranging from the easy to the very
sophisticated. A few of the latter remain unresolved, but an almost
complete understanding is now available. Perhaps the most remarkable
fact is that so much of the understanding applies equally to almost any
unimodal map (or family of such maps) and it is not usuallg'necessarg to
study many separate cases. This is true of both topological and metric
properties, and the discovery of certain ‘universal' constants governing
some of the behaviour of these maps has inspired a completely new
approach (renormalisation theory, see section 3 below) to the dynamics of

many systems.
(iii) Relevance to other systems
The one-dimensionality of unimodal maps is crucial to our

understanding of them. Nonetheless, various "almost"” one-dimensional

systems have very similar behaviour. An example is dissipative
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diffeomorphisms such as the Henon map, or diffeomorphisms arising as
return maps in dissipative ordinary differential equations.
Mathematicians understand that there are essential differences between
the one-dimensional case and the others, but there are some strong
similarities when the dissipation is very great, and an understanding of
the one-dimensional case seems to be a prerequisite for understanding

many of the types of behaviour occurring in higher-dimensional systems.
(iv) Applications

The maps are almost too simple to be taken seriously as models for
any complicated real-world system Nonetheless, as a first approximation
they can be useful, and they have been cited in the literature of many
subjects to show that simple deterministic models can produce
random-looking or chaotic behaviour without the inclusion of random
terms representing the unknown influences of effects external to the
model. One of the papers responsible for exciting the interest of the
scientific community at large in unimodal maps, gave as an example the
population of fruit flies in a cage with a constant food supply. If we write

the population of flies on day t as Ny then, as a first approximation
(ignoring the fact that Ny must be integer) we can write,

Niyy = fiNe)
where f is a unimodal map; if Ny is small the food supply is adequate and

the population increases, but if Ny becomes too large competition forces

the population to decrease.
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2. The quadratic family

we will begin by trying to understand the simpler features of
behaviour which occur in a particular family of unimodal maps which
depends on one parameter. The family we will study is the quadratic
family (or logistic family), fp(x) = p—l-pxz, O<p<2. If p is chosen so
that p e (0,2], each fu is a unimodal map fp:[—l,l]—r[—l,l] with a critical
point at 0. Fig. 1 showed examples of this family for three different
u-values (see figure caption). (This family is sometimes written, after a
simple linear change of variables, as gp(x) = rx(1-x), g(0,1]-»[0,1],re
(0,4])

wWe will be interested in the dynamics of fp for each p in the

interval (0,2], and also in the way in which our results change as p

changes. Definitions will be introduced as we go along.

Preliminary definitions

x is a fixed point of f}_l if fp(x)=x. In Fig. 1(a) the point x=0 is a
fixed point of f, 5. Aset of p points {xy, X, .., Xp} 1S a periodic orbit of

fp if xiﬂ:fp(xi) for i=1,2,..,p and x1=f“(xp}. The orbit is said to be of
least period p if p is the smallest integer such that the orbit is a
periodic orbit of period p. Fig. 1(b) showed an orbit tending towards a
periodic orbit of least period 2. When there is no ambiguity we sometimes

write just f instead of f}. We write the nt" iterate of f as ", so x = f"(x;)

= f( f (f (....f(xy))). Apointxona periodic orbit of period p is clearly a

fixed point of fP.
we will say that a fixed point x* is an attractor if there is an
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interval U containing x* such that ye U = f"(y) » x*.

interior of U we say that x* is a two-sided attractor; otherwise x* is a
one-sided attractor. The fixed point at x*¥=0 in Fig. 1(a) is a

(two-sided) attractor; in fact, in that map we can choose U=(-1,1) and all

If x* is in the

orbits tend towards x*. It is clear that a fixed point is a (two-sided)
attractor if [f(x¥)l<1 where f(x) is the derivative df/d>< of f with respect
to x. In this case we say that f is a hyperbolic attractor, and maps g
close to f also have hyperbolic attracting fixed points. If [f(x*)I>1 we say
that x* is a hyperbolic repellor. In the unusual cases where f'(x*)=t1, the
fixed point may attract orbits from one side and repel them frorﬁ the other,
and the details of the behaviour depend on the second or higher derivatives;
note, however, that we have chosen our definitions so that if orbits are
attracted from one side and repelled from the other then the fixed point ¥
is called a (one-sided) attractor. (If these results are not obvious to you,
try drawing an orbit near to a fixed point where f has slopes of absolute

magnitude greater than or less than 1. Or, more mathematically, expand f
to first order in a Taylor series about x* and compare [f(x*+8) - x*| with
|51.)

A periodic orbit {x,, X5, .., xp} is said to be an attractor if x; is an

attractor for fP. The orbit of period 2 in Fig. 1(b) is an attractor, and

attracts all nearby orbits. The conditions on the derivative of fP at x;,
ldfP/4,ls1 , can also be written, using the chain rule, as

if'(xl)f'(xz)....... f'(xp)l < 1. (Proof; exercise) Notice thatifOisa point on
the orbit, x;= O for some 1<is<p, then f'(0)=0 implies the orbit is an

attractor. Insuch cases we say the orbit is superstable.
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Fig.2 Orbits for (a) p=0.49; -1 is an attracting fixed point,

(b) pP=0.95, -1 is repelling and xp* is attracting.

(i) O<p=<0.5
In this parameter range all orbits tend towards the attracting fixed
point at x=0. This is easy to see geometrically - see Fig 2(a) - and easy

to prove. (Proof, exercise.)

(ii) 0.5<p=<1

When p=05, a bifurcation occurs and a new fixed point appears in
the interval[-1,1] at XH* = [“’1)/;1. We say that a bifurcation occurs ata
particular p-value if the topological nature of the orbits changes at that
p-value. For all p>0.5 the fixed point at x=-1 is a repellor. The fixed
}1". however, is an attractor in this parameter range. See Fig 2(b).
When p=1 the fixed point is at x=0 and is superstable, as shown in Fig. 1(a).

point x

It is easy to prove that all orbits other than those starting at xp=-1or 1

tend towards the attracting fixed point in this parameter range. (Proof;

exercise) It will be useful later if we notice now that the behaviour we
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have just described for u=1 implies that the graph of f,"(x) looks like Fig.3

for large n; as n increases, the plateau looks increasingly flat since for

any x=-1, 1, fln(x)-;O as n»oco.

()

(b)

Fig.3 £"(x), p=1 for (a) n=3, (b) n=5

(iii) 1<p<l1.5

In this parameter range the fixed point xp*‘ is still an attractor and

all orbits except those started at -1 or 1 are still attracted towards it, but

it now lies in x>0, the derivative of f there is negative, and orbits

approach it in an oscillatory fashion, successive points, x;, X;, 1ying on

opposite sides of x“*. See Fig. 4(a). It is relatively easy to prove that

this description of the behaviour in this parameter range is correct.

(Proof; exercise.)

(iv) p=1.5

At =15, the derivative f'(xp*) decreases through -1 and there is a

period-doubling bifurcation In this bifurcation the fixed point xp*‘

10
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Fig.4. (a) For p=1.4 the fixed point is lattracting, and (b) £2

has a single fixed point. At H=1.5, f' decreases through -1 at
the fixed point, and (c) the slope of f2 increases through 1.
For H=1.6, (d), £f2 has two new attracting fixed points. The

behaviour of f at this parameter value was shown in Fig. 1(b).

becomes a repellor, and an attracting periodic orbit of period 2 appears
for p>15. The behaviour for p just greater than 1.5 (p=1.6) was shown in
Fig 1(b). Tosee why this period 2 orbit appears we look at f2. Figs. 4(b),
(c) and (d) show 2 for p<15, p=15 and p>1.5. We can see that two new

fixed points of f2 appear as J increases; since they are not also fixed

11
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points of f, they must lie on a periodic orbit of period 2. Figs. 4(d) and

1(b) show 2 and f at the same parameter value (p=1.6).

»x[ Bifurcations involving fixed points occur at parameter values where
If(x*)l=1, i.e. where the fixed point is non-hyperbolic. We have already
seen one such bifurcation, at p=05 and x=-1, but that we did not consider

it fully because to understand completely what happens at that bifurcation
{commonly called a transcritical bifurcation) we would have needed to
consider the behaviour and existence of fixed points outside the interval
[-1,1]. We will, however, now consider the period-doubling bifurcation
which occurs often in our family of maps and which, in the absence of
special symmetries or restrictions on the maps, is the bifurcation that

occurs in any family of maps when the derivative at a fixed point

decreases through -1. To be more precise, for a map hy (x) satisfying:-
(1) hy (0)=0 for all X (there is a fixed point at x=0)
(2) H'p(0) = -1 (there is a bifurcation at A=0)
(3) f"'oz(O)an (the third derivative with respect to x of fZat0is

non-zero at A=0; notice that the first and second
derivatives automatically equal zero if (1) and (2)
are satisfied - (proof; exercise))
and |
(4) 9/ g f22(x)#0 when x=0,1=0
then:
there exists a continuous function p(x): U~ V, where U andV are

neighbourhoods of x=0 and A=0 respectively, such that ¥ xeU, fp(x)z(x) = X,

fp(x)(x)ahx if x=0. Furthermore, p(0)=p'(0)=0 but p"(0)=Q.

Figs. 5(a) and S(b) are two bifurcation diagrams showing the

position of fixed points or periodic points for various values of A, as given

12
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by the two possibilities (p'>0 or p'<0) allowed by the theorem; the curve of
period 2 points is the function p giving parameter A in terms of x. Thus, in
a typical map where conditions (3) and (4) are satisfied at the bifurcation,
then on one side of the bifurcation, say A<0, there is just a fixed point,
whereas on the other side, say A>0, there is a fixed point and a periodic
orbit of period 2. The period 2 orbit will be an attractor if exists on the
side of A=0 for which the fixed point is a repellor (Fig. 5(a)). For the
quadratic map, after a linear change of variables and a rescaling of the

parameter, this theorem applies at p=1.5, xp"=1/3. Furthermore, it is

possible to show that for any map with negative Schwarzian derivative,

Sf={f'"/f-}-1.5{f"/f-}2 < 0, only the possibility shown in Figure S(a)
(which is known as the supercritical case) can occur - ie the period 2
orbit produced in a period-doubling bifurcation in the quadratic family
(for which f and f" for nz2 all have negative Schwarzian) will always be
an attractor. The proof of the period-doubling theorem can be found in
standard text-books (e.g. Devaney, 1986). The Schwarzian derivative will

appear again below, and the proof of the remarks about maps with negative

Schwarzian are not difficult once you have a lemma from section (ix).]%*

akkradin potlvg, msadvk L poik
1 ey PR BN e p
x PQ"f\t X \
c&&m&;(\ti\
© oXkrot L endllin o fived / Kthdﬁ{MUL
fixed o Lixed ?u./\t ?c"‘t y / ‘?cr.r\t
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0 A2 o A

(o) (b)

Fig.5. The position of fixed and periodic points against A for a

period-doubling bifurcation. (a) supercritical, (b) subcritical.
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(v) 1L.5<p<p  ~ 1.7849

The behaviour in this parameter interval is more difficult (if not
impossible) to calculate analytically and so we will just rely on the results
of numerical experiments in this section. It is not expected that you should
see why the behaviour we are about to describe should occur, just that you
believe (or check on a computer) that it does. (We will come to more
sophisticated arguments about this interval later on.)

If we increase p above p=1.5, the period 2 orbit is an attractor until
un1.725 when it becomes a repellor and an attracting period 4 orbit
appears. This is another period-doubling bifurcation, but this time itis a
fixed point of f2 which period-doubles as the slope (of f2) decreases
through -1 as p increases. Figs. 6(a)-(c) show f, 2 and f4 at p=1.75, just
above the bifurcation value. Each of the diagrams in Fig. 6 shows the
behaviour of different iterates of the map at the same parameter value; if
a point is on a period 4 orbit of f,itison a period 2 orbit of f2 and is a
fixed point of f4. Notice that the regions in each of the dotted boxes in
Figs. B(b) and (c) look just like scaled down versions of f and f2 just after
the first period-doubling at p=15 (cf Figs. 1(b) and 4(d)), though in the box
which includes x=0 evergthing is upside down; we will return to this point
later.

Numerical experiments show that as p increases further, more
period-doubling bifurcations occur. At 1,775 a period eight orbit
appears (and the period 4 orbit becomes a repellor), at ux1.782 a period
sixteen orbit appears, and there are further bifurcations to orbits of
periods 32, 64 etc. Fig 7 shows an attracting period thirty-two orbit at
p=1.7845. Careful numerical experiments indicate that the sequence

continues as far as the accuracy of the computer will allow, with

bifurcation values p; tending to Ko r1.7849. as ivco, énd attracting orbits

of period 21 appearing at each p; and becoming repellors at j;, 4.

14
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(a)

(k)

Tees ]

Ey ] 1

Fig.6. (a) £, (b) fz, and (c) £ at p=1.75. In (a) we see an
attracting period 4 orbit, in (b) the corresponding attracting
period 2 orbits, and in (c) four attracting fixed points. Note

that in each dotted box in (b), f2 is a unimodal map.

Furthermore, the y; satisfy U‘i’PM)/(phl—pi) » 4.6692016... as i»oco.

This last fact was only discovered in the late 70's during numerical
experiments on a pocket calculator (by Feigenbaum), and, as we shall see
later, is the more remarkable because the same number 8=4.669.. will

appear often in our study and elsewhere in the study of dynamical systems.

15
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we refer to the parameter value p_ as the accumulation of
s Vi

Fig 8(a) shows the behaviour of an orbit at psp it is not easily

distinguished at this resolution from Fig. 7. Fig. 8(b) shows two orbits of

f2 at the same p-value. Once again, notice how much the two dotted boxes

in Fig. 8(b) resemble Fig. 8(a).
; I

-1
-1 . 1

Fig.7. An attracting period 32 orbit at p=1.7845.
|

1 ! 1

| (b)

o N -

- -1
-1 » 1 -t ’

l

Fig.8. Orbits of (a) £ and (b) f? at Pajl  %1.7849.. Notice how

each of the boxes in (b) resembles all of (a).
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(vi) p=p_~1.7849..
The behaviour at p= p, is a little harder to describe and to

understand than anything we have met so far. There certainly does seem
to be an attractor of some sort since for any initial condition xq we choose
in (-1,1), after allowing a few iterations for transient behaviour to die out,
we find dynamics like that shown in Fig. 8(a). Some authors try to
describe this attractor as being a periodic orbit of period 2%, but this is
rather misleading. We will attempt a more precise description.

If we look closely at the dynamics at p=p_, we see that for any neZ*
we can find 2" closed intervals, IV, 17, ., 1M,n such that f maps points
cyclically from one interval to the next, so F(10) = £(1,, 4) and f(IV5n) =17y
as shown in Fig. 9. The repelling periodic orbits of periods gl a2 2
1 (each of which was attracting at some lower p-value, and which continue
to exist according to the period-doubling theorem despite becoming

repelling in period-doubling bifurcations as p increased to p ) sit in the

gaps between these intervals, and so any orbit not actually on one of these
periodic orbits is eventually pushed into one of the intervals I(”)i and then

continues to cycle round the intervals I™ forever. The 2M1 intervals ™Y
and the repelling orbit of period 2" are contained inside the intervals 1,
as illustrated in Fig. 9, so we can consider the set I = {x: xelM ¥ nez*).
This will be closed and non-empty (since it is the intersection of a nested
sequence of closed and non-empty sets), and invariant under f (by
construction). In fact, it is possible (but not easy) to prove that the length

of the intervals I, tends to zero as n oo, SO I* is a Cantor set (see

below). The set I®® is not an attractor in the sense defined for periodic
orbits, since arbitarily close to any point of I* we can find a point on a

repelling periodic orbit (and this orbit does not tend to 1°°), but this fact

17
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only reflects the difficuly we have in finding a satisfactory definition of
an attractor. I*® certainly satisfies many other properties that one usually
wants in an attractor. For instance, all initial conditions except those on
the repelling periodic orbits have orbits which tend to I°, so I* attracts
an open dense set of initial conditions with full Lebesque measure. Also,
[ is transitive, meaning that it has a dense orbit, and so it needs to be
considered as a single object which cannot be sensibly decomposed into
separate attractors. In fact, every orbit in I is dense in I*°. We refer to
I° and the dynamics of f on I* as an infinite register shiff or as an
adding machine, for reasons explained further below. Finally, notice

that two orbits in I which start close together (say in the same interval

I, for some n and i) will stay close together (cycling round together in
the intervals IV;), and this behaviour will be contrasted with sensitive

dependence on initial conditions which is defined in (vii) below.

o /—\
—— e S——

=

to ] ki

memij ?u\‘ar.( 2L echit

‘—q\)mmz pevsh b ocls ik

Fig.9. Construction of the set I%, the attractor at H={..
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*x[ A Cantor set, C_, is constructed in a standard way by taking a closed
interval, Cy, and then inductively defining sets C; for iz0 by removing one
or more open intervals (without leaving any isolated points, and in such a
way that the remaining closed intervals have length tending to zero as
is00) from each of the closed intervals remaining inC;_;. C_, is the set of
points {x:xeC; Vv i»0). In the case of I* above, we remove an open interval
containing a point of the repelling orbit of period 2! from each remaining
closed interval at each stage. It is not obvious that the length of the closed
intervals, which we called IV; , have length tending to zero as n»eo, but

this can be proved

As just described, the Cantor set is merely a geometric object; we
also have to consider the dynamics of f on it. If we always label the
rightmost interval in I with 1M, | as in Fig. 9, then it is reasonably easy
to see that we can obtain a consistent description of each point in xeI® by

writing an infinite sequence of symbols ..5,515,5, where eachs;isOorl
and the binary number s s, ;..S;51 = i tells us which interval 1), contains
% at the nth level of our construction. There is, in fact, a one-to-one
correspondence between such sequences, infinite to the left, and points of
1. Now, given x with symbol sequence ...54535754, f(x) will have symbol
sequence ...S,5z5,5,+1, where addition is done in the usual way, carrying

to the left as required. This explains the choice of the expressions adding
machine or infinite register shift to describe the set I and its

dynamics under f. J%x

The behaviour described above occurs only for p=p_. Before
considering the general behaviour in p>p_, it is advantageous to look at

the particular parameter value p=2.

19
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(vii) p=2

The behaviour of the map at p=2 is easier to understand because at
this parameter value we can actually solve the map. Writing
(xo+1)/2=5in?8, 08<T/5 we obtain (x,+1)/2 =sin? (2" 8y) as a solutior
for x,=f"(xy). We can immediately see that there can be no attracting
periodic orbits at this parameter value, since if we consider two close
together initial points x, and g0=x0+6 and set {x0+1)/2 =sin290 and
(Ug+ 1)/2 =sin2tp0 (so that 8, and y, are close, 95=0,+€) we obtain
(x,+1)/2 = sin? (2"8,) and (y,+1)/2 = sin? (2(O+e)). As 2" becomes
comparable with ™/, , x, and y, will get far apart in [-1,1]; thus orbits
started close together move apart and, in particular, orbits started close

to a periodic orbit do not get steadily closer to it, and so no periodic orbit

is attracting.
This behaviour, which was illustrated in Fig.1(c), is known as

sensitive dependence on initial conditions (s.d.o.i.c.); a term

which is frequently used synonomously with the term chaotic. The phrase
is self-explanatory; the behaviour of orbits depends sensitively on the
initial condition so that small changes in the initial condition cause large
changes in the behaviour of the orbit some iterates later. Notice also that
the perturbation grows very rapidly, doubling in size on each iteration;
this exponential divergence of orbits is typical of dynamical systems with
s.d.o.i.c.

We can deduce more from the formula above. For example, there are

a countable infinity of repelling periodic orbits, given by those 8, values,

8= o1, for which 2"« mod 1 is periodic as nweo. (If we write o« in binary,

20
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this will be all o’s with periodic binary expansions.) These periodic
orbits are densely distributed through the whole interval [-1,1]. In
addition, there will be uncountably many aperiodic orbits (corresponding
to all those ofs with binary expansions that are non-periodic), and, in
particular, many of these are dense in the whole interval [-1,1] Thereis
clearly no sensible sense in which we want to consider any subset of the
interval [-1,1] as an attractor in this case; all reasonable definitions of
attractor will lead us to consider the whole interval as the only attracting
set

The dynamics at this parameter value is actually very well
understood; one of the more interesting aspects of the behaviour concerns
probabilistic questions about the distribution of iterates on the interval.
We are not going to go at all deeply into this question in these notes, but it
is easy to show, (using the formulae above), that the probability density
function d(x)= 1/1TJ{(1+><){1—><)} defines an invariant distribution for f. In
other words, if an initial condition x4 is chosen at random from this
distribution, the first iterate x,=f(x) is distributed according to the same
distribution. In Fig. 10(a) we have illustrated the distribution of points on
a single orbit; it clearly has a similar form to the function d(x). In Fig.
10(b) we have illustrated the cumulative distribution for the same orbit,
and also plotted the cumulative density function
OIX d(y) dy =%/ arcsin y{*1/}. The similarity is striking, and reflects

the ergodic nature of the dynamics - for almost all initial conditions we
expect the distribution of points on the orbit to tend towards d(x) as the
length of the orbit tends to infinity.

Finally, in (il) above we looked at the behaviour of f" for large n
when p=1. It will help our arguments below if we now do the same thing

for p=2. Consideration of the formula for x, allows us to show that f" has
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the form shown in Fig. 11, with 2" fixed points and 2™ maxima where
fN(x)=1 alternating with 2n-1,1 minima where f"(x)=-1. (The maxima and

minima are given by the 2"+1 values of x satisfying (x+1)/2 = sin? & and

e=i'rr/2n+1' i=C,1,2,..,.2")

T‘ - (k)

(o)

s

. X
Fig. 10. (a) The distribution of 50000 points on one orbit
when H=2. (b) cumulative distribution for the same orbit and

the theoretically predicticted cumvlative distribution.

1
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Fig. 11. (a) £3 and (b) £° at p=2.
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(viii) p, < B < 2

There are many different approaches to this interval of parameter
values, the only one which we have not yet examined. The approach we
will adopt here is a combination of reporting the results of numerical
experiments, and making simple arguments connected with the fact that the

higher iterates of f, fpn, depend continuously on H. More results will be

described in subsequent sections. Let us first consider the third iterate,

fp3(><).

We already know (Fig 3 and Fig. 11) that £3 changes from a map with
2 fixed points when p=1 to a map with 8 fixed points when p=2. We need to

consider how new fixed points appear as j increases and f“:” changes

continuously with p? Remembering that fixed points of f3 that are not also
fixed points of f must appear in multiples of three (since each must lie on
a periodic orbit of period 3, and each such orbit has three points on it,
each of which is a fixed point of £3) the only way in which they can appear
is shown in the transition between Figs. 12(a) and 12(b), which shows the
actual transition between p-values p=1.91 and p=1.915. Figs. 12(c) and
12(e) show a blow up of a region in these figures; Fig. 12(d) shows an
intermediate diagram. We can see that at the bifurcat{on value (Fig. 12(d)),
where there is a fixed point with slope = +1, we have a single fixed point,
whereas we have either no fixed poin’ts (Fig. 12(c)), or two, one of which is
an attractor and the other of which is a repellor (Fig. 12(e)), on either side
of the bifurcation value. This picture is repeated at each of the three near
tangencies of f 3 with the diagonal in Figs. 12(a) and (b), so a total of six
new fixed points are created in the bifurcation. Such a bifurcation is

known as a saddle-node bifurcation and is another of the common

bifurcations occurring in many maps and dynamical systems.
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Fig.12. £3 near a saddle-node bifurcation. (a) and (c), M=1.91;

(b) and (e), M=1.915;
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(d) p=1.9141.
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%[ Suppose that a C? function f}J (x) depending smoothly on a parameter
| has a fixed point, %*, when p=0, satisfying:-

(i) fo(x*)= x*

(i) fgx*) =1

(iii) f"(x*) = O,
and  (iv) d/d}l f,()#0 at p=0, x=x*,

then

there are neighbourhoods U of x=x* and V of u=0 and a continuous
function p:U»V such that fp(x){x)=x for all xeU, p(x*)=0, p'(x*)=0, and
p"(x*)=0.

In other words, there will be two fixed points for p>0 and none for
<0, or vice versa. This theorem can be proved by a straightforward

application of the implicit function theorem to the function

gK{p)=f“(x)—x.]ﬁx

1 1

(o) (k)

= . 1 g ® ’

Fig. 13. (a) An attracting period 3 orbit at { =1.915;

(b) an attracting period 6 orbit at H = 1.923.
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Numerical simulation of the map for the p-value used in Figs. 12(b)
and (e) does indeed show an attracting period 3 orbit. See Fig. 13(a). As p
is increased, this becomes a repellor at pa1.921 and an attracting period 6
orbit appears (Fig. 13(b)). This change is a period-doubling bifurcation,
which occurs as the slope of f3 at its fixed points decreases through -1.
It may come as no surprise that as p is increased further, numerical
experiments show an infinite sequence of period-doubling bifurcations in
which an attracting orbit of period 3.2! becomes repelling and an
attracting orbit of period 3.2it1 appears, at parameter values which
accumulate at some p-value near 1.924 and where the bifurcation values,

u,;, satisfy (“i"ﬂi-l}/(pi+1-pi)—> 4669... as i»co. The whole range of

parameter values, 1.914..<pu<1.924.., from saddle-node bifurcation to
accumulation of period-doubling, is often referred to as a
period-doubling window or period-doubling cascade.

A similar argument can be applied to the changes in f" for each value
of n>3 as u varies between 1 and 2. In each case, we will find that the
number of fixed points of f” increases as p increases, and in each case we
will be able to argue that many of these fixed points are created in
(usually more than one) saddle-node bifurcations. (In the case wheren is
prime, every fixed point of " which is not a fixed point of f must lie on a
periodic orbit of period n. There are 2"_2 such fixed points when u=2 and
none when p=1. Thus, there must be (2"-2)/n periodic orbits created, and
since they are created in pairs there must be (2"-2)/2n saddle-node
bifurcation values. If n is composite a more careful calculation is
needed.) This shows that there are infinite number of saddle-node
bifurcations occurring between the two parameter values p=1 and p=2. In
each of these bifurcations a collection of new pairs of fixed points
appears for some iterate £ of f, each such pair consists of an attracting

and a repelling fixed point of " and these correspond to an attracting and a
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repelling periodic orbit of period n for f; numerical experiment shows
that each of the attracting orbits undergoes a whole cascade of

period-doublings in which stable orbits of period n.2! appear at parameter

values J; accumulating at the expected rate. Thus we expect there to be

infinitely many complete period-doubling windows in the interval under

consideration. Several orbits from these windows are shown in Fig. 14.

(o | (b) |

(c). W ‘ d) \

-1
L} 1 =1 . § 1

Fig. 14. Attracting periodic orbits. (a) p=1.87, period 5;
(b) p=1.8872, pd=T; (c) H=1.8929, pd=9; (d) H=1.953, pd=5.
Note that the orbits in (a) and (d) have differently ordered

points; they are created in different saddle-node bifurcations.
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It may already be difficult to imagine how all the behaviour just

described can be sensibly organised; more details follow. First, however,
note that there are also parameter values in pu>p , where the behaviour of
the map is similar to that which occurs when p=2 and where we have

sensitive dependence on initial conditions. Figs. 15(a)-(c) show the

distribution of points on an orbit for three different parameter values; as

(©)

[ %]

[ﬁm{!!mm.m..,.“..‘ -

{ éﬁﬁ?{ﬂimnn

i

i

i

i

Fig. 15. Distribution of points on a single orbit: (a) H=1.7965;

(b) M=1.839286; (c) H=1.882475. [cf Fig. 37

28

Colin Sparrow Dynamics of Unimodal Maps

when j=2 these distributions are invariant, but notice that they only have
support (non-zero value) on a finite collection of sub-itervals of [-1,1],
rather than on the whole interval

Fig. 16 shows a numerically computed bifurcation diagram for

15<u<2. The procedure used to generate this figure is to plot the 400
points %, , 2000<1<2400, from the orbit of xg4=0, for 256 p-values in

15<p<2. For p-values where there is an attracting orbit of low period,
all the plotted points lie on this orbit, so only the points on the orbit
appear. Otherwise, we see 400 points scattered over the ‘attractor’,
whatever that may be. The parameter values at which the various figures
in these notes were computed are marked. Notice that only relatively few
of the period-doubling windows are observable, and most of these cover
only an extremely short interval of p-values; though we know there are
infinitely many windows, most either involve orbits of such high period
that we cannot distinguish between them and more complicated behaviour,
or exist in such a short p-interval that they are entirely missed by our

procedure.
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Fig.16. An approximation to the attracting set for H-values

1.5<<2.0. 400 points (xygpo O Xg4pp) ©R the orbit of 0 are shown.
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(ix) Singer's Theorem

In the last section we argued that there would be infinitely many
saddle-node bifurcations producing attracting period orbits. Each of these
attracting orbits will exist for some interval of p-values. However, our
argument proceeded by considering different iterates of f separately, and
there was nothing in it to suggest that two or more attracting periodic
orbits (possibly of different periods) could not co-exist at the same
p-value. The task of organising the information we have generated so far
will be considerably simplified if we can prove that there is at most one
attracting periodic orbit at any particular p-value. Sucha result is
available as a simple corollary of Singer's Theorem which can be stated
for our purposes as.-

If f,u has an attracting periodic orbit, the orbit of 0 is attracted to it.

The corollary then follows since the orbit of O cannot be attracted to two

different orbits simultaneously. A proof of the theorem follows.

%x[ The proof of this theorem uses the fact that f has negative

Schwarssan derivative, Skl /f-}—l.S{f /f-}2 < 0. First notice that if

Sf and Sqg are both negative, so is S(f(g)). (Proof; exercise). In particular,
S$fN<0 for all nz1. Also, note the following lemma:-
Lemma If f satisfies Sf<0, f' has no positive local minima or negative
local maxima.
Proof of lemma Suppose f' has a positive local minimum at x. Then
f(x)>0, f*(x)=0 (since we are at a turning point of f), and f"(x)z0 (since the
turning point is a minimum). But this implies Sf(x)z0, contrary to
assumption, so the lemma is proved.

Now, let us first show that an attracting fixed point of a map

satisfying Sg<0 attracts the orbit of a critical point, c, of g (so g(c)=0).
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Let p be an attracting fixed point. Let B(p), the basin of attraction
of p, be B(p)=(y: g"(y)>p as nreo}. Let IB(p), the immediate basin of p, be
the maximal connected component of the basin, B(p), containing p. Since p
is attracting, IB(p) is non-empty. In general, IB(p) could be infinite, but
for our quadratic map, f, and all its iterates, ", we have -1 and 1 ¢ B(p), so
we consider only the case where IB(p) has left and right end-points, 1 and
r. Continuity of g and the maximality of IB(p) imply that g(1)=1 or r and
g(r)=1 or r. (Proof; exercise). Our aim is to show that IB(p) includes a
critical point of g, and there are three cases to consider. These are (i)
g(=g(r)=1 or r; (ii) g(l)=1, glr)=r; and (iii) g(l)=r, g(r)=1. In case (i), the
Mean Value Theorem implies the existence of a critical point ce(l,r) s.t.
g'(c)=0. In case (ii) the Mean Value Theorem implies the existence of a
point de(l,r) for which g(d)=1. If g is negative anywhere in (,r), then the
Intermediate Value Theorem implies 3 ce(l,r) s.t. g(c)=0. So we need only
show that we cannot have g(x)>0 for all xe(l,r). If p is not an end-point
then g(p)<1 and g(x)<1 for some x near p (since p is an attractor) and since
1 and r are repelling (at least on the appropriate side), g(1) and g(r)=1.
This implies the existence of a local minimum of g, which, by the lemma,
must be negative, so we cannot have g(x)>0 for all x. If p is at an
end-point, g(p)=1 and g(x)<1 for some xe(l,r) near p. (Otherwise p would
not be attracting) We still have g1 at the other end-point. Again, this
implies the existence of a local minimum of ¢, as in the case just
considered. Thus, in case (ii), we cannot have g(x)>0 ¥ xe(l,r). Incase
(iii), we consider the second iterate of g, h=g2, h is in case (ii) above, and
so (1,r) contains a critical point c of h. The definition of IB(p) means that
ce(l,r) = g(c)e(l,r), and since h'(c)=0=» g'(c)g(g(c))=0, either c or g(c) is a
critical point of g in (1,r). Thus, in all three cases, there is a critical
point, ¢, of gin (1,r), and the orbit of ¢ is attracted to p.

Now, to deal with the case of an attracting periodic orbit of periodn
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in one of our maps f, we consider the map g=f". We pick one point x, on the
orbit, and the argument above shows that the IB(xl) under g=f" contains a
critical point, ¢, of f".  Using the chain rule, df"/4,(c)=0 =

() RN F(F2(e)...f(f"1(c))=0, so, for some 1, f(fi(c))=0, and so f'(c)=0,

the critical point of f. Clearly, the orbit of 0 is attracted to the periodic
orbit, since some iterate of 0 falls into IB(x4). T

Qur use of the orbit of O in the statement of Singer's Theorem, is
actually a very weak one, though the result is already quite useful. The
study of kneading theory, or kneading sequences, takes these and
similar ideas much further, describing the dynamics more-or-less
completely in terms of an infinite sequence of symbols which tells us
whether successive iterates of O lie to the left, on, or to the right of 0. We
may have time to mention this theory briefly in the lectures, but it is
outside the scope of these notes. It is useful for us, however, to note the
following theorem, which can be proved using kneading theory. Further
details can be found in the articles listed in the bibliography, particularly

Van Strien (1988) and the references therein.

Theorem

For each parameter value p, O<us<Z either;

(a) there is an attracting periodic orbit and the orbit of 0 is
attracted to it. In this case, an open dense set of initial conditions
also have orbits attracted to the periodic orbit. ar,

(b} there is an attracting Cantor set (infinite register shift) which
includes the critical point and its orbit, and which attracts an open
dense set of initial conditions, or

(c) the map has sensitive dependence on initial conditions, and an

open dense set of initial conditions has orbits attracted towards an
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invariant set consisting of a finite union of closed intervals on which

there is an invariant probability distribution.

This theorem includes the results of many workers and goes some
way beyond anything we have attempted to prove in these notes. (Even so,
the statement of the theorem is fairly weak; many more details about the
types of possible behaviour are known.) It is worth including, though,
since it reassures us that (a) we have seen examples of each of the
possible types of behaviour, and (b) each type of behaviour occurs on its
own, and if it occurs it attracts an open dense set of initial conditions.
The result is also very reasonable and relatively easy to accept without
proof; if there are to be attracting orbits, or attracting Cantor sets, most
of the contraction will occur near to the critical point, so the orbit of the
critical point should give us all the information we need about attracting
orbits and attracting sets. Notice also that if the orbit of the critical
point is not attracted to an attracting periodic orbit or to an attracting
Cantor set then we are in case (c); it is clear that there will be infinitely
many parameter values where this occurs, for example where the orbit of
0 hits a repelling fixed point or repelling periodic orbit. Example are
shown in Fig. 17, and the p-values used in these figures are the same as
those used in Fig. 15. Fairly trivial alterations to the theorem above make
it true for much more general one-dimensional maps than we are
considering, so the types of behaviour described in these notes should be

considered very typical for general continuous maps.
(x) Sarkovskii's Theorem

We have seen above that we expect there to be infinitely many

period-doubling cascades, occurring one at a time, as p increases between
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Fig.17. The orbit of 0 for the three H-values used in Fig.15.

1o, and 2. Sarkovskii's Theorem tells us something about the order in

which these occur. The Theorem itself applies to any continuous map of an
interval to itself, and states:-

If a continuous map f:R»R has a periodic orbit of period g it also
has periodic orbits of all periods p<q where the order < is given by:

244<B<...<2"<..<...<2"5<2"3<...<4.5<4.3

£, <2 142.5<2.34..411<9<745<3.
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In particular, if there is an orbit of period 3 there are also orbits of all
periods. Notice that the Theorem says nothing about the stability of orbits;
we already know that at most one of those orbits existing at a particular
parameter value is attracting

The Theorem helps us to work out the order of period-doubling
cascades. Suppose we consider a u-value at which we have an attracting
period 3 orbit. We know from the Theorem that there is a repelling orbit
of period 7 (and all other periods) at this p-value, and this must have been
created in a saddle-node bifurcation at some lower p-value. (Remember
that the orbits involved in period-doubling cascades persist beyond the end
of the cascade, though they are all repelling)

This conclusion is certainly valid, but rather weak. In fact there
are, as calculated in (viii) above, 9 saddle-node bifurcations involving
period 7 orbits, and some of these occur before the period 3 cascade and
some after. More sophisticated versions of the theorem are available
which put all of these into order (distinguishing between the various
period 7 orbits by looking at the order of the points of the orbit on the

line), and the same results can also be obtained from kneading theory.

(xi) Additional remarks

We now have a fairly complete picture of what happens as j
increases in O<ps<2. Before looking, in the next section, at a technique
which helps us to understand a little more about why it happens, and that
the complicated sequences of behaviour are in many senses very
repetitive, it is worth giving one or two more results which may help us to
organise what we know so far. First, we now know that the sequence of
bifurcations occurs monotonically as p increases. In other words, each of

the bifurcations we have discussed occurs only once, and, for example, we

Colin Sparrow Dynamics of Unimodal Maps

do not have situations where two orbits are created in one saddle-node
bifurcation, destroyed in a subsequent one, and then created againina
third. Second, we know that the p-intervals in which period-doubling
cascades occur are dense in [15,2], so any interval of p-values includes
intervals of values where there are attracting periodic orbits. Both of
these results are hard to prove, and seem to require that one studies a
complex version of the map f:C-C. Despite the second result, we also
know that the Lebesque measure of the set of p-values for which there is
no attracting orbit, is positive, so that the probability of randomly
choosing such a p-value is greater than zero. (This probability actually
tends to 1 if we consider intervals (2-€, 2) as e50.) This is another hard
result.

To clarify the ideas here, let us consider the question, '‘What is the
first thing that occurs as p increases above p 7. This is a little like
asking what is the first rational after O, since if we consider any small
interval (M, pm+5], we will find:-

(i) infinitely many complete period-doubling cascades (involving periodic
orbits with periods of the form 2Nk, where nroo as g0 - see Fig.16 where

it is clear that all the behaviour cycles round 2" intervals for p> }, as
well as for p< p,, though in the > case the behaviour within the intervals

is more complicated);

(ii) infinitely many p-values where there is an attracting Cantor set
(infinite register shift);

(iii) uncountably many parameter values where the map displays sensitive
dependence on initial conditions; the probability of choosing one of these

parameter values at random is greater than O.
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3. Renormalisation

Fig. 16, a condensed version of which is shown in Fig. 18(a), showed

us the way in which the attracting set of fp developed as p increased from
15 to 2. One of its more remarkable properties is self-similarity; if we
look closely at the boxed region in Fig. 18(a) it tooks very similar to the
whole figure, except it is squashed and upside down. Fig. 18(b) shows the
boxed region turned over and scaled up to be the same size as the original;
it is remarkably similar to Fig. 18(a). We will be able to see why this
occurs (and to argue that it should occur) in a moment, but first let us
consider some of the implications of this result.

Let us call the whole of Fig 18(a) By and the boxed region B,; we are
assuming that B, contains a scaled, slightly distorted and upside down copy
of By. This implies that inside B, there is another smaller box which we
shall call B, which contains a scaled, upside down and slightly distorted
version of By By is, therefore, a scaled, right way up and slightly
distorted version of By. We can proceed with this argument, generating
smaller and smaller boxes, Bg, Bia Bsp, etc, each of which is contained in
the previous one and each of which contains a distorted copy of By, the

copies appearing alternately the right and the wrong way up. The boxes

will converge on ji in the j-direction and on x=0 in the x-direction. Now,

providing the distortion does not grow, and numerical experiments indicate
that on the contrary, as we go to smaller and smaller boxes the pictures
look more and more similar (after scaling up to the original size), and are

actually tending towards some limiting picture B, we can make various

deductions that tie in with things we have already observed. For example,
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Fig.18. (a) 1.5<pu<2.0, as in Fig.16. (b) the box By scaled up to

be the same size as the original.
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given that we see a per'iocl—doubling bifurcation (the left-most one) in By,
we know there will be one in B,, Biiws etc., so there will be an infinite
sequence of period-doublings, and the ratio of distances between the
period-doublings will tend towards some constant which is the ratio of the
distances between the first two period-doubling bifurcations in the

limiting picture B, (and which happens to equal 4.669.. ). we will also

expect, for example, that the sizes of the intervals used in the description

of the infinite register shift (Cantor set) attractor which occurs at p_, the

accumulation of period-doublings, will get smaller at some limiting rate
equal to the limiting scaling necessary in the x-direction; this is also

observed numerically, with o 0.399... As an example of a different tyupe,

the existence of a period 3 window in By implies the existence of period

3.Zi windows in B;, so these windows will therefore accumulate on p
from above.

**[Notice that we can make similar arguments for sequences of
boxes which do not accumulate on period-doublings. For example, in Fig
18 we could have chosen a much smaller box around the central piece of

the period 3 window as By; this also contains a scaled down copy of B,.

(This may be clearer in Fig. 16.) This sequence could be continued as
above, with a sequence of smaller and smaller boxes converging on some
point which is not at the accumulation of a sequence of period-doubling
bifurcations. Once again, the picture inside the boxes converges to some
limiting picture, but the rate of convergence of the parameter values
involved is a different from the usual 4669. . Also, it is possible to
argue that the map will have a Cantor set attractor (infinite register shift)
at the parameter value obtained by taking the limit of the left-hand (or

right-hand) sides of the boxes, but that this will not be quite like the one
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obtained after period-doublings. In the case illustrated, as each level of
the Cantor set is constucted each interval is divided into three
sub-intervals (rather than two), and other examples can be constructed
with different numbers of sub-divisions on each level. We will not
consider these cases any further here, but the renormalisation theory we
are about to discuss can be generalised to cope with them.]x*

It would be nice at this point to understand two things about the sort
of arguments we have been making in this section. These are:-

1) Why should there be any similarity between By and B,?

2) wWhy, as we take an infinite limit of boxes within boxes, do the
pictures within the boxes tend, after scaling up to the original size,

towards some limiting picture B, rather than getting more and more

distroted?

The answer to the first of these questions is easy enough to
understand intuitively. (We will not attempt a proof, though if we had
developed a kneading theory the proof would not be particularly difficult)
Let us consider the development of f between p=0.5 and u=2.0 and the
development of {2 between p=1.5 and the p-value, p~1.839 at the right of
box B,. See Fig. 19. The boxed region in Figs. 19(c) and (d) look just like

the whole of Figs. 19(a) and (b), except slightly distorted and upside down.
Now, very few of the arguments that we have used above about the series
of bifurcations occuring for f actually depended on the fact that f was the
quadratic map,; rather, they depended on the negative Schwarzian
derivative and simple topological arguments about the development of the
unimodal map as it went from a point where the fixed point at the left
pecame repelling (u1=0.5) and where the second iterate of the critical point
hits the left-hand repelling point (u=2). We call such a family a full
family Now, 2, restricted to the box of Figs. 19, is a full family between
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Fig.19. (a) and (b); the change in £ between H=0.5 and p=2.0;

(c) and (d); the change in f2 between H=1.5 and H=1.839.

p=15 and Hrs1.839 so we expect to see the same sequence of bifurcations
for f2 in the interval 1.5<p<1.839 that we saw for f in the interval
05<p<2. In particular, we can now continue, looking at the behaviour of
4 on a smaller interval of x-values and in a smaller p-interval in which
{4 acts as a full family of unimodal maps, and obtain the same sequence
again. This procedure parallelS our looking at smaller and smaller boxes

B,i almost exactly {except that we have chosen the left-hand edge of our

42

Colin Sparrow Dynamics of Unimodal Maps

boxes to be the first period-doubling bifurcation rather than the parameter
value at which the left-hand fixed point becomes repelling) which explains
why the pictures in the successively smaller boxes should look
topologically the same.

It is much less obvious why the limiting picture does not become
more and more distorted, or why the scalings (the amounts by which we
have to decrease the p-interval and «-interval under consideration at each
step) tend to limits. The reason for this is the existence of a special map
% and constant o such that f* is a fixed point of the renormalisation
operator ‘R.(f){x)=o<'1 f2(cxx), and the properties of ® near to f*. This
can be explained, very loosely, as follows.

*%[ The operator ® defines a new map R(f) on [-1,1] by taking the
second iterate of fona subinterval [o,-o] of [-1,1] and then rescaling by a
factor ocl. This is obviously related to the procedure we have been
describing above, where we looked at the second iterate of fona smaller
interval, o, and then blow the picture up by o ! to look the same size as
the original one. It is clear that ®(f) has an orbit of period 2" if and only
if f has an orbit of period 2”"1, so, in general, ®(f) will have orbits of
lower period than f. However, if f is a map at the accumulation of
per‘iod—doubling, so that it has orbits of periods 2N for all n=0, R(f) will
also have orbits of all periods 2" Thus, it is clear that any fixed point f*
of ® must be at the accumulation of periodédoubling. Now, in the
appropriate space of functions f, it turns out (though it is very hard to
provel) that there is a unique value of « for which ® has a fixed point %,
which is itself unique, and that the spectrum of ® at f* has one eigenvalue
outside the unit disc, 6w 4669... , and all the rest of the spectrum is
inside the unit disc. If we had continued the process illustrated in Fig 19,
computing families of maps formed from higher and higher iterates of f on

smaller and smaller x and p-intervals, the map £* would be the member of
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our limiting family at the accumulation of period-doubling This suggests

that given a map at the accumulation of period-doubling, like our quadratic
map at p=p, 8s we repeatedly apply ® to it (which is equivalent to

considering higher and higher iterates), we will move towards the fixed
point f* along the stable manifold of f* under the influence of the bits of
the spectrum inside the unit disc, and the x-scaling we need to use will
tend towards the constant o. However, if we look at a map just off the

accumulation of period-doubling, such as our quadratic f at p=p; where it

only has orbits of period up to 21 ®(f) will have orbits of half the period

and will be further from f* by a factor governed by the unstable bit of the
spectrum, 8~ 4.669... This explains why the distances |p; -l increase

by a factor of approximately 4669.. as 1 decreases.

The description above is not entirely satisfactory; in particular, it
avoids the problem that for maps other than f* one wishes to define the
renormalisation operator with an x-scaling that depends on f (to ensure
that ®(f) is a unimodal map on [-1,1] mapping _1 and 1 to-1). Nonetheless,
I hope it helps to explain what is becoming an increasingly important
approach to various kinds of dynamical system. The most remarkable
feature is the single spectral value outside the unit disc. This ensures that
the stable manifold of f* is codimension 1 in the space of functions, and
given that it also seems to be quite large, most one parameter families of
functions intersect it; thus period—doubling cascades are common and the

limiting behaviour as the accumulation of period-doubling is reached is

always very similar. Joen
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4. Other families of unimodal maps,

and higher—dimensional systems

we have already noted, in the section above, that we expect certain
families of maps to have behaviour very similar to that of the quadratic
family Indeed, inour renormalisation argument we used the argument
(without proof) that the full families of maps with negétive Schwarzian

derivative, which arise as higher iterates of f“, display the same series

of bifurcations as the quadratic family. In fact, almost any full family
displays the same sequence and has similar behaviour. Much recent work
on these maps tries to get away from the restriction to maps with negative
Schwarzian (since this is considered a much too restrictive and fairly
unnatural condition), and to replace it with a restriction to maps with good
behaviour in a neighbourhood of the critical point (which usually just
means Non-zero second-derivative) and not too much distortion elsewhere
(a precise definition of distortion is outside the scope of these notes). It
seems that it is possible to prove that maps satisfying these weaker
conditions will have similar behaviour to the quadratic family, and so we
should not be surprised tosee the same sequences of bifurcations, and the
smae scaling behaviour near accumulations oflperiod—doubling, whichever
one-dimensional maps we study (providing we avoid ones with unusual
behaviour near the critical point).

Rather more remarkably, many of the properties described above,
and in particular the universal scalings near accurnulation points of
period-doubling cascades, seem to be observed in systems of dimension
higher than one. These systems (&.g. two-‘dimensional diffeomorphisms or
three-dimensional differential equations) are relatively badly understood
in comparison with the one-dimensional maps, largely because in general

there is nothing corresponding to the unique critical point, and therefore

45



Colin Sparrow Dynamics of Ununodal Maps

nothing equivalent to Singer's Theorem ensuring that only one thing
happens at once. (Crude numerical experiments often provide sequences of
bifurcations which look very similar to those of the one-dimensional
maps, but we know that we can and do get situations where, for example,
there are infinitely many attracting periodic orbits co-existing at the
same parameter value) Finding higher‘fdimensional versions of
renormalisation theory to account for the occurrence of the same
universal constants in these systems will probably keep mathematicians

busy for some time to come.
5. Concluding remarks

These notes (and lectures) provide only a brief introduction to the
theory of unimodal maps. Anyone interested in learning more about them
can find a great deal more information in some of the references listed
below. Perhaps the most obvious omission in our treatment, as mentioned
several times already, has been the theory of kneading sequences - this is
a particularly powerful tool which is useful in the study of many different
types of one-dimensional map (including those with many critical points
and/or discontinuities) and more general dynamical systems as well. It is
unfortunate that the theory is not at its most elegant in the study of
unimodal maps, so it would have taken up rather too much of the time
available to develop it carefully enough to help (rather than hinder) our
understanding of these maps.

Another omission has been the study of the measure-theoretic
properties of the behaviour we have studied. The omission is justified on
the grounds of simplicity, but the problems need to be addressed if
applications are considered irﬁportant _ after all, when we pick an initial

condition or a parameter value at random, what we really want to know is
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the probability that a certain behaviour will be observed, or that a certain
behaviour is likely to occur with probablility one. This is a measure-
theoretic problem - knowing that a set of parameter values is dense (say)
tells us nothing about the probability of picking a member of thatsetina

particular experiment.
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