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Primality tests

We shall be interested in testing a given integer N for primality. We feel free
to assume that NV is odd. The tests we consider will return one of three possible
results, prime, composite or probably prime. The word “probably” in the last will
be made precise in context, but you should think of a this result being correct for ‘most’
numbers. Some tests will also return a witness, or certificate, which enables the reader
to reproduce or verify the result of the test quickly. A number for which a test returns
probably prime is a probable prime for, or passes, that test: if the number is in fact
composite, it will be a pseudo-prime.

We let the measure or length £(N), be the number of bits in the base 2 expansion
of N. A test will be polynomial time if the time taken to perform the test is bounded
above by a polynomial in £(N), and ezponential time if bounded by a polynomial in N.

We illustrate some of these ideas by considering the first and most obvious test,
trial division. Given N, we test whether N is divisible by ¢ = 2,3,... up to a limit,
initially V —1 but after an instant’s thought v/N. The time taken to return a result can

be up to VN if N is indeed prime, or T (\/N) ~ fig

computed list of primes: so the test is exponential and not polynomial time. When a
result is returned, it is either composite with a witnesst or prime with no witness. If I
give you the witness ¢ to the result composite, you can verify the result in polynomial
time by long division — otherwise you have to take my word for the answer or repeat
the calculation all over again.

The Fermat testis based on Fermat’s “Little” Theorem, that if 5 Z 0 mod p then
b?~! = 1 mod p. Given N we choose a base b, either systematically or at random modulo
N. If hef(b, N) # 1 then we have a factor of N and return composite with witness
b. Otherwise we compute b™ ~* mod N. If this is not 1 mod N return composite with
witness b: otherwise return probably prime.

The time required for this is controlled by the time required to perform the
exponentiation modulo N. By using a divide-and-conquer method, this requires £(N)
multiplications modulo NV and is polynomial time, since an [-bit multiplication can be
performed in O(n?) elementary operations t.

The result probably prime can be given even if IV is composite. If we consider
the base b = 2, then we have 2°*° = 1 mod 341 but 341 = 11 x 31 is composite, so
that 341 is an example of a Fermat pseudoprime (in fact the smallest). We can see

if ¢ runs through a previously

this quickly by noting that 2'°® = 1 mod 11 by Fermat’s little theorem and 2° = 31 =

1 mod 31. However, 3%4° = 56 mod 341 and so a further application of the test correctly
returns composite.

The force of the word “probably” can be appreciated by first considering the
probability that the test returns the answer probably prime for given composite N.
The set of b for which b¥~! = 1 mod N forms a subgroup of the multiplicative group
modulo N, and so the probability of choosing a base which gives a false return is the
index of this subgroup: we denote this proportion by W(N). Unfortunately it is possi-
ble to find IV with the property that all bases prime to N incorrectly return probably

T Faster using an advanced algorithm such as FFT.
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prime. Such numbers are absolute Fermat pseudoprimes, also called Carmichael num-
bers. If N is a Carmichael number, then it will only be revealed as composite by the
Fermat test with a base which has a factor in common with N: so for Carmichael num-
bers, the Fermat test is no better than trial division at returning the correct answer.
If N is not a Carmichael number then W(N) will be at most 3.

Proposition
A number N is a Carmichael number if and only if N is composite, squarefree
and p — 1 divides N — 1 for every prime p dividing N.

Proof: Suppose that NV is composite. Clearly N is a Carmichael number iff the ex-
ponent A(N) divides N — 1. If N has a repeated prime factor p then p | A(IN): so a
Carmichael number must be square-free. But if N is square-free, say the product of
distinct prime factors p; then A(N) = lem {p;} and so A(N) | N — 1 iff each p; — 1
divides N — 1. : ]

Corollary
A Carmichael number has at least three prime divisors.

Proof: Suppose that N = pq is a Carmichael number with p, ¢ distinct prime factors,
p<q. Theng—1|N—-1=pg—1=(¢—1)p+p—1. Sog—1|p—1: butg—1>p-1,
a contradiction. ]

The smallest Carmichael number is 561 = 3x 11 x17. It was recently established
that there are infinitely many Carmichael numbers: indeed, C(X), the number of
Carmichael numbers less than X is at least X7 for sufficiently large X. In the other
direction, it can be shown that for any € > 0,

C(X) < Xexp (—(1 = ) (108X10€10g10gX)>

loglog X

for all sufficiently large X.

We give the number of Carmichael numbers up to X for X up to 10%°.

X 7(X) C(X)
10° 168 i
10% 1229 7
10° 9592 16
10° 78498 43
107 664579 105
106° 5761455 255
102 50847534 646
1™ 455052511 1547
1011 4118054813 3605
i 10 37607912018 8241
10 346065536839 19279
14 3204941750802 44706
1018 20844570422669 105212
10'6 279238341033925 246683
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We defined W(N) to be the probability of a false return of probably prime
from the Fermat test: that is, the proportion of bases b prime to N satisfying the
condition ¥¥~! = 1 mod N.

Proposition ,
The probability W(N) of the Fermat test returning probably prime for N on
a random base prime to N is

i
W(N) = Wﬂrhcf(p -1,N-1)

Proof: Let N have factorisation IV = pr". By the Chinese Remainder Theorem,

T
the number of solutions to the equation ¥ ! = 1 mod N is the product of the number
of solutions to the congruences ™~ = 1 mod pit. For each such p;, the multiplicative
group modulo p§* is cyclic of order ¢ (p?*) = p*~! (p; — 1), so the number of elements
of order dividing N — 1 is just hef(N — 1,pf’"'1(p,~ —1)). Since p; divides N, N — 1 is
a;—1

prime to p; and the number of solutions in the multiplicative group modulo p{* is

hef(N — 1, p; — 1). Dividing by ¢ (p;*) and taking the product, the result follows. m

Our first improvement on the Fermat test is obtained by noting that if N is a
prime then the equation X2 = 1 mod N has only the two solutions X = +1 mod N,
whereas if N has more than one prime factor then the equation has at least four
solutions (if p, ¢ divide N then the equations X = +1 mod p and X = +1 mod ¢ can
be solved independently). We define the Fuler test by modifying the Fermat test to
require that b7 = +1 mod N.

This test certainly includes the Fermat test, and is slightly faster. It is also
strictly stronger, for 2%4* = 1 mod 645, while 2%22 = 259, so that 645 = 3 x 5 x 43
is a pseudoprime for the Fermat test base 2, but not for the Euler test. We have
2322 = 1 mod 129 and 23?2 = —1 mod 5.

Unfortunately, this strengthening does not obviate the possibility of absolute
pseudoprimeﬁ._lFor example, N = 1729 = 7 x 13 x 19 has the property that if b is prime
to N then b2 =1 mod N, so that N is an absolute Euler pseudoprime.

We can further strengthen the Euler test by identifying the sign +1. If p is

- b b
prime, then boT = (5) mod p where the Legendre symbol (5) is +1 if b is a

quadratic residue of p, —1 is b is a quadratic non-residue and 0 if p | b.

. a . B @
We define the Jacobi symbol (N) for odd positive N = Hpi by
a a\™
)= I (;) - g1
We immediately see that
(i) _(@ mod N 79
N N :

1 Terminology varies
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() - (2)(2) s

From the properties of the Legendre symbol we obtain

()= (2)(2) 4

(%) = (-1)F, J5

2 N2
() = -0, 7
and, if M is odd and positive,
M N (M—1)(N-1)
(ﬁ) (“zvf) =D ol

the last being the law of quadratic reciprocity. These formulae make it possible to obtain
b
(N) without needing to know the factorisation of N. Application of J1 ensures that

we may take 0 < b < N, and if b is even, we can extract the power of two in b by J6 and
J4. Since b is now positive and odd then J7 can be applied to reduce the computation

N ;
to that of («-b—) . The computation is very similar to that of the highest common factor

of b and N by Euclid’s algorithm, with some extra care taken to keep track of the signs.
In particular, the computation of the Jacobi symbol can be performed in polynomial
time. '

The Euler-Jacobi test extends the Euler test by requiring that T =

b . .
}V) mod N. It is again a polynomial time test.

The Euler—Jacobi test is stronger again than the Euler test. Considering 341
tested base 2 we find that 2'7° = 1 mod 341, so that 341 passes the Euler test base 2,

but (31—21_1 = —1, so that 341 fails the Euler—Jacobi test.

Indeed, we have finally achieved a test with no absolute pseudoprimes.

Proposition
If N is composite, the probability that N will pass the Euler—Jacobi test with a
randomly chosen base modulo N is at most 3.

Proof: If N is not a Carmichael number then from the discussion above the result is
already true for the Fermat test, which is included in the Euler-Jacobi test. So we may
suppose that N is a Carmichael number: that is, N is square-free and if p | IV then
p—1|N-1.

The bases b which satisfy b"T = 41 mod N form a subgroup of the multiplica-
tive group modulo N. It is sufficient to show that this subgroup is not the whole group,
which implies that it has index at least 2, and so it is in turn sufficient to exhibit a
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base b for which N fails the Euler—Jacobi test. We consider two cases according to the
power of 2 which divides N — 1 and show that in each case there is such a base.

Case 1. Suppose that 2" is the exact power of 2 dividing N — 1 and that 2"
divides p; — 1 for every p; dividing N. Let d be the number of distinct prime factors of
N and put define ¢; = 0 or 1 by p; =1 +¢;2" mod 27t We have

d
NEHl-i—tiZ’" =1+ T2 mod 2"
i=1

where T = Z t;. Since T is odd, at least one of the ¢; must be 1, say ¢;: so 2" is the

exact power of 2 in p; — 1. By the Chinese remainder theorem there is an b which is a
quadratic non-residue of the prime pj and which satisfies b = 1 mod p; for ¢ # 3. Then

bp'z_ = —1 mod p; and b = +1 mod p; for i # j. Now N — 1 is an odd multiple
of gz — 1 so that b = -1 mod p;, and b = = +1 mod p; for 7 # 7, which means

that that b 2 ;~é +1 mod N and N fails the Euler test base b.

Case 2. Suppose that 2" | N —1 but 2" does not divide p—1 for some p dividing
N. As before, we take b to be a quadratlc non—res1due of the prime p and = 1 mod ¢
for every other g d1v1d1ng N. We have b"F = —1 mod p. Since N — 1 is an even

multiple of p — 1, bE =41 mod p. Hence if N passes the Euler test base b, it must |

5 b b
do so with b7~ = +1 mod N. But the Jacobi symbol (—) = H (—) = —1. So
N Di

=1 b
b = (I_V-) mod p and N fails the Euler—Jacobi test base b. [

Corollary
The question “Is N composite” can be answered in random polynomial time. W

We can strengthen the Euler test in another direction by a further exploitation
of the observation that 1 has only two square roots with respect to a prime modulus.
The resulting test is the strong, or Miller-Rabin test. Let N —1 = 2"s where s is odd.
For a base b, consider the sequence, formed by repeated squaring,

-1 N—1
b°, 6%, ... b7 ¢ 2

$ — p-1 mod N.

The strong test returns probably prime if this sequence either starts +1 mod N or
ends ...,—1,+1,+1,... mod N. We see immediately that this test includes the Fermat
and Buler tests. It is not obvious that it includes the Euler-Jacobi refinement of the
Euler test, but we shall see later that this is indeed the case. The strong test can be
perfomed in polynomial time.

Once again it is possible for the strong test to return the answer probably prime
on composite numbers: for example, for NV = 4033 = 37 x 109, we have N — 1 = 2%63
and 253 = 3521, 2293 = —1 mod N. There are no absolute pseudoprimes for the strong
test: we shall prove this later.

For numbers N = 3 mod 4 there are only two terms in the sequence, b" 7 and
»N-1 and so the strong test is equivalent to the Euler test. For N =1 mod 4 the
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strong test is strictly stronger than the Euler test: for example V = 1105 = 5 x 13 x 17
satisfies 2°%2 = 1 mod N and so N passes the Euler test, but 227 = 781 # +1 mod N
and so N fails the strong test. ;

Let N = Hp?", and put p; — 1 = 2"'s;. We let 0o(b mod m) denote the power
of 2 dividing the order of b in the multiplicative group modulo m. The requirement of
the strong test base b is that /N should pass the Fermat test base b together with the
requirement that the value of o5 (b mod p}*) should be the same for every prime power
p¢t dividing N. If so, we call this commor. value the level of b.

The bases of level 0 are those for which b® is already = +1; the bases of level I
are those for which b2 ® = —1 and 5 * = +1 mod N.

The multiplicative group modulo p® projects down onto the multiplicative group
modulo p under reduction modulo p: the orders of these groups are p* (p — 1) and
p — 1 respectively, so the multiplicative order of b mod p® and of b mod p differ only by
a power of p. For odd p, then, oz (b mod p*) = 02(b mod p), and the requirement of the
test becomes that the 02(b mod p) should all be equal for p dividing V.

Proposition
If N passes the strong test base b then N also passes the Euler-Jacobi test base
b.

Proof: Suppose that N = H p;* passes the strong test base b. We must have

N-—1

b2 =+1mod NN

o b
and we need to show that this sign is the same as (ﬁ

Let [ be the level of b, the common value of 02(b mod p;). For each i, we have
ol |pi —1;put ;i =1+ t.2" mod 2" with t; = 0 or 1. Then b is a quadratic residue

b
modulo p; iff ¢; = 0; that is, (—) = (—=1)%. Now

i

N = H (1 + tiQI)Gi =1+ Ztiazﬂl mod geEe,
i i

Pt T= Ztiai. We have
i

(%) -T(3)" =T =

i i

Now N =1+ T2 mod 2", so T is odd if I = r, and even if [ < 7. Since

N-—-1 r—1
b 2 = b‘s‘z g
. i b :
we see that in either case b7 2 = (ﬁ) , as required. [ |
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We observe that the strong test is strictly stronger than the Euler-Jacobi test
by considering N = 6601 = 7 x 23 x 41. We have 2'%*° = 4509 mod 6601 and 223 =
1 mod 6601 so that N fails the strong test, but passes the Euler—Jacobi test since

2
— | = +1.
(6601) -

We can give some indication of the strength of these tests by considering the
number of Fermat, Euler-Jacobi and strong pseudoprimes base 2 up to X for X up to

1033,

X Fermat Euler—Jacobi strong
1H* 22 12 5
187 75 36 16
1ge 245 114 46
107 750 375 162
108 2057 1071 488
10° 5597 2939 1282
100 14884 7706 3291
25.10° 21853 11347 4842
¥ 38975 20417 8607
G2 101629 53332 22407
1019 264239 139597 58897
Praoposition

There are infinitely many strong pseudoprimes base 2.

Proof: Suppose that m is a Fermat pseudoprime base 2: that is, o™=l = 1 modm buat
m has a non-trivial factor ¢. Put N = 2™ — 1. Since ¢ | m, we have 2° =1 | N, so N
is composite. We claim that N is a strong pseudoprime. We have N — 1 = 2s where
s =292m"1_1is odd. But s = 0 mod m, so 2° mod N is a power of 2™ mod N, and
this is just 1 mod N. So 2° = 1 mod N and NN passes the strong test base 2.

Since N is a Fermat pseudoprime base 2, we can repeat the process and obtain
an infinite sequence of strong pseudoprimes base 2. [

This is far from giving the correct distribution of pseudoprimes.

For numbers in the range N < 102, there are 22407 numbers which are strong
pseudoprimes base 2; 967 which are strong pseudoprimes bases 2 and 3; 101 are pseu-
doprimes bases 2,3 and 5; 9 are pseudoprimes bases 2,3,5 and 7; finally, none are
pseudoprimes bases 2,3,5,7 and 11. So five rounds of the strong test suffice to com-
pletely determine the character of a number of at most 12 decimal digits. A slight
improvement in practice might be to perform the strong test bases 2,3,7 and 10 and
check for the seven exceptions given below.

For numbers in the range N < 10, the strong test with bases 2,3,5,7 and 11
leaves just two exceptions, 2152302898747 = 6763 x 10627 x 29947 and 3474749660383 =
1303 x 16927 x 157543. The latter is a strong pseudoprime for all bases up to and
including 16.
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N factors

3215031751 151 x 751 x 28351
118670087467 172243 x 683969
128282461501 292441 x 438661
354864744877 297853 x 1191409
546348519181 522661 x 1045321
602248359169 347059 x 1735291
669094855201 578401 x 1156801

We need now to consider the probability that a given composite number will pass
the strong test to a random base. Unfortunately the set of bases for which IV passes the
test does not form a subgroup of the multiplicative group modulo N, as had been the
case for the previous tests. We can see an example of this for V = 29341 = 13 x 37X 51:
N is a strong pseudoprime to the bases 2 and 6 but not to the base 3. However the set
of such bases is a subset of the set of bases for which N passes the Euler-Jacobi test.

Proposition
Let N have d distinct prime factors. The proportion of bases for which N passes
the strong test is at most 21~ times the proportion of bases for which N passes the
Fermat test.
Proof: The bases for which IV passes the strong test form a subset of those for which
N passes the Fermat test.
d

Let N = pr"; put N —1=2"s and p; — 1 = 2™s; with s and the s; odd. For

=1
1 > 0, let ¢;(l) denote the proportion of b mod p{* for which 0z(b mod p;) = I.

We have ¢;(0) = 277 ¢;(I) = 22"  for 1 <1 < rj and ¢;(1) = 0 for I > r;.
The proportion of bases for which N passes the strong test is

P=wm Y ITa0)

=0 i=1

Call this sum S. Put R = Zn and let p = min{r,r;}. The term ]._Ict
i=1
9~ R for 1 = 0; 24~ E-d for 1 < p and zero otherwise. So

—9-R (1 _}_ZQd(l 1)) _o-R (1 % 9dp _ 1)
2¢ —1
We observe that R > pd > d 2 1.
We have 2% + 21 > 282 4 2149 for any a with0 < a < R— 1. So
9R 4 9 > gR+1-d 4 od
2R+1 . 2 2 2R 4 2R+1—d + 2(1’
2Pd = S 2R -1 S 2R+1 . 2d . 2R+1—d 41 = (2d _ 1) (2R+1—d . 1)
2rd — 1
241
giving S < 21=4 35 required. »

41 Lightid
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Corollary ,
If N is composite and N > 9, the proportion of bases for which N passes the
strong test is at most .

Proof: Let d be the number of distinct prime divisors of N. Let P, S be as in the
proof above.
If d = 1 then N is a prime power, say N = p®. The multiplicative group modulo

. . =1 1
N is cyclic and hef(N —1,¢(N — 1)) =p—1. So W(N) = ;_1 < P <i
If d = 2, then N cannot be a Carmichael number, and so W(N) < 3 and S < }.
If d > 3 then S < 2'7% < 1. In either case P < 1. B

This result is best possible: for the Carmichael number N = 8911 = 7 x 19 x 67,
N is a strong pseudoprime to 1728 of the 7128 bases prime to V.

We observed that if IV is composite, then N will fail the Euler-Jacobi test for a
base b chosen to be a quadratic non-residue of one prime factor of NV and a quadratic
residue of the others.

We shall prove the next result at the end of the course.

Theorem
Suppose the Extended Riemann Hypothesis holds. Let G be a proper subgroup
of the multiplicative group modulo N. There is a positive integer b < 2(log N)? such

that bmod N ¢ G. [ |
Corollary

If the Extended Riemann Hypothesis holds, then an integer N is prime if the
Euler-Jacobi test returns probably prime for every base b < 2(log N g =
Corollary

If the Extended Riemann Hypothesis holds, then the questions “Is N prime?”
and “Is N composite?” can be answered in polynomial time. ]
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Probabilistic tests on ranges

We showed that for a given composite number, the probability of the strong test
incorrectly returning probably prime on a random base was at most .

Much more important in practice is the probability that a number which has
passed the strong test is in fact composite. We consider, for example, a process which
chooses odd numbers N of a given size uniformly at random and outputs N if it passes
r rounds of the strong test with random bases.

Let My denote the sample space of all odd numbers of exactly £ bits; let A(N)
be the event that NV is chosen; let ); denote the event that a number passes ¢ rounds of
the strong test with random bases; let C denote the event that a number is composite
and P that a number is prime.

We are interested in the probability

w(t, k) =P(C | D)

that a number which has passed t rounds of the strong test is in fact composite.
The result proved in the previous section can be stated in this notation as

POL|C) < i

We shall need a technical lemma on the distribution of primes.

Lemma
(i) If p(n) denotes the n-th prime, then p(n) > nlogn;

1.105 X
ii > (X)) > X > 108;
(ii) g X 2 w(X) > g X for X > :

2.
(i) P (P) > -k—f’ for k > 50. -

Our strategy is to find “small” subsets &,, of My such that if N is composite
and not in &,, then u(N), the probability that N passes the strong test, is also small,
at most 27 ™.

Proposition
For all k > 50 and 2 < m < \/Eﬁ there exists a set &,, of composite numbers
such that
(i) for composite N € My \ €, we have p(N) < 27™;

(i) Eml/1Mu] < 25T 22mkIm,
(iii) |Em|/| M| < 1.02 22m—k/m,

Proof: Put X = 2*¥. We have |[Mg| = $X. Fix m with 2 < m < /k/2 and
put A = 2™ 1 § = 1/m. Put Y = $X° Since k > 50, 6k > V2k > 10, and
Y > #2'% =512,

d
Suppose N € My, and put N = pr’". For p; | N, let ¢; = hef(p; — 1, N — 1)

; et
and let b; = B —. We have

Ci
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Put
Em = {N € My | N is composite, b; < A for some p; | N with p; >Y}.

We first need to show (i). Suppose that N is composite and not in &y,.

If d > m then pu(N) < 27™W(N) < 27™, as required. So we suppose that
N & &, and that d < m.

Suppose first that the prime factors p; of N satisfy pi < Y. Put D = Hpi.

T

Now N/D is coprime to N — 1 but divides ¢(/N): indeed

o0 =NT] (2=2) - %g(w .
P

pIN
Now D < Y™ and N > 3 X, so
N/D>NY™™=N (3X°) " > $X/27"X = 2™

Now W(N) < D/N, so W(N) < 2'~™ and again u(N) <27

Finally suppose that N has a prime factor p; with b; > A. Then W(N)<1/A
and since p(N) < W(N)/2, we have u(N) < 1/24=2"".

We now prove parts (i) and (iii). Fix a prime p > Y. Suppose N € &n because
p| N withp >Y and b < A. Now N = O modp and N = 1 mod c. Since p and ¢
are coprime, we have N = p mod pc. The number of such N in My, is at most 3 X/pc,
which is $Xb/p(p — 1).

Summing over all p > Y and b < A, we have

1Xb 1
enl < 323 o <M 2 ey

p>Y b<A

We have

Now

1 1 1
Z:n(n—~1)=Zn—l_-ﬁ
n>Y n>Y

and the contribution of the terms corresponding to odd n is at most

Yy +1\%1 1 _ 0.505
¥Y-1) 2 ¥—1— ¥

using the fact that for £ > 50, ¥ > 512.

So

=

giving part (iii).
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We now prove part (ii). We have

1 519 s, 1
2 =T S 2

p>Y p p>Y

Let p(n) denote the n-th prime number. We have p(n) > nlogn and 7(Y) >

g ¥ for Y > 2, so p(n) > Y implies that n > m: call this bound g(X). Hence

512 1
PPVl S
511 i ™ (logn)

Since is decreasing, we can overestimate the sum by an integral:
n?(logn)?
i dt 1.01
> wioanyr S 101 Tlog )2 2
n?(logn) o(x) t2(logt)?  g(X)(logg(X))

n>g(X)

since g(t) decreases by a factor of at most 1.01 over an interval of length 1 with ¢ > ged,

Now
Y LX® 1 X4

9(X) = log(Y") ~ log (1X9) - 2log2 6k

and
log g(X) > 6log X — log(6k) — log(2log2) > 6k log 2 — log(6k) — log(2 log 2).

We have 6k > V2k > 10, so log g(X) > 0.436k. Hence

1.01 2.02 log 2 1 \? 758
7(X)(ogg(X))? = 6kX? (0.435k) < 3kx8
whence A2
|Em| € 1.0=——X15,
k
Finally, we put A = 2™~! and | M| = X/4 and part (ii) follows. ]

These estimates are not necessarily good approximations. For example, for
k = 51, m = 3 the proposition gives an estimate |€3] < 234-84  This set is the set
of Carmichael numbers with just three prime factors between 2°° and 2% and direct
computation shows that there are just 32035 < 215 of these.

Proposition

For 3 < v < +/k/2 we have

1 - —t(m-—1 —tv
w(t,k)gW(ZP(gm)z( ) 49 )

m=3

—
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and

— P(Em) t(m—1) u(t—1) w(L, k)
vtk = 2, pp) i 1—w(lE)
Proof: We have £,,1 C &Em.
P(C| V) =P(E| V) + ) P((Em \ Em-1) | V) + P((C\ &) [ I4)

m=4
53myt ~ P((Em \5 _1)NY)  P(=&NCNY)
TPy = Vi) P (%)

For the first term we use P(Y1 | C) < % to obtain
P(E3N Vi) =P (Ve | &)P(E3) < 27%P(Es)
For m > 4 we use part (i) of the previous result to obtain
P((Em \ Em-1) N Vs) =P (Ve | Em \ Em-1)P (Em \ Em—1) < 20T™P(Em)
and for the final term we have

P(~E&,NCNY:) =P (Y |C\EHP(C\E) < 277P(C) <277

?M

1 1
We have P C Vi, so i . Substituting, we have the first result.
C Vi PO = P(P) u g st resu
We can also write
- ]P(gm)g—t(m—l) + P(yt | C \ gv)P (C \ S'U)
P (V) P (J:)

P(C|) <

m=3
SO
P(Y; |C\&) <P |C\E)27 ¢

and P(ylncmﬂg)<1p(ym(,*) PO |OP(C)
P(C\Ey) P(C\&)  P(C\&)

So the final term in the upper bound for P (C | );) is at most

]P(yl IC\EU) =

PV |C\ENB(C\E) _ ooo-nBOLIOP(C) _ o ue-nyP(C [ VIR (D)

P () - P () P ()})

‘We now have

. wt-1 P (C | V)P (W
P(C|W) < 2 gtime—l) 4 g—ulé-1) ( |IP(33¢)( ).
Finally,
Vy2P=PnY1 =1\ (CNI),
S0
P(Y:) >B(W1) —P(CNY1) =P ) —P(C| V)P ()
giving

P (1) & 1
P(Y;) — 1-P(CDh)

and the result follows.

Computational Number Theory 24 RGEP Michaelmas 1996



Theorem
For k > 50, we have
for1 <t <4,

w(t, k) < 0.4k (1+ 2‘*) (zt—t\/W) ;

for 5<t<k/9+2,
w(t, k) < 0.4k2° (2-2\/%*2) 4ot k/z) ;
and fort > k/9 + 2,

w(t, k) <04k (64 .9=2t=k/3 | ot—ty /k/g) .

Proof: Let M be the integer part of y/k/2. Using the first part of the previous
proposition with v = M, we have

1 z —t(m— —t
P(Plyt)sm(;n’(sm)z (m=1) + 2 M)-

The definition of M implies that 27" < Z_t( Vk/2-1) and from Lemma 1 (iii) we have

1
— < 0.
PP = 4k

By the previous result,

= 1.22¢ &
Z ]P’(Sm)2_t(m_l) <~ = 2{2-t)m—k/m.
T V2k

m=3 m=3

M
Put g(m) = 9(2—tym=k/m and § = Z g(m).
m=3
For 1 < t < 4, the function g(m) is increasing between 3 and M and we can

estimate the sum S by the final term multiplied by the number of terms:
5 < Mg(M) < k][22 tV*/2,

k
For5<t< 5 + 2 the maximum value of g(m) is attained at mo = /k/(t — 2)
and this lies between 3 and M. We have

§ < Mg(mo) < k[2272VEE2).
k :
For t > 5 + 2, the function g(m) decreases from m = 3 and

S < Mg(3) < +/kj2 2~ (4= 23=k/3,
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Let us consider the case k = 250 (about 75 decimal digits). For t = 6, the
Theorem gives :

w(6,250) < 0.4-6 - 2° (2"2\’250-4 spigyPITIRY <y BB

Theorem
For k > 50, we have
for1 <t <4,

w(t, k) < 0.4k2° (1 . 0.721\/E) (2*‘5 kf?) :

for 5 <t < k/9+2,
w(t, k) < 0.4k2" (0721 272VAED 4 o~ 7).
and for t > k/9 + 2,

w(t, k) < 0.4k (46.2VE2 3 4 2=VE7E).

Proof: Let M be the integer part of v/k/2. Using the first part of the previous
proposition with v = M, we have

P(P| V) < 575 (Z P (E,)27Hm D 4+ 2—“‘”’) :

The definition of M implies that 27*M < Z“t( Vi/2-1) and we have

L <04k.

P(P)

We have y .
t

Z P(gm)g—t(m—l) < M Z 2(2—t)m—k/m

- V2

m=3 m=3

by the previous result. Define g(m) = 2@=9™=%/™ and § = Z g(m
m=3
For 1 < t < 4, the function g(m) is increasing between 3 and M and we can

estimate the sum S by the final term multiplied by the number of terms:

S < Mg(M) < \/k[2 27tVF/2

which again gives the result stated.
k . : :
For5<t< g + 2, the maximum value of g(m) is attained at mo = /k/(t — 2)
and this lies between 3 and M. We have

S<Mg mO ,n‘ 9. 9= 24/k(t—2)
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k
For ¢ > = + 2, the function g(m) decreases from m = 3 and we estimate the

sum S by the first term multiplied by the number of terms:
S < Mg(3) < kj2 27 t=23-k/3,

Let us consider the case k& = 1000 (about 300 decimal digits) and ¢ = 10. We

have
w(10,1000) < 27168
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Primality proofs and tests

In the previous sections we discussed probabilistic tests based on Fermat’s little
theorem and estimated the probability of an incorrect return.
We now turn to algorithms for proving primality.

Proposition
. d
Suppose that N —1 has prime power factorisation N —1 = H q;*. If there exists
i=1
a; fori=1,...,d such that
¥ '=1mod N
and
N-—1
hef {ai "o— I,N} =T

then N is prime.
Proof: Let p be a prime factor of N. The conditions on a; imply that aiv 1 =1modp

and agN_l)/q" # 1 mod p. Hence b; = aiNﬂl)/q‘l is also not 1 mod p. So b; is an
element of order exactly ¢;* modulo p, and so p = 1 mod ¢{*. Since this is true for all
i, we have N —1|p—1, so N = p is prime. [

Theorem
The question “Is N prime?” can be answered in non-deterministic polynomial
time.

Proof: Put I = log, N. We claim that there is a certificate of length at most 2{® which
can be used to verify the primality of V in time polynomial in /. We may assume [ > 4.

We apply the previous result to a certificate consisting of a list comprising the
factors g;, the corresponding a;, and the certificates for each of the g; > 2: the claim
is that this certificate has length at most 2/3. We proceed by induction on N. Put
l; = log, q;.

The number of distinct prime factors N — 1 is at most [, so the number of ¢;
and a; is at most [ and the number of bits in each a; is at most [ + 1. By the induction
hypothesis, the length of the certificate for each g; is of length at most 2I?. Since we
may assume N odd, we have Z I; <l-1. So

i>1

3
Y B< (Zz,-) Zl=1P P~ 2P =]

i>1 i>1

for | > 4 and the total length of the certificate for N is at most 2(1°—212 —1)+-2/(I+1) =
203, as required. ,

Since the requirements on the a; can clearly be checked in polynomial time, the
result follows. 22

Clearly for general IV, the task of factorising V — 1 is not likely to be practical,
but the theorem is of value for numbers of special form.
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We give a proof that n = 27! 4+ 1 = 10888869450418352160768000001 is prime. The prime

factorisation of
n—1= Hq,:e-' =9223.313.56.73.112.132.17-19-23
i

and we take a = 37 (found by experiment).
q t | hef{t—1,n} | t?mod n
2 | 10888869450418352160768000000 1 1
3| 9354010963973492916993512414
5| 1351012516026499070653830762
7 | 8062813045304944797369771039
11 2463733209014077207278496857
13 | 6407268961794741702710273269
17 | 9053361352312001957951455964
19 | 8356926485141789229660494702
23 | 3827781173633570643166605750

I = T = T = U S )
e el el

In the previous example, p — 1 was easy to factor (indeed of special form). Consider now the
case of P = 2-10% +2-10% + 2. 10'2 + 2293. We check that P is a probable prime by the
Miller-Rabin test. Factorising, we find that P — 1 = 22 .3.83-293-4759 - 7396423814267 - Q
where Q = 194699817241332307058500113471280388980613 is a probable prime: the factorisation
is not trivial. A similar table shows ¢t = 2(P=1)/2 mod P as q runs over the prime factors of P — 1
(experiment showed that taking a = 2 was always sufficient).

q t hef{t = 1,n} tT mod n
2 2000000000000000000000000002000000000000000000000002000000002292 1 1
3 1318153086591731736469920726843621641393929800598543361826277506 1 1
83 6920253635805154134193082003916780119625681291998221072585535812 1 1
293 1580111237911682375630284347476219285409697001346976311800642249 1 1
4759 962702317170486488830666372340353723257412185628764648899805234 1 1
7396423814267 1639360327319291446688971273392824739072157706066543462144851903 1 1
Q 1104551578150497277337730887608547384039863980170281607802561021 1 1

Proving the primality of p now reduces to proving that of the alleged prime factors of p — 1:
especially Q. We might accept proving the primality of 7396423814267 bu trial division, but need to
to better with Q. Factoring, we find Q —1 = 22.179251335702611-271545838805284119171584123
and that, again taking a = 2, we reduce the proof of the primality of @ to that of 179251335702611
and of 271545838805284119171584123.

Taking p = 271545838805284119171584123, we have p — 1 = 2 - 31 - 97 - 223 - 10475971813 -
19327716377.

We may repeat the process to find proofs of the primality of these numbers also.

We summarise in the table below, assuming that we need no further proof for primes under
10,

P a P a P a P a P a P
P 2 2
2 3
2 83
2 293
2 4759
2 7396423814267 2 2
2 328333
2 11263601 2 2
2 5
2 29
2 971
2 Q 2 2
179251335702611
2 271545838805284119171584123 2 2
2 31
2 97
2 223
2 10475971813 2 2
3 3
2 17T
2 5705887 2 2
2 29
2 98377
2 19327716377 3 2
2 47
2 9
2 529933
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Define the n'® Fermat number by F, = 22" 4+ 1. The Fermat numbers, Fy = 3,
Fy =5, F, = 17, F3 = 257 and Fy = 65537 are all prime. The next is composite,
F5 = 4294967297 = 641 x 6700417, and all subsequent Fermat numbers for which the
character has been determined are also composite.

The largest known composite Fermat number is Fa347;. The Fermat numbers
up to F5; are known to be composite, and those up to Fj3 have been factorised.

Put N =F,,sothat N —-1= 22" is fully factorised. If we can find b such that

p2" 7 —1is prime to N, then N is prime. Consider the Euler-Jacobi test applied to IV
n— b n—
base b. For N to pass the test, we must have b2 "= (ﬁ) and if 827 —1is prime

b
to IN this means that (ﬁ) must be —1 rather than +1.

We see therefore that IV is prime iff for b such (%) = —1 we have b2 = —1.

Forn > 1, F,, =2 mod 3 and = 1 mod 4, so (%) = (ﬁ) = —1.

We have proved

Proposition
The Fermat number F,,, for n > 1, is prime if and only if32""" = —1 mod N. b

We can use the argument of the Theorem to obtain useful information about
numbers N for which N — 1 is not completely factorised.

Theorem

d
Suppose that N — 1 = FC where F' = H q;* is fully factorised. If there exists
=1

a; fort=1,...,d such that
eV '=1mod N

7
and
N-1
then every prime factor p of N satisfies p = 1 mod F'.
Proof: Let p be a prime factor of N. As before, p = 1 mod ¢;* for each ¢ and so
F|p-1. ]
Corollary

If N satisfies the conditions of the Theorem with F' > C then N is prime.

Proof: If N is composite, it has at least one prime factor p < vVN. But by the
Theorem, p> Fand N=FC+1< F? sop> \/ﬁ, a contradiction. ]

The discussion of Fermat numbers generalises immediately to the next result.
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Proposition
Suppose that N —1=2"s u;ith s < 27. If there is a base b mod N for which N
—1
passes the Euler test in the form b2 = —1 mod N, then N is prime. ]

Clearly one should look for bases with (l% = -1.

We can use these results to construct classes of provable primes. Suppose that
L is a list of proved primes: for example we might begin by taking £ to be the set of
all primes up to some limit L. We let F' be a random product of elements of L, take
C a random number less than F and put N = FC + 1. We now test N for primality
by some fast probabilistic test, such as the Miller-Rabin test. If NV passes this test,
it is worth attempting to to prove the primality of N using the results above. If N is
proved prime then N can be added to £ and the procedure repeated.

Quadratic tests

All the tests we have considered up to now rely on properties of the ring of
integers modulo N, which will be a field precisely when N is prime. The tests depend
to a considerable extent on properties of the multiplicative group and examination of
various subgroups and in particular on the factorisation of its putative order N —1. For
example, the strength of the Miller-Rabin test is greatest when N — 1 is divisible by
a high power of 2, and the primality proofs just discussed rely on being able to obtain
at least a partial factorisation of N — 1.

Let us now consider what to do if N — 1 has an inconvenient factorisation: for
example, suppose N — 1 = 2pg where p and ¢ are large primes.

We construct a new series of tests by working in the quadratic ring Z/N[Vd].
For any ring R, we define R[V/d] to be the ring of elements of the form = + yVd, with
z,y € R and addition and multiplication given by the rules

(u+m/&) —I—(x-l-y\/c_i) =u+z+ (v+y)Vd

and

(u + v\/a) (m - y\/a) = uz + dvy + (uy + vz)Vd.

Inversion in the ring modulo IV is achieved by

-1 r-yvd
(V) = S
provided that the norm z* + dy? is invertible in R.

The ring Z/N[Vd] can be obtained as the quotient of the polynomial ring Z[X]
by the ideal (X* —d, N).

For prime p the ring Z/p[V/d] is a field iff the polynomial X2 — d is irreducible
in Z/p: that is, iff d is a quadratic non-residue of p. In this case, the ring Z /p[Vd] is
the finite field GF (pz) of order p.

If d is a quadratic residue modulo p, say d = e* mod p, then the ring Z/ p[\/&] is
isomorhpic to a direct sum of two copies of Z/p,

Z/p|Vd] = Z/p®Z/p
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by
T +yVd — (z + ye, z — ye).

We can generalise the construction by considering a quadratic polynomial
f(X) = X% + bX + c with discriminant d = b* — 4c. The quotient ring Z/(N, f(X))
will then be Z/N[Vd).

When Z/p[Vd] is a field GF (®), the multiplicative group is cyclic of order p?—1.

We define the rational subgroup to be the elements z + y\/c_i with y = 0, that is, the
elements of the multiplicative group modulo p. Further define the co-rational subgroup
to be the quotient group Z/ p[\/&]* /Z/p*, consisting of classes of rational multiples of

z + y\/E. The co-rational group has order p + 1.

We can now form an analogue of the Fermat test for the co-rational group.
The Lucas test for N proceeds as follows. Given N, pick any auxiliary d such that
d # 0mod N. If hef(d, N) > 1 then N is composite. Otherwise pick a base 8 =
& —I—y\/c_i mod N. If hef(85, N) > 1 then again N is composite. The test now requires

d

that Y = z + (]—v-)y\/a mod N: if this holds, return probably prime, otherwise
composite.
Proposition

If N is prime, then N passes the Lucas test.
Proof: Suppose N is prime. Choose d prime to N and let 8 = = + yV/d.

d

If (ﬁ) = +1 then the ring Z/N[Vd] is isomorphic to two copies of Z/N,

so the multiplicative group Z/N[Vd]* has exponent N — 1 and we have 8N = & I

(%) = —1 then Z/N[Vd] is a field and the Frobenius map & — &N is the unique

non-trivial automorphism, which must be conjugation. So g~ = z — y\/a. H

When % = —1, the Lucas test can be regarded as the analogue of the Fermat

- test for the rational and co-rational group simultaneously. Suppose N passes the test
base 8. Put b= 8. If B~ = 3 then B¥ = B = B, so

-1 _ N—l—N—lzééz

which is the identity in the rational group, and
e N 1 =
(8/B)" " = BB =1,

which is the identity in the corational group.
Just as in the case of the Fermat test, it is possible for a composite number to

d
pass the test. An example with (F) = +1 can be constructed easily out of a Fermat

pseudoprime. Let N = 341 = 11x31, and let d = 5. Put 8 = 3+212v/5 mod 341. Then
B3 = B. Since 37?2 = 5 mod 341 and 212 - 37 = 1 mod 341 then in the isomorphism

Z/341[v5] =5 Z./341 @ Z./341
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defined by v/5 — (37, —37) we have 3 — (4,2) and 341 is a Fermat pseudoprime to the
bases 2 and 4.

In this case, we also have absolute psuedoprimes, the analogues of Carmichael
numbers. The smallest two known are are 443372888629441 = 17 x 31 x 41 x 43 x 89 x
97 x 167 x 331 and 39671149333495681 = 17 x 37 x 41 x 71 x 79 x 97 x 113 x 131 x 191,

both of which have the property that for any d with (%) = +1, a base 3 can fail the

Lucas test only when the norm of 3 has a factor in common with N. Such numbers
have the property that if p | N then p? — 1 | N — 1, and so are Carmichael numbers in
particular.

d
When (N) = —1, we can again find pseudoprimes. Consider N = 2465 =

5% 17 x 29 and d = 3. Put 8 = —73 + 226v/3. Then 8~ =3 = 1.

In this case, however, there are no absoulte pseudoprimes.

The Lucas test clearly contains the Fermat test: whatever d, if we take 3 to be
rational, then the Lucas test requires that BN = B3, which is the Fermat test. However,

if we take 8 = V/d, then the Lucas test requires that gN = (%)ﬁ But this is just

N N

The computation of B~ in the Lucas test can be carried out by the usual square
and multiply method using the definitions of multiplication in the ring Z/N [V/d] given
above. There is another method of formulating the calculation which avoids the use of
the quadratic extension.

Let 8 =z + y\/a and suppose that f(X) = X?% — 22X + b is the quadratic
polynomial satisfied by B over Z/N, where b = z2 — dy? is the norm of 3. Put " =
Tn + y”\/g. Then zo = 1, yo = 0, 1 = = and yo = y. The sequences z, and y, both
satisfy the recurrence relation zp41 = 222, — bzp_1.

The Lucas test can now be phrased as requiring that for any polynomial f(X) =
X? — aX + b, any sequence y, with yo = 0 and satisfying the recurrence relation

W (i), that is, d" 7 = (i), which is the Euler-Jacobi test.

a? — 4b
Yn+1 = QYn — DyYn—1 has yy = Ny

The analogue of the results proved earlier can be summarised in the following
result.

Proposition

d
Suppose that N + 1 = FC where F' = H gi* is fully factorised. If there exist d

i=1

with (%) — —1 and elements B; in Z/N[Vd] of norm 1 for i = 1,...,d such that

BNt =1mod N

and
N+1
th{ﬁi 9 ‘—1,N} =1
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) ) d
then every prime factor p of N satisfies p = (—) mod F'. In particular, p > F.
P

Proof: Let p be a prime factor of N. The conditions on 3; imply that ﬁ;N 1 =1 modyp

and ﬁi(N_H)/q" # 1 mod p in the group Z/p[\/c_i]. Hence v; = ,Bi(N"'l)/q"l is also not
. . _ d

1 mod p. So v; is an element of order exactly ¢;* modulo p, and so ¢{* | p— ( —) . Since
p

this is true for all ¢, F' | p — (g) m

Corollary
If N satisfies the conditions of the proposition and F' > C then N is prime. W

We define the Mersenne number M, = 2P — 1. If p is composite then M, is
composite, so we restrict our attention to p prime.
In order to prove N = M, prime by the Lucas test, we need to find a d with

d S & ' :
— | and a 8 which is not a square in the co-rational group. We see that M, = 1 mod 3

73
and so N = —1. The element 8 = 2 + v/3 of the circle group is easily found by

inspectiont. We need to consider whether (3 represents an element of maximal order in
the corational group: that is, whether 8 has a square root in the circle group. Since 2
has order p in the multiplicative group modulo M, and the order of this group is even,
2 is a square; let V2 denote a square root modulo M,. By direct calculation, 8 = 72

1++3

. The norm of v is —1. We have ﬁl# = ny"'l =4y = —1.

where v =

Since N + 1 = 2P is fully factored, we have proved

Proposition
The Mersenne number M), is prime if and only if p is prime and

ME+1

(2+v3) 7 =-1mod M,

This test can be programmed to run very fast in practice, using fast modular
multiplication techniques, and so the largest known prime at any given time is usually
a Mersenne number. At presenti, the largest known prime is Mj257787. The previous
holders of the title were Mgsoazs [1994], Mrses30 [1992], 391581 - 2216193 _ 1 [1989] and
Ma16001 [1985]. The largest known twin primes are 1706595 - 21123% 4 1.

t It is the fundamental unit of the ring Z[v/3).
1t 3™ September 1996
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1 Elliptic curves

We cannot do more than give a very brief introduction to elliptic curves in this section. See Cassels
[4], [5], Husemoller [14], Knapp [16], Silverman [28], and chapters in Cohen [7] and Niven et al
[26].

1.1 Elliptic curves over any field

An elliptic curve over a field F' can be defined as a non-singular projective plane cubic curve. In
general, we can write such a curve in Weiserstrass form Y? = X3 4+ aX + b, with the cubic in X
having distinct roots (that is, non-zero discriminant A = —4a®—27b%). Over fields of characteristic
2 or 3 we need a more general form

Y24+ a0, XY +asY = X3 +a:X% + ag X + as.

In addition to the affine points, there is a single point at infinity, O = (0: 1: 0) in projective
coordinates. It is a point of inflexion for E: that is, the tangent has triple contact.

If K is a field containing the field of definition F, we define E(K) to be the set of points
(always including O) with coordinates in K.

eThe points E(K) form an abelian group with O as zero. a

The group law is defined by the “tangent-chord” process. We note that a line has at most
three points of intersection with E, and exactly three if counted according to multiplicity. We
define points P, Q, R to sum to zero iff they are collinear. So if P and @ are in E(K), then the
equation of the chord joining them (or if P = @, the equation of the tangent) is defined over K,
and hence so is the third solution R. Now every vertical line goes through O, so the sum of P and
@ is the other point on the vertical line though R.

It is clear that this process defines a commutative binary operation: associativity is the least
easy part (but see below). The operations of addition, duplication and negation are given by
explicit rational functions with coefficients which are integer polynomials in the coefficients of the
Weierstrass equation.

1.1.1 Explicit formulae for the group law

Suppose that we wish to add P = (z1,%1) to @ = (z2,y2) on the elliptic curve E with equation
Y2 = X? + aX + b, to obtain P+ Q = (z3,y3). If 1 = z2 but y1 # y2, then P = —@Q on E, and
P+ Q = O. Otherwise, let £: Y =mX + ¢ be the line intersecting E in P and Q.

If P # Q, then £ has equation m = 84 and ¢ = U2 if P = Q) then m = Szi+a and

T3—T1 T2—71 21
c= 2y2—3:3—a:c1
e
Substituting ¥ = mX + cinto Y2 = X3 + aX + b, we have X* —m?X? +... = 0. So the sum

of the roots is £ + T2 + 3 = m?, and the point P + Q = (z3,ys) where y3 = —(mz3 + c).

Fast algorithms for performing the group operations on an elliptic curve are described by
Koyama and Tsuruoka [18].

1.1.2 Division points

The traditional term for a point of finite order in the group structure is division point. For example,
the 2-division points are the points (z,0) where z is a root of the cubic z® + azx + b, since these
are the points with vertical tangent, hence [2]P = O.

The map [n] of multiplication by n on E is a rational function, determined by the division
polynomials. Originally computed by Weber, the fastest algorithm is due to McKee [22], [23].
Computation shows that there are at most n? points of order dividing n: the group E[n] of n-
division points is of rank at most 2. In general the rank is exactly 2 over a large enough field,
except when n is divisible by the characterstic of the field.
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If all n? points of order n are defined over K, then so is the Weil pairing, a non-singular
alternating bilinear map with values in n-th roots of unity (necessarily also in K), Wy : E[n] x
E[n] — pn.

1.1.3 The ring of endomorphisms

An endomorphism of E is a rational map from E to E which respects the group structure (indeed
every rational map is an endomorphism composed with a translation). Endomorphisms form a
ring under composition. Examples are the multiplications [n] by integers: a less obvious example
is (z,y) — (-2,iy) on Y2 = X3+ X.

eThe ring of endomorphisms of E are either Z, an imaginary quadratic ring, or (in finite charac-
teristic only) a quaternion order. a

When E has non-trivial endomorphisms, we say that it has complez multiplication'; the quater-
nion case is supersingular.

1.1.4 Models for an elliptic curve

We define the j-invariant of the elliptic curve ¥? = X 3 +aX +btobej=—2%3%/A where
A = —4g® — 27b% is the discriminant. As its name suggests, it is an isomorphism invariant
of the curve, and there is at least one curve for every value of j. If j is not 0 or 1728, take
a = —27j(j — 1728)3, b = 54j(j — 1728)° to give a curve with A = 21231242(5 — 1728)° and
invariant j. If j = 0, takea =0, b=1 and if j =1728,takea=1,b=0.

In characteristic 2 or 3 the formulae for j and A become somewhat more complicated, but the
recipe for constructing a curve with the required value of j remains essentially the same.

We define the twist of E by d as the curve with equation dY? = X? + aX + b: equivalently,
V2 = X3 + ad?X + bd®. These curves have the same j-invariant and become isomorphic over the
extension of the field of definition by V.

1.2 Elliptic curves over the complex numbers

We can obtain the entire theory of elliptic curves over the complex numbers by starting with
doubly periodic functions having a lattice A = Z(w;,ws) of periods. The Weierstrass p-function
satisfies the differential equation p> = 4p® — gap — g3, and so the pair (p, p') parametrises the
complex torus C/A as an elliptic curve. It is now clear that there must be an Abelian group
structure. As a Riemann surface the complex points E(C) form a torus, hence have genus 1.
(There is an algebraic definition of genus over any field.)

The ubiquity theorem guarantees that any complex elliptic curve arises in this way (the invariant
j is a holomorphic function of the ratio w; Jwi).

We immediately see that

Eln] = %A/A = 7/nZ © Z/nZ

and that the endomorphisms must come from multiplication by elements of A. For example, the
curve Y2 = X3 + X corresponds to A = Z[i].
The Weil pairing is given, for rational numbers a, b, ¢,d by

W (awy + bwa, cwy + dws) = exp(2mi(ad — be)).

We construct complex multiplication curves by taking the period lattices to be ideals in complex
quadratic rings Z[/d]. The following result is part of the theory of modular forms.

e The complex multiplication curves corresponding to Z[v/d] are defined over an algebraic number
field of degree h(d). O

1 An obsolete term is singular.
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1.3 Elliptic curves over a finite field

An elliptic curve E over a finite field F = GF (g) can have only finitely many points. If we consider
the quadratic character of the cubic X3 + aX + b as being random, then the expected number
of points on the curve should be about ¢ + 1 (remembering to include the point at infinity). In
fact this is not far from the truth. If E has N points, write N = ¢ + 1 — ¢ where ¢ is the trace of
Frobenius®>. We have Hasse’s Theorem®

o|t| < 2,/7. O

The range of possible values ¢+1—-2,/g < N < ¢+1+2,/7 is the Hasse range. Every possible
value in the range occurs, indeed Birch [2] shows that for curves over a prime field

eThe number of elliptic curves with trace of Frobenius ¢t over GF' (p) is given by the class-number
H(t® —4p). 0

Hasse’s theorem implies that the quadratic polynomial X2 — tX + q cannot have distinct real
roots, and complex roots over a prime field. If we let o and @ denote the roots, then the number
of points on E over GF (q) is (o — 1)(@ — 1) and the number of points on E over GF (¢") is
(a™ — 1)(a™ — 1).

The torsion in an elliptic curve over a finite field of characteristic p follows the same pattern
as over a field of characteristic zero, with the exception of the p-torsion. There can be at most
a rank 1 subgroup of p-division points. A curve with p-torsion (possibly over an extension field)
is termed ordinary: a curve with no p-torsion is supersingular. An equivalent definition is that a
curve is supersingular iff p divides t. A further characterisation is in terms of the endomorphism
ring already described: we note that every elliptic curve over a finite field has Frobenius as a
non-trivial endomorphism.

oA supersingular curve is defined over GF (p?). If defined over GF (p) it has p + 1 points. O

Schoof [27] gives an algorithm for determining the order of an elliptic curve over a finite field
which runs in polynomial time, O ((log¢)®). The algorithm determines ¢ modulo [ for many small
primes [ by looking at the effect of the Frobenius automorphism on the /-division points, working
in the extension of the field defined by the I-division polynomials.

Originally thought impractical, it has been successfully implemented by Atkin* and Elkies.
Couveignes and Morain [8] give an improved version: see also Lehmann, Maurer, Miiller and Shoup
[20], who computed the number of points on the elliptic curve ¥ = X3 + 9051969.X + 11081969
modulo the prime 10374 4+ 169 in 1700 MIPS-days® (not including precomputation of the division
polynomials): details are given in [3]. Morain reports® finding the number of points on the curve
Y2 = X3 +4589X + 91228 modulo the prime 10%% + 153 in the equivalent of 4200 hours on DEC
3000 and DEC Alpha.

Atkin proposes a method of constructing elliptic curves of prescribed order modulo p by consid-
ering values of ¢t with d = t*> — 4p small. These correspond to reduction of complex multiplication
curves of discriminant d. For example, if p = 1 mod 4, then it is known that p is expressible in
the form a2 + b2. The elliptic curve Y2 = X% 4+ X has N, = p+ 1 — t where ¢ is one of xa or %b.
(If p = 3 mod 4, then this curve is always supersingular).

Complex multiplication curves: —d = 1, 2, 3, 7, 11, 19, 43, 67, 163 (also —d = 1, 3, 7 with
conductor 2, d = —3 with conductor 3). The j-invariants are z3 for r = 22.3, 22.5, 0, —3.5, —25,
—g8.3 2835 993511, ~28.3.5.23.29 snd 7=2%3%11°%,24.3%5°, 32.5%.17%, —3.2'6.5%.

Reference to Kaltofen and Yui [15].

2The trace of Frobenius acting as a linear map on the Tate module T;(E), the inverse limit of the points of
l-power order.

3An example of the “Riemann hypothesis for finite fields”.

4Not published, but circulated to the NMBRTHRY electronic mailing list, 1988-1992

5Conventionally 1 MIPS is the power of a VAX-11/780.

6Electronic mail to NMBRTHRY list, 27 Jan 1995
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Menezes, Vanstone, Zuccherato [24] give a version of Schoof’s algorithm in the case of charac-
teristic 2. For other methods see Lay and Zimmer [19], and Lercier and Morain [21], (25]. Koblitz
[17] discusses the question of elliptic curves with prime order.

Something about twisting.

1.4 Singular curves

We defined an elliptic curve to be non-singular: that is, there is a tangent defined everywhere. If
we allow a singular point, say at the origin of co-ordinates (0,0), then the equation of the curve
can be put (in characteristic not 2 or 3) in the form Y2 = X3 + 5X2. If s # 0 then the singular
point is a node and there are two tangent lines Y = +./s: if s = 0 the singular point is a cusp.

It remains true that the non-singular points form a group. We can parametrise the points on
the curve by the lines through (0,0) and find that there is a bijection between the non-singular
points and the points on a projective line.

«Over GF (p) the group on the non-singular points of a singular cubic Y? = X3+ 5X? is explicitly
isomorphic to the additive GF (p)* if s = 0, the multiplicative group GF (p)* if s is a non-zero square
and the corational group if s is not a square. a

1.5 Other curves

The construction of the group law generalises to form the Jacobian of a curve of higher genus.
We define a divisor on a a curve C to the a formal finite sum of points with integer coefficients,
S pnp[P)] and the degree of a divisor to be the sum of the coefficients. The divisor of a function
fon Cis (f) = 3 pdp[P] where dp is the order of the zero of f or minus the order of the pole
of f at P (so dp is zero except at finitely many points). We call these divisors principal and note
that principal divisors have degree zero.

The Jacobian J(C) is the group of degree zero divisors modulo principal divisors. The con-
struction should be thought of as analogous to that of the ideal class group for a ring of algebraic
integers.

eThe Jacobian of a curve C of genus g has the structure of projective algebraic variety of dimension
g. An elliptic curve is its own Jacobian. O

This theorem states that Jacobians are examples of Abelian varieties, projective varieties with
a group structure (necessarily Abelian): there is a sense in which they are the only examples.

The map P — [P] — [O] maps an elliptic curve E to its Jacobian. If P, @, R are collinear
on E, then the (linear) function defining the line joining them has divisor [P] + [Q] + [R] — 3[0)].
(This provides an easy proof of the associativity of the group law on E.)

A curve with equation Y2 = f(X), for f a polynomial of degree d with no repeated roots,
defines a curve of genus [%-LJ Such curves are hyperelliptic: every curve of genus 1 or 2 is of this
form, but not every curve of higher genus is hyperelliptic. '

The explicit group law on the Jacobians of curves of genus 2 has recently been worked out by
Flynn [11], [12] and Cassels [6].

In the special case of hyperelliptic curves over a field of rational functions F'(X) there is an
interpretation of the group law in terms of equivalence classes of binary quadratic forms with
coefficients in the polynomial ring F[X] having discriminant f (X).

There is an analogue of the Weil pairing, the Tate pairing on the torsion points on an arbitrary
Abelian variety.
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