III Commutative Algebra Michaelmas Term 1996 EXAMPLE SHEET 1

All rings are commutative with a 1.

- 1. Find an example of a unique factorisation domain which is not Noetherian.
- 2. Prove that the direct product of finitely many Noetherian rings is Noetherian.
- 3. By considering trailing coefficient ideals, prove that a ring R is Noetherian if and only if the power series ring R[[X]] is Noetherian.
- 4. Show that an integral domain is a unique factorisation domain if and only if all its non-zero prime ideals contain a non-zero principal prime ideal. Use this to show that if R is a principal ideal domain then R[[X]] is a unique factorisation domain.
- 5. Let M be the subset of a free Abelian group A of finite rank consisting of elements a satisfying a finite set of inequalities of the form $f_i(a) \geq 0$ where each f_i is a group homomorphism of A to the additive group of the integers \mathbb{Z} . Show that the subset $\mathbb{Z}M$ of $\mathbb{Z}A$ is a Noetherian ring. Does this remain true if we use defining maps f_i to the additive group of the real numbers?
- 6. Show that r lies in the Jacobson radical of R if and only if 1-rs is a unit for all s in R.
- 7. Show, using Zorn's lemma, that every ring has a maximal ideal. Now assume that the ring is countable and prove this result without appealing to Zorn.
- 8. Show that the set of prime ideals in a ring possesses a minimal member (with respect to inclusion).
- 9. Let R be a Noetherian ring and θ be a ring homomorphism from R to R. Prove that if θ is surjective then it is also injective.
- 10. Let $R = k[X_1, X_2, \ldots]$ be the polynomial ring with countably infinite indeterminates and I be the ideal generated by all the elements X_i^i . Show that R/I is not Noetherian and that its nilradical is not nilpotent.
- 11. Let R be a Noetherian ring and f be a power series in R[[X]]. Prove that f is nilpotent

if and only if all its coefficients are nilpotent.

- 12. Let N be a submodule of a module M. Show that M is Artinian if and only if both N and M/N are Artinian.
- 13. A local ring is one which has a unique maximal ideal. Show that a ring is Artinian if and only if it is the direct product of finitely many Artinian local rings.
- 14. Let R be an Artinian ring and θ be an R-module map from R to R. Show that if θ is injective then it is also surjective.
 - 15. Let $E(p) = \{ \alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = (r/p^n) + \mathbb{Z} \text{ for some } r \in \mathbb{Z}, n \in \mathbb{N}_0 \}$ for a rational prime p. Show that E(p) is an Artinian, non-Noetherian \mathbb{Z} -module.

brookes@pmms.cam.ac.uk

EXAMPLE SHEET 2

All rings R are commutative with a 1.

- 1. Let S be a multiplicatively closed subset of a ring R, and M be a finitely generated R-module. Prove that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that sM = 0.
- 2. Let N_1 and N_2 be submodules of the R-module M and let S be a multiplicatively closed subset of R. Show that $S^{-1}(N_1 + N_2) = S^{-1}N_1 + S^{-1}N_2$ and $S^{-1}(N_1 \cap N_2) = S^{-1}N_1 \cap S^{-1}N_2$ as submodules of $S^{-1}M$.
- 3. Let I be an ideal of a ring R, and let S = 1 + I. Show that $S^{-1}I$ is contained in the Jacobson radical of $S^{-1}R$.
- 4. Let R be a ring. Suppose that for each prime ideal P the local ring R_P has no non-zero nilpotent element. Show that R has no non-zero nilpotent element. If each R_P is an integral domain, is R necessarily an integral domain?
- 5. A multiplicatively closed subset S of a ring R is saturated when $xy \in S$ if and only if both x and y are in S. Prove that (i) S is saturated if and only if $R \setminus S$ is a union of prime ideals. (ii) If S is an multiplicatively closed subset of R, there is a unique smallest saturated multiplicatively closed subset S' containing S, and that S' is the complement in R of the union of the prime ideals which do not meet S. If S = 1 + I for some ideal I, find S'.
- 6. Let $\phi: M \longrightarrow N$ be an R-module map. Show that the following are equivalent: (i) ϕ is surjective; (ii) $\phi_P: M_P \longrightarrow N_P$ is surjective for each prime ideal P; (iii) $\phi_Q: M_Q \longrightarrow N_Q$ is surjective for each maximal ideal Q.
- 7. Construct universal $\mathbb Z$ -bilinear maps

$$(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \longrightarrow (\mathbb{Z}/3\mathbb{Z})$$

$$(\mathbb{Z}/6\mathbb{Z})\times(\mathbb{Z}/10\mathbb{Z})\longrightarrow(\mathbb{Z}/2\mathbb{Z})$$

and show that, if r and s are coprime integers, then any \mathbb{Z} -bilinear map on $(\mathbb{Z}/r\mathbb{Z}) \times (\mathbb{Z}/s\mathbb{Z})$ is zero.

8. Prove that for R-modules M, N and L

$$M \otimes (N \otimes L) \cong (M \otimes N) \otimes L.$$

- 9. Show that there can be an element in a tensor product $M \otimes N$ which cannot be written as a single term $m \otimes n$ for any elements $m \in M$ and $n \in N$.
- 10. Show that the universality of \otimes implies that $M \otimes N$ is spanned by the elements $m \otimes n$.
- 11. Let I be an ideal of a ring R. Show that $(R/I) \otimes M$ is isomorphic to M/IM.
- 12. Let R be a local ring, and M and N be R-modules. Prove that if $M \otimes N = 0$ then M = 0 or N = 0.
- 13. Let $R = \mathbb{C}[X]$, and I and J be the ideals of R generated by $X \alpha$ and $X \beta$ respectively. Show that $(R/I) \otimes_R (R/J)$ is a cyclic R-module and identify its annihilator. Show that $(R/I) \otimes_{\mathbb{C}} (R/J)$ is a cyclic R-module when using the diagonal action and identify its annihilator.
- 14. Show that any unique factorisation domain is integrally closed.
- 15. Let $R \leq T$ be rings with $T \setminus R$ closed under multiplication. Show that R is integrally closed in T.
- 16. Let $R \leq T$ be rings with T generated by n elements as an R-module. Show that over every maximal ideal of R there lies at most n maximal ideals of T.
- 17. Let T be of finite type and integral over R and P be a prime ideal of R. Show that T has only finitely many primes lying over P.
- 18. Let R be an integrally closed integral domain with fraction field K, and let $f(X) \in \mathbb{R}[X]$ be a monic polynomial. Show that if f(X) is reducible in K[X] then it is also reducible in R[X].
- 19. Let m be a square-free integer and R be the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{m}]$. Show that $R = \mathbb{Z}[(1+\sqrt{m})/2]$ if $m \equiv 1 \mod 4$ and $R = \mathbb{Z}[\sqrt{m}]$ otherwise.

III Commutative Algebra

Michaelmas Term 1996

EXAMPLE SHEET 3

All rings R are commutative with a 1.

- 1. Let $0 \longrightarrow N_1 \longrightarrow N \longrightarrow N_2$ be a sequence of R-modules. Then the sequence is exact if and only if for all R-modules M the sequence $0 \longrightarrow Hom(M, N_1) \longrightarrow Hom(M, N) \longrightarrow Hom(M, N_2)$ is exact.
- 2. A projective R-module M is an R-module for which any R-module map to an R-module N/N_1 lifts to a map to N. Show that M is projective if and only if it is a direct summand of a free R-module.
- 3. An R-module M is injective if any R-module map from an R-submodule N_1 (of an R-module N) to M extends to an R-module map from N to M. Show that \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective \mathbb{Z} -modules.
- 4. An R-module M is flat if tensoring any short exact sequence of R-modules with it yields a short exact sequence. Show that $\mathbb{Z}/2\mathbb{Z}$ is not a flat \mathbb{Z} -module.
- 5. A ring R is absolutely flat if every R-module is flat. Show that a local ring is absolutely flat only if it is a field.
- 6. A chain of prime ideals is maximal if it is not a proper subset of another chain of primes. Prove that all maximal chains of prime ideals in an affine algebra which is an integral domain are of the same length.
- 7. Give an example of a Noetherian integral domain which has maximal ideals of different heights.
- 8. Give an example of an affine algebra T with a prime ideal P for which $\mathrm{ht}P+\mathrm{dim}T/P<\mathrm{dim}T$.
- 9. Let k be a field. Show that every k-subalgebra R of k[X] is of finite type over k and is of dimension 1 if $R \neq k$.
- 10. Let $R \leq T$ be affine domains over the field k. Prove that $\dim R \leq \dim T$.

- 11. Prove that any field which is finitely generated as a ring is finite.
- 12. Let $R = k[X_1, ..., X_n]$ where k is a field, and M be a non-zero R-module. Consider the set of all ideals which are annihilator ideals of non-zero elements of M. Show that every maximal member of this set is prime. A module N is residually simple if it is non-zero and the intersection of all its maximal submodules is zero. Show that M contains a residually simple submodule.
- 13. Let R be a Noetherian regular local ring. Show that R[[X]] is a regular local ring of dimension $\dim R + 1$. Deduce that if k is a field then $k[[X_1, \ldots, X_n]]$ of formal power series in n indeterminates is a regular local ring of dimension n.
- 14. Let R be a Noetherian ring and $P_1 < P_2$ be prime ideals of R. Suppose there is some other prime Q lying strictly between P_1 and P_2 . Show that there are infinitely many such Q.
- 15. Let I be an ideal contained in the Jacobson radical of R, and let M be an R-module and N be a finitely generated R-module. Let θ be an R-module map from M to N. Show that if the induced map from M/IM to N/IN is surjective then θ is surjective.

brookes@pmms.cam.ac.uk

III Commutative Algebra

Michaelmas Term 1996

EXAMPLE SHEET 4

All rings are commutative with a $1 \neq 0$.

- 1. Show that in a valuation ring any finitely generated ideal is principal.
- 2. Let $A \leq B$ be valuation rings with fraction field K, and let P and Q be the maximal ideals of A and B respectively. Show that if $A \neq B$ then Q < P and that A/Q is a valuation ring of B/Q.
- 3. Show that if A is a valuation ring of Krull dimension 1 with fraction field K then there do not exist any rings intermediate between A and K. (In other words A is maximal among proper subrings of K.) Conversely show that if a ring R, not a field, is a maximal proper subring of a field K then R is a valuation ring of Krull dimension 1.
- 4. Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K^{\times} of K. Let $\Gamma = K^{\times}/U$. If α and β are represented by x and $y \in K$ define $\alpha \geq \beta$ to mean $xy^{-1} \in K$. Show that this defines a total ordering on Γ which is compatible with the group structure (i.e. $\alpha \geq \beta$ implies $\alpha \gamma \geq \beta \gamma$ for all $\gamma \in \Gamma$). (In other words Γ is a totally ordered Abelian group. It is called the value group of A.) Let $v: K^{\times} \longrightarrow \Gamma$ be the canonical homomorphism. Show that $v(x+y) \geq \min(v(x), v(y))$ for all $x, y \in K^{\times}$.
- 5. Conversely, let Γ be a totally ordered Abelian group written additively, and let K be a field. Let $v: K^{\times} \longrightarrow \Gamma$ be a non-Archimedean valuation. Show that the set of elements $x \in K^{\times}$ such that $v(x) \geq 0$ is a valuation ring of K.
- 6. Let R be a discrete valuation ring with field of fractions K, and let L be an extension field of K of finite degree. Show that a valuation ring of L containing R is a discrete valuation ring.
- 7. Show that any ideal in a Dedekind domain can be generated by at most 2 elements.
- 8. Let R be the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{10})$. Show that R is a Dedekind domain but

not a principal ideal domain.

- 9. Let R be a discrete valuation ring with maximal ideal P. Show that the P-adic completion of R is again a discrete valuation ring.
- 10. Show that an R-module M is Hausdorff with respect to the I-adic topology if and only if $\bigcap_n I^n M = 0$. (A topological space is Hausdorff if given distinct x and y there are disjoint open sets U and V containing x and y respectively.)
- 11. Show that the additive group of an R-module M is a topological group with respect to the I-adic topology. (You have to show that the maps $M \times M \longrightarrow M$ $(x,y) \longrightarrow x+y$ and $M \longrightarrow M$ $m \longrightarrow -m$ are continuous.)
- 12. Show that the ring of p-adic integers \mathbb{Z}_p is compact.
- 13. Show that in the *I*-adic completion \hat{R} the ideal \hat{I} is contained in the Jacobson radical of \hat{R} .
- 14. Let k be a field and f be a homogeneous polynomial in $R = k[X_1, ..., X_n]$. Calculate the Hilbert polynomial for R/(f) and hence show that d(R/(f)) = n 1.
- 15. Let R be a Noetherian local domain. Show for non-zero x that $d(R/(x)) \leq d(R) 1$.

 16. Show that the composition length of an Artinian module is independent of the brookes@pmms.cam.ac.uk