NOTES ON ALGEBRAIC
TOPOLOGY

G. Segal - Michaelmas Term ’96

1. Introduction

Algebraic topology is the study of the connectivity properties of topological spaces. A
topological space is a set in which there is a notion of “proximity”, which enables us to
. speak, for instance, of a “continuous path” in the space. Formally, we describe proximity by
giving a preferred collection of subsets, called the open subsefs. The intuitive idea is that a
subset U of X is open if whenever z € U then z’ € U for all z’ sufficiently close to z. I shall
assume the reader understands this concept, together with the related ideas

neighbourhoods

closed sets

continuous maps

homeomorphisms

compact spaces

the product of two spaces

the quotient space of a space by an equivalence relation.

1.1 First examples

I shall begin by describing some simple mathematical situations where ideas of algebraic
topology play a crucial role.

A space is connected if it is not the union of two disjoint non-empty open subsets. A
related concept is path-connectedness. A path in X from z( to z; is a continuous map
v:[0,1] = X

such that y(0) = z¢ and ¥(1) = z;. A space is path-connected if there is a path in it from
any point to any other. A path-connected space is connected, and the converse is true too
for the sort of spaces we shall be interested in.

The fact that the line R is connected, but becomes disconnected if a point is removed
from it, gives us one of the simplest but most basic results of real analysis.

Proposition 1.1.1 (The Intermediate-Value Theorem) If f : R — R is continuous,
and f(z1) > 0 for some zy1, and f(z2) < 0 for some za, then f(z) =0 for some z € R.

For otherwise R = f~1(—c0,0) U f~1(0, c0) would prove R was disconnected. o

After asking whether a space X is connected, the next simplest topological question is
whether it is simply connected. For this we consider closed paths ¥ in X, i.e. continuous
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maps 7 : [0,1] — X such that y(0) = y(1). We say that X is simply connected if any such
closed path can be deformed continuously to any other, or, equivalently, if the space £LX of
all loops in X is path-connected. (Precise definitions of the words just used will be given
presently.) Corresponding to the fact that R — {0} is not connected, we have

Proposition 1.1.2 (i) The space R? is simply connected.

(ii) The space R?— {0} is not simply connected. In fact each closed path v in R*— {0} has
a winding number deg (y) € Z, which does not change if v is continuously deformed.

(iii) The closed path yn given by yn(t) = (cos 27nt, sin 2wnt) has winding number n.
The winding number — or “degree” — counts, of course, the number of times the path

“goes around” the origin in an anticlockwise direction.

Just as the intermediate-value theorem arises from the idea of connectivity, so the fun-
damental theorem of algebra follows at once from Proposition (1.1.2).

Proposition 1.1.3 (The Fundamental Theorem of Algebra) Let f(z) = z"+a1z" "'+
---+a, be a monic polynomial with complex coefficients. Then f(z) =0 for some z € C.

Proof. Identify the complex numbers C with R2. Suppose the theorem is false, and that
f(z) # 0 for all z. Consider the curve v in C — {0} defined by yr(t) = f(Re?™**). When
R = 0 the curve yg becomes a point, and so deg (o) = 0. By continuity, deg (yr) = 0 for
all R. Now choose R so that

R > |ai| +|as| + -+ -+ |an],
and define yp s for 0 < S < 1 by
’YR,S(t) =z"+ S(alz“"'l + o an),

where z = Re?"#*. This is always a closed path in C— {0}. When S = 1 we have vr1 = 7r,
while yg,0(t) = R"e*™", so that deg(yr,0) = n # deg(7r) = 0. This is a contradiction. m

Before leaving this theme it is worth mentioning a natural generalization. To pass beyond
simple connectivity we can consider the maps vy : S™ — X, where

St={¢eR™ ;| ¢|=1}

is the unit sphere in R™+1, We say that X is m-connected if any two of these can be
deformed into each other. Alongside Proposition (1.1.3) we have

Proposition 1.1.4 A map 7 : S™ — R™! — {0} has a degree deg (7) € Z which does not
change under deformation. The natural inclusion has degree 1, and the constant map has
degree 0.

This gives us

Proposition 1.1.5 (The Brouwer fixed-point theorem) Let f : D* — D" be a con-
tinuous map, where D™ is the closed unit ball D™ = {£ € R™:|| £ ||< 1} . Then f has a fized
point, i.e. f(z) =z for some z € D™.

Proof. We use exactly the same steps as in proving (1.1.3). If f has no fixed point,
define yg : S"~! — R™ — 0 by vr(£) = R¢ — f(RE) for 0 < R < 1. Then 7o is constant, so
deg (yr) = 0 for all R. But 7, can be deformed to v, , for 0 < s < 1, where

nN,s() =& — sf(£).

We have 3,1 = 71, while 71 ¢ is the inclusion map S*=1 — R™— {0}, which has degree 1. m
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1.2 Homotopy

In the preceding discussion, the idea of deforming one map to another is crucial. Such
deformations are called homotopies.

Definition 1.2.1 Two maps fo, fi : X — Y are homotopic if there is a map F : X x[0,1] —
Y such that

F(z,0) = fo(z) and
F(z,1)= fi(z) forall ze€X.

We shall write fo = fi to indicate this relation.

We also say that two space X and X are homotopy equivalent if there aremaps f : X — Y
and g : Y — X such that both composites go f : X — X and fog:Y — Y are homotopic
to the respective identity maps.

Example The sphere S"~! is homotopy equivalent to R™ — {0}, for if F : S"~' —
R™ — {0} is the inclusion and g : R® — {0} — S"~! is defined by g(z) = z/ || = || then go f
is the identity, while

(z,t)n———»tm+(1—t)ﬂ—z—”

is a homotopy from f o g to the identity.

1.3 Smoothness

Algebraic topology is at first sight concerned with topological spaces and continuous maps.
In life, however, smooth maps are much more important than continuous ones. (T shall use
“smooth” to mean “indefinitely often continuously differentiable”.) Much of the success
of algebraic topology has come from developing techniques for translating questions about
smooth maps into questions about the homotopy classes of continuous maps.

To give a very simple example of such a translation, define an immersed closed curve in
the plane R2 as a smooth map 7 : R — R? such that y(t + 1) = y(¢) for all t € R, and
such that, in addition, the tangent vector ¥(¢) € R? is non-zero for all ¢. It is obvious that
any closed curve in R? can be deformed to any other. But an immersed curve v has an
integer invariant 7(7y) € Z which is the winding number of the tangent vector, i.e. of the
map 7 : [0,1] — R?— {0}. It is easy to see that an immersed curve 7o can be deformed to
another one 7, through immersions if and only if (7o) = (7).

Although this example is almost trivial, the method it embodies can be applied very
widely, and permits one to prove, for example, the surprising theorem that the standard
sphere S? in R? can be deformed through immersions to its mirror image.

1.4 The spaces to be considered

Algebraic topology is mostly concerned with very simple spaces, and certainly with spaces
which look very simple locally, although they may have interesting global properties. The
majority of the spaces we consider will be manifolds : a manifoldis a space X which is locally
homeomorphic to Euclidean space R™, i.e. each point z € X has a neighbourhood U which
is homeomorphic to an open subset of R™. A somewhat larger class of spaces, including, for
example, the closed disc D™, consists of manifolds with boundary and corners, defined as
spaces locally homeomorphic to R? x (R4)? for some p, ¢, where

Ry={z€eR:z >0}
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In the mathematical questions where algebraic topology plays a role the relevant spaces
most often arise from linear algebra. After the sphere S™~! one of the important examples
is the projective space Pg ~1 consisting of all lines through the origin in R™. More generally
we have the Grassmannian Gri(R"™), consisting of all k-dimensional vector subspaces of R™.
There are very many situations where we need to study a varying subspace of R", but the
most important for us is the map X — Gri(R") defined whenever X is a k-dimensional
manifold immersed in R™, which assigns to a point £ € X the tangent space to X at z.

The other spaces from linear algebra which we shall consider in these lectures are the
orthogonal group O,, which is a subspace of R™", the Stiefel manifold Vi(R"), which is
the set of ordered k-tuples of orthonormal vectors in IR“, and the complex analogues of the
spaces just mentioned, i.e.

]PE'I, Gri(C*), Uyn, and Vi(C*).

1.5 Electromagnetism and de Rham cohomology

To prove the theorems described in §1.1 we must find a way of defining the “degree” of various
maps. The most natural way to do this is revealed to us in the study of electromagnetism.
Suppose that we have a wire running along the Z-axis in R3 and carrying a constant electric
current. The current produces a magnetic field which at any point z is perpendicular to
the plane containing z and the wire. If we move a magnetic pole around any closed path in
R3 which does not intersect the wire, then the magnetic field does an amount of work on
the pole which depends only on the winding number of the path around the wire (as well,
of course, as on the strength of the current and the pole). The mathematical fact which is
exemplified here is that if we have a vector field v defined in an open subset X of R3, and
curl v = 0, then the line-integral
/ v-ds
b

of v around any closed curve v in X does not change when the curve 7 is continuously
deformed. This is Stokes’s theorem: if 7o and 7; are two curves in X which are sufficiently
close to each other, then together they form the boundary of a piece of surface L, and we

have
f v-ds—j v-ds = /(curlv)-dS =
M Yo b

By means of such vector fields v we can measure the winding numbers of curves, and
hence detect that a region is not simply connected.

The failure of connectivity in dimension two is equally easily detected: for this we need
vector fields v in X with vanishing divergence, such as the electric field of a charged particle.
Consider, for instance, a charge at the origin in R3, generating an electric field v in X =
R3 — {0}. Then the surface integral

v-dS
%
of v over a closed surface I, i.e. the “flux” of the electric field through X, counts the number
of times & wraps around the origin. It does not change when I is deformed, for if o and
¥, are two nearby surfaces we have

/ v-dS - v-dS:f(divv)dV:O,
P Zo R

where R is the 3-dimensional region bounded by Ly and ;.
There is another point to be noted. If we write I,(y) = f'r v - ds for the invariant of a
closed curve ¥ defined by a vector field v such that curl v = 0, then we see that I, does
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not change if we add to v the gradient of any smooth function in X, for the integral of a
gradient around a closed curve is zero. Similarly, the invariant I,(Z) of a closed surface &
associated to v when div v = 0 does not change if we add a curl to v.

With the benefit of hindsight we are led to consider for any open subset X of R? the
following sequence of vector spaces and linear maps

0 —R°(X) 2, gl rx) Z2e02(x) 2% 0%x) — 0,

where Q°(X) and Q3(X) both denote the vector space of smooth real-valued functions on
X, and Q!(X) and 22(X) both denote the smooth R3-valued functions.

First let us consider Q°(X). The gradient of a function f vanishes if and only if f is
locally constant, i.e. constant on each connected component of X. Thus the kernel H%(X) of
grad, which is called the 0-dimensional cohomology of X, is a vector space whose dimension
is the number of connected components of X.

Now consider 2'(X). We define the 1-dimensional cohomology as the quotient vector
space

{ve Q(X) : curl v = 0}
{v € Q1(X) : v is a gradient}

BH{X)=

We have seen that this is the set of invariants which we can define for closed curves in
X,
Turning to Q%(X), we have also seen that

{v e Q3(X) : div v = 0}
{veQ?(X):visacurl}

BX)=

is the set of invariants we can define for closed surfaces in X.
That is as far as we can go, for the operator div is always surjective.

Everything we have said can be generalized quite easily to open subsets X of R" for
any n. We define Q%(X) as the vector space of smooth functions on X whose values are
vectors with () components. We think of these functions as “tensor fields” a,,...;, With
k indices running from 1 to n and alternating in the indices. It is clear how to define
grad : Q°(X) — Q}(X). Locally, a vector-valued function «; is a gradient if and only if
dai /8z; = da; [0z, so we define curl : Q1(X) — Q%(X) by

(curl a)i; = O /Ox; — Oavi [ Oz;.

In general, we define an operator simply denoted by

d: 05 (X) - Q**(X)
by
(da)’-l gy = E(_l)r-l _3_

oz, S T e e

where A indicates that the symbol beneath it should be omitted. The operator d has three
basic properties, which we shall not prove here.

(i) dod=0
(ii) (the “Poincaré lemma”). If dar = 0 then locally o = df for some 2.

(iii) (“Stokes’s theorem”). If & € ¥(X), and R is an oriented (k + 1)-dimensional region
in X with k-dimensional boundary dR, then
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/da:/ Q.
R R

These properties make it reasonable to define cohomology groups by

__ {a€0*X):da=0)
H*(X) = {a € Q¥(X):a =df for some B}’

The elements of H¥(X) are invariants of closed oriented k-dimensional regions in X.

We can generalise still further from open subsets of R™ to arbitrary smooth manifolds,
but we shall not pursue that here. The cohomology groups we have been describing are
called the de Rham cohomology groups, and we shall write them HXp(X) when we want to
distinguish them from others to be defined presently.
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2. Cohomology

2.1 Cochain complexes
The cohomology of a space X is defined in two steps.
(i) We associate to X a cochain complex C.
(ii) We define H*(X) = HY(C)).
Definitions A cochain complez is a sequence of abelian groups and homomorphisms
s {_‘_ick—l 4 ok 8, okt 4 il

indexed by k € Z, such that dod = 0.
The k-cocycles of C” are ker d : C* — GFEL
the k-coboundaries of C" are imd : C¥~1 — C¥,
and the k' cohomology group is H*(C) = {k-cocycles}/{k-coboundaries}.

2.2 Alexander cochains

We first fix a “coefficient group” A. It can be any abelian group, but usually will be Z.

A k-cochain on X will be an A-valued function (zo, -+, k) — ¢(Zo," - , 2x) defined on
all (k + 1)-tuples of points of z which are sufficiently close together. Formally, this means
that we consider all pairs (U, ¢), where U is a neighbourhood of the diagonal in XhLand
¢ is a not necessarily continuous function ¢ : U — A. On these pairs, we introduce an
equivalence relation defined by

(U,e) ~ (U, ¢) & c|U"=¢c|U" for some
neighbourhood U” of the diagonal
which is contained in U N U".

The resulting equivalence classes of functions are the k-cochains. They form an abelian
group C*(X) under addition.

Definition 2.2.1 We define d : C*(X) — C**1(X) by
dC(:L'ﬂ, + e ,:!23;4.3) = Z(—l)ic(ro, 474 £ ,i‘,‘, e ,17k+1).
7 Here the notation 7; indicates that z; is to be omitted.

Proposition 2.2.2 C(X) is a cochain complez, i.e. dod=0.

7
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Proof.

dde(zo, -, zi42) = 9 _(—1)'de(zo, -+, &i, -, Zpya)
=Y (1) He(zo, - @5, &y Trgd) + (1) (o iy By, Brga)
j>i Jj>i
= 1.

We have the following analogue of the Poincaré lemma.

Proposition 2.2.3 If ¢ € C¥(X), with k > 0, and dc = 0, then any point z € X has a
neighbourhood V' such that c|V = db for some b € C*~1(X).

Here ¢|V means the element of C*(V') obtained by restricting ¢ to (k + 1)-tuples which
are contained in V.

Proof Suppose that c is defined in a neighbourhood U of the diagonal in X*+!, Let V
be a neighbourhood of = such that V*+! C U. Then define

b(l‘(], T 1zk—1) = C(.'J'.',Iu, T :‘rk—l)
for all zg,--+,zr_1 In V. We find at once
db(Ig,' o yz'k) = E(—l)iC(I,IU, e :fi) T )zk)

= C(Iﬂs"' :Ik) —dC(I,LL'(),"' lz‘.k)

= c(zo,  +,Tk).

2.3 Other ways of defining cochains

There are many ways of associating cochain complexes to spaces. For the spaces of interest
in algebraic topology, they all lead to the same cohomology groups. I shall mention four
more, of which the first two — Cech and singular — have the same formal structure as the
Alexander cochains, while the other two do not.

Cech cochains

Let & = {Ux}aes be an open covering of a space X. Define

Sk = {(@o, -, ax) € ¥ : Uy, N---N Uy, # B},
C*(U) = {all maps Si — A},
and d : C*¥ — C**! by the formula of 2.2.1. The proof that d o d = 0 is unchanged.

Variant Choose a total ordering of S, and omit from Sy all except the (k + 1)-tuples
(g, - -+, ag) which satisfy ap < o) < -+ < .

Either way, we shall prove that the cochain complex C'(U) defines the (Alexander) co-
homology H*(X) providing the sets U, and their non-empty finite intersections are con-
“tractible.
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Singular cochains

The standard k-simplex is
%= [y M) ERML: X 3.0, B0 =1},

It has k + 1 faces, which are the images of the maps §; : A¥~1 — A¥ given by

B:(Ao, -5 Ak=1) = (Ao, - Aic1, 0, A5, -+, Ae—p).

For any space X, a singular k-simplez in X is a continuous map ¢ : A¥ — X. Let Ek be
the set of all of these. Define C%,, (X) = {all maps Z; — A}, and d : C“ng —Cilp

sing sing

de() = B(=1)'c(¢ 0 6;).
The proof that d* = 0 is as before, noting that 0,0, = 6;_,6; if i < j. Singular co-
homology coincides with Alexander cohomology for spaces which are well-behaved locally:
roughly speaking, for those which are locally contractible.

Cellular cochains

A finite cell complez is a compact space X which is the disjoint union of a finite number
of subsets B, - called the cells — each homeomorphic to R* for some k, and such that
Ba — B, is contained in the union of the cells of dimension less than dim(Bg). Let Py be
the set of cells of dimension k. We define

Ck (X) = {all maps P, — A}.

One can prove that d : CF 1 can be defined, giving a cochain complex whose

k
cell — ceTl
cohomology is H*(X).

Examples
(i) 8™ = (point) U (R™). This gives us a chain complex with

. A ifk=0 orn
cell(S )‘Hcell(s ):{ 0 if not.

(i) P2 =C*UPE™ ' =CUC* ! U---UCU (point). This gives us a cochain complex
Z—-0—-Z—-0—-Z—0—-.-—0—Z,and

= Z ifk=0,2,4,---,2n
Hcell(Pig):{ 0 if not

Morse cochains

Let X be a compact smooth manifold. A smooth function f : X — R is a Morse function
if it has only finitely many critical points, all non degenerate. (A critical point is a point
z € X where grad(f) vanishes; it is non degenerate if the Hessian matrix (6% f/8z;0z;) is
non singular at z).

The indez of a non degenerate critical point is the number of negative eigenvalues of the
Hessian.

Choose a Morse function f on X, and let @ be the set of critical points of index k. We
define C*(f) = {all maps Q; — A}.

As before, we can define d to get a cochain complex whose cohomology is H* (X) But
‘really this construction reduces to the cellular method. For each point of X lies on a unique
trajectory of the gradient flow of f, and each trajectory has a critical point as its upper limit.
The trajectories descending from a critical point of index k sweep out a cell of dimension k.
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2.4 The idea of a cohomology class

Intuitively speaking, a k-dimensional cohomology class ¢ of a space X with real coefficients
is a rule which associates a number ¢(R) to each closed oriented k-dimensional region R in
X . The function R+ ¢(R) has two properties.

(i) It can be extended in many ways — the extension is not given — to an additive function
defined for regions R which are not necessarily closed, where “additive” means that
¢(Ry U Rs) = ¢(R1) + ¢(Rz) if Ry and Ry intersect only at their boundaries.

(ii) ¢(R) = 0 if R is the boundary of an oriented (k + 1)-dimensional region.

The significance of the property (i) is that it expresses the sense in which ¢ is additive for
closed regions: if Ry, Ra, and Rg are regions all with the same boundary R, = 0R2 = 0 Rs,
then Ry — Ra, R — Ra, and Ry — R3 are closed regions, and

C(R1 - Ra) =c(R; — Rg) + c(Ra— Ra).

Here Ry — Ry means Ry U (—R2), where — R denotes Ry with its orientation reversed. We
have ¢(—R) = —¢(R) because RU (—R) is the boundary of a collapsed (k + 1)-dimensional
region.

The definition just given is not quite correct if we take the coefficient group to be Z
rather than R, and in any case it is not practical, as it would be laborious to make precise
what is meant by a “k-dimensional region”. Nevertheless it is the correct idea to keep in
mind. If “region” is taken to mean “union of singular simplexes”, it reduces precisely to the
definition of singular cohomology.

2.5 The basic properties of cohomology

These are (i) functoriality, (ii) homotopy invariance, (iii) the Mayer-Vietoris sequence.

(i) Functoriality

A map f : X — Y induces a homomorphism f* : H*(Y) — H¥(X) for each k, and one
has

1. (identity)* = identity,

2 (gof) =fog".

This is because f induces a cochain map f* : C(Y) — C'(X). A cochain map ¢ : C"— c
is a sequence of maps ¢ : C¥ — CF satisfying do ¢ = ¢ o d. Such a map ¢ takes cocycles to
cocycles and coboundaries to coboundaries, and hence induces ¢ : H¥(C') — H*(C).

(ii) Homotopy invariance

Proposition 2.5.1 If fox= fi : X = Y, then f = f; : H¥(Y) — HY(X). In particular,
H*(X)= H*(Y) if X and Y are homotopy-equivalent.

The topological notion of homotopy is reflected in the algebraic notion of “cochain ho-
motopy”. Two cochain maps ¢g, ¢; : C" — C' are cochain-homotopic if there is a sequence
of maps h : C¥ — C¥~! such that

¢1—do=doh+hod.

Clearly this implies that ¢ and ¢, induce the same map H*¥(C) — H*(C).
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The proof of (2.5.1), when the cohomology is defined using Alexander cochains, is fairly
difficult. It is much easier, however, if the space X is compact, so for the moment we shall
give the proof only in that case.

If = {Ua}aes is an open covering of Y, let Ui denote the neighbourhood of the
diagonal in Y**1 consisting of all (k + 1)-tuples (yo, -, yx) Which are contained in one of

the sets Uy, 1.€.
u. = J st
a€S
Let
CE(Y) = {all maps Up — A}.

We define d : Cf(Y) — C5*'(Y') by the usual formula, and have a cochain complex, and
a cochain map Cy(Y) — C(Y). Any element of H*(Y’) obviously comes from a cohomology
class of Cy(Y') for some open covering i of Y.

Lemma 2.5.2 If fo, fi,: X — Y are two maps which are U-close, i.e. if for allz € X
there is an o € S such that both fo(z) and fi(z) belong to Uq, then f§ and f} are cochain
homotopic maps

Cu(Y) = C1X).

This lemma implies Proposition 2.5.1 when X is compact, for any element of H*(Y")
comes from some Cy(Y), and if {fi : X — Y }s¢[o,1) is a homotopy then we can find a
subdivision 0 = to < t; <tz < --- < t, = 1 of [0,1] such that f;, and f;,_, are U-close for
i=10

Proof. We define
h: CEYY(Y) — C¥(X)

by the formula
(hc)(l‘o, T xk) = E(—-l)ic(yo, Y E EBily T zk)a

where y; = fo(zi) and z = fi(z;). Notice that the right-hand side is defined providing the
points zg, - - - , T are close enough together. Then

hdc(.’cg, ,Ek) = E(—l)"dc(yo, e Yy i, ,zk)

=T{c(yo, -, Yim1, %o, 2k) — (Y05 * s Yir Zik1s "+ 2 2E)
+ Bicil =) e(yo, -+, Tjs o Yir 2yt e 5 28)
=i e(yo. % 202 B 3) }
=c(z0, -+, 2k) — c(¥o, -+, k) — dwe(zo, -, Tk).

(i1i) The Mayer-Vietoris sequence

The Mayer-Vietoris sequence tells us about the cohomology of the union of two spaces.
If X is the union of two open subsets X; and X5 then a cochain on X is the same thing as
a pair of cochains on X; and X, which agree when restricted to X2 = X; N X2. In other
words, we have

Proposition 2.5.3 There is a short ezact sequence of cochain complezes
0 - CX) = C(X1NelC(Xy) — C(X12) —0

C i (C‘X1,6|X2)
(e1,c2) —  (e1]X12) — (e2|X12).
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To say that a sequence of cochain maps
0—A —=B —=C —=0 (2.5.4)
is a short exact sequence means simply that for each k the sequence
0— A* = B* - C* =0
is exact.

Proof of 2.5.3. It is clear that the first map is injective and the second is surjective
(in fact the restriction C(X;) — C'(X12) is already surjective). What needs to be checked
is that if ¢; and ¢y are cochains on X; and X, which agree on X2 then there is a cochain
¢ on X such that ¢|X; = ¢;.

Suppose that ¢; and ¢, are defined in neighbourhoods Uy and Uy of the diagonals in
Xf““ and X;"H, and that ¢1|Ui2 = c2|U12, where Uyz is a neighbourhood of the diagonal
in X f;" 1 Let us choose disjoint open subsets V; and V, of X k+1 such that V) contains the
diagonal of X — X3, and V2 contains the diagonal of X — X;. This can be done (providing
the topological space X is normal, which I assume) because X — X5 and X — X are disjoint
closed subsets of X. Then V = V; U Uya U V5 is a neighbourhood of the diagonal in XrHL
and we can define ¢: V — Z by

C|V1 = C]_lVl
ClVg = CglVg
Uiz =c1lUiz =e2|lr2

Remark 2.5.5 For this proof, and for the exactness of the Mayer-Vietoris sequence, we
do not need X; and X2 to be open subsets of X, but only that their interiors cover X.

One of the most basic and characteristic tools of algebraic topology is the observation
that a “long exact sequence” of cohomology groups arises from a short exact sequence like
2.5.4.

Proposition 2.5.6 To each short ezact sequence 2.5.4 of cochain complezes we can asso-
ciate a map

d: H*¥(C) —= H*(4)
for each k, and the sequence
<o BEY(B) = H*Y(C) & HH(A) — HE(B) — HH(C) S HMH(A) — -
s ezact.

Proof. This is by “diagram chasing”. We consider the diagram

1

i A'H'l—* Bk+1—* Ck-i-l__,_o
1d Td 1d .

0— AF — BF — CF =0
1 i T

We first define the map d : H¥(C') — H**1(A)). Consider an element of H¥(C")
- represented by ¢ € C* such that de = 0. Choose b € B* such that b+ c. Then db+ 0 in
C*+1, so db comes from a € A¥*!. And da = 0, for da — ddb=101n B2 S0 a represents
an elernent of H¥*1(A"). We check successively that
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1. the class of a does not change if the choice of b is changed,
2. the class of a does not change if ¢ is changed by a coboundary, and

3. the map ¢ — a is a homomorphism from H*(C") to H¥+1(A").
I shall omit the proof that the long sequence is exact.

Putting together 2.5.3 and 2.5.6 we obtain the Mayer-Vietoris sequence.
Proposition 2.5.7 There is an ezact sequence
. — Hk_l(X_[Q) —* Hk(X) e Hk(Xl) @ Hk(Xg) - Hk(X]_Q) — Hk'{-l(X) —_—a s

I shall sometimes write darv @ H¥"(X12) — H*(X) for the “coboundary” map in
this sequence. Intuitively it can be imagined as follows. If we are given an element ¢ of
Hk‘l(Xlg) and a closed region R in X, then we can write R = Ry U Ra, where R; C X;, and
R, and R, are not closed but intersect in their common boundary R;», which has dimension
k — 1. Then

(dyve)(R) = e(Ry2).

Apart from the Mayer-Vietoris sequence there are many other applications of 2.5.6. I
shall mention two.

(i) f Y is a subspace of X we define the relative cochain complex C(XY) as the ker-
nel of the restriction C(X) — C{(Y), and the relative cohomology H*¥(X,Y) =
HY(C'(X,Y)). Then we have a long exact sequence

<= HEYY) — HYX,Y) — H¥(X) = H*(Y) - H**{(X,Y) - --- .

(i1) If C'(X) denotes the cochains of X with integer coefficients Z, and C'(X;Z/n) denotes
the cochains with coefficients Z /n, then there is a short exact sequence

0— C(X) By C(X)—C(X;Z/n)—0,
and a long exact sequence, called the Bockstein sequence,
o HEY(X; Z /) —» HY(X) 22 HY(X) — HY(X:Z/n) —» HEY(X) > ---.

This enables us to calculate H*(X;Z/n) from H*(X).

2.6 Examples of the use of the Mayer-Vietoris sequence
The sphere
Proposition 2.6.1 (i) Ifn > 0 then

HE(S") = Zif k=0 orn,
=0 1if not.

(i1) If f : S® — S™ is defined by an orthogonal transformation f € Opy1, then f* : H*(S™) — H™(S™)
1s multiplication by det(f) = £1.
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Proof.

(i)

(i)

Write 5" = X; U X3, where X; = 5™ — {e;} and X; = S" — {—€e1}. Then X; and
X2 are each homeomorphic to R™, and hence contractible, while X122 S 1 xRis
homotopy-equivalent to the equatorial sphere S*~!. From the Mayer-Vietoris sequence
we have

H* Y (X0) @ HF1(X2) — HY1(X12) — H¥(S™) — HY(X)) @ H*(X5).

We find at once that H¥~1(5"~1) = H¥(5") if k > 1, and even when k = 1 providing
n > 1 (so that X, is connected). By induction it is therefore enough to consider the
case n = 1, and then only k = 1 is interesting. As S° = (point) II (point) we have

H°(point) & H°(point) — H°((point) L (point)) — H'(S!) — 0,
le.
ZOLZL—ZSZ— H(S) — 0. (2.6.2)

The left-hand map is clearly (z,y) — (£ —y,z—y), so H}(S!) = Z in such a way that
the right-hand map is (z,y) — = — y.

We shall use the fact that the Mayer-Vietoris sequence is clearly natural in the fol-
lowing sense. If X = X; UX; and Y = ¥; UY, and we have f:Y — X such that
f(Yi) C X; then the diagram

HY(X1) 2% HFI(X)
L f L
H¥(Yis) ™% grey(y)

commutes.

The group On41 has just two connected components, distinguished by the sign of
det(f). Elements in the same connected component give homotopic maps S® — 57,
so it is enough to consider the case where f is reflection in a hyperplane of R*+!. In
the inductive argument just used we can assume that f(X;) C X; and f(X3) C X,
and that f induces a reflection on the equatorial S"~!. By induction we get back to
the case f: S — S'. Then the summands Z & Z in the middle of the sequence 2.6.2
are interchanged by f, and so f induces z — —z on H'(S").

Complex projective space

Proposition 2.6.3

HYPZ) =Z if k=0,2,4,---,2n,
=1 ifnot.

Proof. Write X = PZ, and X = X; U X, where —using homogeneous coordinates —

X = {(z0,,2n) : To#£0} = C,
Xo = X -{(1,0,0,---,0)},
X1 = (- {O} - gen-1,
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We think of PE'I as the subspace of all points of X with o = 0. Thus Pé“l C X,, and
the inclusion is a homotopy equivalence in view of the homotopy

(EU:"' :In) = (tzOsrla"' III‘I)

of the identity map of Xs.
The Mayer-Vietoris sequence gives us

____}Hk—l(SZn‘-l) 3y Hk(P(T:I) -5 Hk(PE—I) —>Hk(5'2n_l) e«

if £ > 1, and it is easy to complete the proof by induction on n, beginning with PCU =
(point). ]

2.7 Cohomology with compact supports
For a locally compact space X we can define a sub cochain complex C'pi(X) of C'(X) by

e € Cept(X) ifc(zo, -+ ,2x)=0
unless all z; belong to some compact subspace K of X.

These are the cochains “with compact supports”.

Definition 2.7.1
prt(X) = Hk(CICPt(X))-

Cohomology with compact supports is functorial in two different ways. A proper map
f: X — Y, ie a continuous map such that the inverse-image of every compact sub-
set is compact, induces a cochain homomorphism f* : C'pi(Y) — C'opi(X), and hence
I H:pt(Y) - H:pt(x)'

But if ¢ : U — X maps U homeomorphically to an open subset of X we also have a
cochain map &y : C'eps(U) — C'cpe(X) which “extends by zero”, l.e.

bl oy = e(itzo, -+ i tzg. o 7 2 i {zp, .- 2} C ()
=0 if not.
This gives i, : H,, (U) — Hpu(X).
Proposition 2.7.2

HE,(R™) =Z if k=n
=0 if not.
Furthermore, g € GLaR acts on H[,,(R™) by multiplication by the sign of det(g).

Proof. Let i:R™ — S™ embed R" as an open disc U = #(R") in S™. Let V be another
open disc such that 7 UV = S". I shall show that

iv 2 Hay(R") — H*(S™)
is an isomorphism if k > 0. Injectivity : suppose i.c = db for some b € C”“‘:I(S"). Then
b|V = dp for some f € C*~%(V). Extend B to § € C*~%(S"). Then b — df has compact
support in U, and i.c = d(b — dB). The proof of surjectivity is similar. n

The calculation of ¢g* is as in 2.6.1 (ii).
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Corollary 2.7.3 If f : R™ — R™ maps R" homeomorphically onto an open subset f(R™) C
R™ then f.: HYW(R™) — HE,(R™) 15 multiplication by £1.

Proof. If f(R") is an open disc this follows at once from the proof of 2.7.1. In general it is
enough to show that f, is surjective, which is clear by functoriality, as f(U) always contains
an open disc of R™. m

One says that such a map f preserves or reverses orientation according as f, is +1 or —1.

There is a version of the Mayer-Vietoris sequence for cohomology with compact supports.
Suppose that X = U UV is the union of two open subsets, and let the inclusion maps be

uvnv —4— v
J *j' J'J'
-y
We have an exact sequence of cochain complexes

0— CoqlU V) — CepuU)®Cep(V) — Coqu(X) — 0
c — (jie, —ive)
(e1,¢2) —  1xC1 + JuCa,

and a corresponding Mayer-Vietoris sequence

q
o _>H6p!

2.7.4

Proposition 2.7.5 If X is a locally compact space, and Y is a closed subspace of X, then

H*

cpt

(X —Y) = HL(X,Y).
In particular, H%,,(X,Y) = H*(X,Y) of X 1s itself compact.
For this we need a lemma.

Lemma 2.7.6 (i) If ¢ € C*(Y) is a cocycle then there is a neighbourhood V of ¥ in X
and a cocycle & € C¥(V) such that &|V =c.

(it) If ¢ € C*(X) is a cocycle such that c|Y = 0 then there is a neighbourhood V of Y in
X and a cochain b € C*~Y(V,Y) such that c|V = db.

Proof of 2.7.6

(i) Suppose that ¢ comes from a cocycle ¢ € C§(Y) for some finite open covering V =
{Vi, -+, Vin} of Y. We can find (e.g. by induction on m) open subsets {Vl,--,Vi.}
of X such that {V/ NY} is a shrinkage of V, and

V,‘L...,‘P # g = Viu...i, -}é a.

Define V = [JV/, and choose a not necessarily continuous map f : V' — Y such that
F|Y is the identity and f(V{') C V. Then & = f*c is a well-defined cocycle of V which
restricts to c.

(ii) With the same V/, define b by the standard formula

b(zo, -+, p-1) = B(—1)'c(zo, -+ , i, F(@i), -+, Flze-1)-
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This defines a cochain in C¥~!(V,Y') such that db = |V

Proof of 2.7.5 The map is surjective, for if ¢ is a cocycle in C"(Z\f) such that ¢|Y = 0 then
¢|V = db for some b defined in a neighbourhood V' of X, and if b is an arbitrary extension
of b to X then ¢ — db has compact support in X — Y.

The map is injective, for if ¢ is a cocycle on X with compact support inside X — Y, and
¢ = db for some b such that b]Y = 0, then b is a cocycle in a neighbourhood of Y, and so
b|V = de|V for some e and some neighbourhood V. But then ¢ = d(b— de), and b — de has
compact support in X — Y. n

2.8 The degree of maps 5" — S"

Definition 2.8.1 The degree of f : S™ — S™ is the integer q such that f"e, = qen, where
€n 15 a generator of H™(S") = Z.

Intuitively, the degree is the number of points in f~!(z) for a generic point z € S”,
counted with signs. To make this precise, suppose that there is a small open disc V' in
S™ such that f~'(V) is the disjoint union of open sets Uy,---,Um of S" each mapped
homeomorphically onto V of F. (If f is a smooth map, the inverse-function theorem says
that this is true whenever V is a small neighbourhood of a regular value of f; and Sard’s

theorem says that almost all points of S™ are regular.) Let e, (for @ = 1,---,m) be %1
according as f : U, — V preserves or reverses orientation, ie. f"ey = eqey,, where
ev, € H2(Us) and ev € Hy, (V') are the generators which correspond to en € H™(S™) by

the map (5.2).
Proposition 2.8.2 In this situation, deg(f) = Z7_,eq.

Proof. To calculate f*e, we represent ¢, by a cocycle ¢ with compact support in V. Then
f*en is represented by T4(ia)«(f|Ua)*(c), where ig : Uy — S™ is the inclusion. So

f*€-n = E(ia)tea‘fUn = (Eeﬂ) “€n.

2.9 The multiplicative structure of cohomology

If the coefficient group A of our cohomology is a commutative ring, then for any space X
we make the cochains C(X) into an associative graded ring by the bi-additive maps

CP(X) x CY(X) — CPHI(X)

(c1,¢2) —+ €1 -Ca,

where (c1 - ¢2)(20,"*+ , Tp+q) = 1(Z0, "+  8p)C2(Tp,**, Tphg)-
The differential d : C¥ — C**! is an antiderivation, in the sense that

d(c1 . Cz) =decy -9+ (—l)pcl -deg

if ¢; € CP. This implies that the product of cocycles is a cocycle, and that there is an
induced multiplication — often called the “cup-product” —

HP(X) x HY(X) — HPY(X).
Theorem 2.9.1 The multiplication in H*(X) is anticommutative, i.e.

ca-cp = (—1)Pcy e
ife; € H? and ex € HY.
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Proof. Define a cochain map T': C(X) — C(X) by
(Te)(zo, -+ ,2p) = (=1)3*Ee(zy, 251 -, z0).
(Exercise : check that T really is a cochain map!) If ¢; € CP and ¢3 € C? then
T(ey - e2) = (—=1)"4(Tez) - (Ter),

so the proof will be complete if we show that T" induces the identity on H*(X). The proof
of this will be postponed to the next chapter. n

The external product

The cup-product gives us a map called the external product

HP(X) x HU(Y) — HPH(X xY),
(c1,¢2) —  (wfc1) - (m5e2)

where 1 : X xY — X and 72 : X xY — Y are the projections. It is bi-additive, so extends
to

HP(X)® HY(Y) — HPYI(X x Y). (2.9.2)



NOTES ON ALGEBRAIC
TOPOLOGY

G. Segal - Michaelmas Term ’96

3. The double complex theorem
and its applications

3.1 The theorem

For each p € Z let C? = (... — CP9-1 &, cpe 4, --+) be a cochain complex, and

suppose that
e ioipE R ekl

is a sequence of cochain maps such that ¢ o ¢ = 0. Define

§:CPY — crtla

by § = (—1)%. Then 6% =0, and dé + 6d = 0.

The groups C* with the maps d and é constitute a double complez. I shall always think
of CP" as the p*™ column, and C'? as the ¢*" row. Furthermore, I shall always assume that,
for some py, go, we have CP? = () unless p > py and g > qo.

Definition. The total complez C" of C* consists of the groups C™ = BDp.g=n CP? with
the differential d = d + 6.
The basic theorem about double complexes is:

Proposition 3.1.1 Let C be a double complez whose rows are acyclic (i.e. ezact). Then
C'" is acyclic.

Proof.  Without loss of generality, suppose that CP? = 0 unless p,q > 0. Let ¢ € C™
satisfy dec = 0. Write ¢ = co +¢1 + - - + ¢, With ¢; € CP4. Then

560 = 0
561 = '-'dCo
bca = —dcy, ete.

Choose by € C™~1:% such that §by = 9. Then §(c; —dbo) = —dco+dcy = 0, so we can choose
by € C"~2! such that éb; = ¢; — dbg, and similarly by € C™~32 such that by = ¢ — dby,
etc.

Then b = 0 if k¥ > n, and d(Zb;) = c. .

The following result is obvious.

19
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Proposition 3.1.2 Let C be a double complez. Let A" be the double complez got by
replacing CP? by 0 when p < r, and B~ be the double complez got by replacing CP9 by 0

when p > r.
¢ = [EIA
Then we have an eract sequence of cochain complezes 0 — A" — " — B — 0.

We can put together 3.1.1 and 3.1.2 to obtain

Proposition 3.1.3 If0 — B — 4> —, AV — AT — ... s an ezact sequence of
cochain complezes, then the natural map B° — A’ is a cohomology equivalence.

3.2 Some standard exact sequences

The model situation is: let £ be any set which is expressed as a union ¥ = Uaes Ea. Write

Eagar -y = Bag NTay N+ N2, |

Let F(X) = {all maps f : £ — A}.

Define a cochain complex " = {0 — F(%) - i P9 2/ 53, o5 F(Sa,5) o}
by
(6f)ao Trrlpil = E(—l)'(fao--'d'i-"ap+1 lzao"'ap+1)'

Proposition 3.2.1 F is acyclic.

Proof.  Choose functions \, : & — {0,1} such that Aa(z) = 0 unless z € £,, and
EaAq(z) = 1. Thus the functions A, define a partition of ¥ into disjoint sets supp (Aa) C B
Define h : IIF(Zq,...a,) — IF(Zay-a,_,) by

(hf)aomo‘p—: = Z)‘afaao-~a,_1- (3.3)

Here Aafaaga,_, s Tegarded as a function on Eau--»a,_x which vanishes outside 2 ity
A by now well-known calculation shows that 6k + hS =identity, and hence that F" is
acyclic. -

Variant The complex F* contains the aliernating subcomplez F,),, consisting of families
{fao-ap} € IF(Zqq...ap) such that fag--a, = 0 unless aq, -, a, are distinct, and

fa,(u)-»-a,(,, = sign (7) faq--a,

if 7 is a permutation of {0,-- -, p}.

The maps § and h preserve F,,,, and so Fa 1s also acyclic.

If one chooses a total ordering of the index set S then F a1 18 isomorphic to the ordered
complex F,_,, which has

ffrd' = Hao<a1<...<QPF(EQD.--0,)-

The argument of Proposition 3.2.1 can be applied, with minor variations, in very many
situations. The most important for us is

Proposition 3.2.3 LetU = {X,}acs be an open covering of a space X. Then the sequence
0 — CUX) — ICY(Xy) — OO Xap) — - -

s ezact for any q.
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Remark The proof we shall give works equally well if we consider cochains caq...a, (20, - - , 24)
which are alternating in ao, - -+ ,ap. Thus for a covering by two open sets we are reproving
2.5.3.

Proof. We first choose a shrinkage {V, } of the covering {X,}, i.e. another open covering
with the same index set such that V, C X, for each a. In a paracompact space any
open covering has a shrinkage. Then we choose a partition of unity {A,} consisting of
discontinuous functions A, : X — {0, 1} such that supp (Ay) C V,. We can now define

h: ICY(Xag-ap) = MCH(Xag-ay_)

by
(he)ag-apar (20 *+ , 2g) = Baral(zo)Cag- apy (B0, ** , 24)-

Because of the shrinkage, the formula makes sense for all zo, - - - , z, in a neighbourhood
of the diagonal in Xo,...a,_,. The rest of the argument is as usual.

We shall also make use of another, easier, variant. For any open covering i/ = {X,}
of X, let us write C'y(X) for the cochain complex of cochains which are defined on all
(g+1)-tuples (zo,- - - ,z,) which are completely contained in a set of the covering &/. Notice
that there is a cochain map C'y(X) — C'(X), and that any element of C(X) comes from
Cu(X) for some covering U of X.

For any set ¥ let us write F"(X) for the cochain complex with

FI(E) = { all maps Z9t! — A}.

(Thus F*(XZ) = C'{z}(X).) The argument of 2.2.3 shows that, for any ¥, the complex F'(X)
has the cohomology of a point. On the other hand 3.2.1 gives us

Proposition 3.2.4 We have an ezact sequence of cochain complezes

0= Cu(X) = o F(Xy) = Mo pF'(Xap) —

3.3 Comparison theorems

The theorem of the double complex is an extremely powerful method for proving that differ-
ent cochain complexes have the same cohomology. It was first used by André Weil to prove
that de Rham cohomology — the cohomology of the complex (X)) of differential forms on
a smooth manifold X — coincides with Cech cohomology.

The simplest case of Weil’s argument comes from Proposition 3.2.4. Comblmng this with
Proposition 3.1.3 we get a cohomology equivalence

Cu(X) — F(U), (3.2)

where the right-hand side is the total complex of the double complex F*(/) with FP4(U) =
O F?(Xay-a,). But whenever Xo,...q, # @ the complex F*(X4,...a,) has the cohomology
of a point, so we also have an exact sequence of cochain complexes

0— CWU) — FOU) — FHU) =,
and hence a cohomology equivalence
C'U) — FU). (3.3)
Putting 3.3.1 and 3.3.2 together gives
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Proposition 3.3.3 For any open covering U of X the complezes Cy(X) and C'(U) have
canonically isomorphic cohomology.

As a first application of this result we have the lemma used in proving the anticommu-
tativity of the cohomology ring.

Proposition 3.3.4 The cochain map T : C'(X) — C(X) defined by
TC(zo, -, zk) = (—1)FFE+e(zy, - - 20)
induces the identity on cohomology.

Proof. Any cocyle in C(X) comes from C(X) for some open covering . But T acts on
the double complex F"(U) compatibly with the equivalences

Cu(X) = F-(U) — CW),
where T acts trivially on C'(l). u

We shall call a covering U contractible if each X, and each finite intersection Xaqa,--ay;
is either empty or contractible.
Proposition 3.3.3 gives us

Proposition 3.3.5 IflU is a contractible covering of X then C(X) and C(U) — and hence
also Cy(X) — have the same cohomology.

In other words, the Cech cochains define the “correct” cohomology H*(X).

Weil considered smooth manifolds X with coverings i such that each non-empty Xoy--.a,
is diffeomorphic to R™. Then the Poincaré lemma tells us that

0 R —QX,) 3 Q(X,) S 0%(X,) S -

is exact for each non-empty X,, while the argument of 3.2.1. — but taking {As} to be a
smooth partition of unity {Ay : X — R4} subordinate to & — shows that

0— Q(X) — HQ'(XO,) —5 HQ'(XC..@) T

is exact. If X is a paracompact manifold, and we choose a Riemannian metric on it, then
any covering by sufficiently small geodesic balls has the properties required of U, so the
standard argument proves

Proposition 3.3.6 “de Rham’s theorem”. The de Rham cohomology H*(Q'(X)) coincides
with H*(X;R).

3.4 Homotopy invariance

So far we have proved the homotopy invariance of cohomology only for compact spaces. To
prove that homotopic maps fo, fi : X — Y induce the same homomorphism of cohomology,
it is enough to show that

P HYX) - HY (X xI)
is surjective, where I = [0,1]. Forif i; : X — X x I is z ~— (z,t) then f = if F”* for some
F:X xI—Y. Butif F*¢ = p*n then f;¢ = i;p*n = n is independent of ¢.

Now any cocycle in C(X x I) comes from a cocycle of C'y(X x I), where V is an
open covering of X x I which, using the compactness of I, we can take to be of the form
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{Xa x Jg}, where {X,} is an open covering i of X, and J belongs to an open covering of
I that depends on «.

For a given covering U of X it is helpful to introduce the hybrid cochain complex ¢
consisting of cochains ¢ on X x I such that

c((zo,t0), -+, (24,14))

is defined whenever {zo,:--,z,} is contained in some X, and (to,--- ,tq) is contained in
some neighbourhood V' of the diagonal in 19!, (We identify two such cochains if they agree
when V' is made smaller.) Thus C" interpolates between C'y(X x I) and C(X x I)

Cyv(X xI)=C'=C(XxI),

and we can assume that the cocycle we are interested in comes from a cocycle of C". The
proof will be complete if we show that

p':Cu(X)—~C'

induces an isomorphism of cohomology. For this, we consider the diagram
et — r-
T T
Cu(X) — F ),

where I' is the double complex such that
[P = gy 0, C(Xag, sy X 1)

and C1 (Xag,,a, X I) denotes the cochains defined for all (¢ + 1)-tuples (zq,%0), - , (24,%,)
with z; € Xgq...a, and (to,---,t,) in a neighbourhood of the diagonal. The argument of
(3.2.4) proves that the top horizontal map induces an isomorphism of cohomology, and so
it is enough to show that the right-hand vertical map induces a cohomology _isomorphism
of the total complexes. This reduces, in turn, to showing that F"(U,) — C(U, x I) is
an equivalence for each non-empty U,. But F'(U,) has the cohomology of a point by
the argument of (2.2.3), and C'(U, x I) is cochain-homotopy equivalent to C'(I) by the
argument of (2.5.2). Finally, C'(I) has the cohomology of a point because we know already
that homotopy invariance is true for compact spaces.

3.5 The Kunneth theorem

For any two spaces X and Y we have a ring homomorphism
H(X)@ H*(Y) = H*(X xY)
defined by multiplication of cocycles. Here the left-hand side denotes the graded abelian

group whose component in degree k is
D F(X)e HI(Y),
p+e=k

and the multiplication on the left is defined by
(a1 ® b1) - (a2 ® b2) = (—1)P?(a1a3) @ (b1b2)

if by € H#(Y') and ag € HP?(X). More generally, if X, and Y, are subspaces of X and Y,
we have
H* (X, Xo)®@ H*(Y,Y,) — H‘(X x Y, (X x Yo)uU (Xo x Y)).

The Kiinneth theorem tells us that in some circumstances these maps are isomorphisms.
We shall prove only a fairly easy version.
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Proposition 3.5.1 Let X be a space with a contractible open covering, and suppose each
group HY(Y,Yy) is finitely generated and free. Then

H*(X)® H*(Y,Yy) — H*(X x Y, X x Yp)
is an isomorphism.

Proof. Let U = {X,} be a contractible open covering of X. By choosing cocycles
representing a basis for each group H?(Y,Y) one can define a cochain map

C(X)® H*(Y,Yo) = C(X x Y, X x Yp), (3.3)
where the left-hand side denotes the cochain complex which in degree k is
P Cri(x) @ H(Y,Yo),

with the differential given by d(a ® b) = da ® b. It is clearly enough to prove that (3.5.2)
induces an isomorphism of cohomology.
For this, consider the diagram

C(X)® H* — C"U)y® H*
| |
C(XxY,XxYy) — CUxY,UxYp),

where H* = H*(Y,Y,) and C"(U) ® H* denotes the double complex whose pth column is

P C(Xaga,) ® H*.

Both horizontal maps induce cohomology isomorphisms (to the total complexes of the
double complexes on the right) by (3.2.3). But the right-hand vertical map induces a coho-
mology isomorphism on each column, because each space Xqq...a, 1s empty or contractible,
and so induces a cohomology isomorphism of the double complexes. That completes the
proof. n

Remark The preceding proof applies equally well if we use a field as our coefficient group,

and assume that each vector space H(Y,Yp) is finite dimensional. The assumption that X

has a contractible covering is quite unnecessary: it was put in to make the proof simpler.
An important particular case of 3.5.1 is the isomorphism

Hi(X)— HF*(X xR™, X x (R" - {0})) (3.4)
given by multiplying by the generator of H*(R",R™ — {0}). If X is compact the right-hand

side of (3.5.3) is isomorphic to H, ,';;'," (X x R™). Another important case is

HT(R™ ® HE,(R™) = HIA™(R™"), (3.5)

which we can derive by including R™ and R™ in S™ and S™ and using the Kiinneth theorem
for 5™ x S5™.
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4. Vector bundles and the
Thom isomorphism theorem

4.1 Vector bundles

A (real) vector bundle on a space X is a family {E;}zex of vector spaces indexed by the
points of X, together with a topology on the disjoint union E' = J,_ x £x. We require it to
be locally trivial in the following sense:

each z € X has a neighbourhood U in X such that E|U is isomorphic to the
trivial family U x R™ for some n.

Here E|U denotes the family {E;}sev, and an isomorphism E|U Z U x R" means a
homeomorphism which maps Ey by a vector-space isomorphism to {y} x R™ for each y € U.

Terminology.

(i) E is called the total space of the bundle.
(i) The map = : E — X taking E, to z is the projection.
(iii) The vector spaces E are the fibres.
(iv) A map s : X — E such that s(z) € E; for all z € X is called a section of L.
(v) The zero-section is the map 7 : X — E such that i(z) = 0 € E; for each 2.

Vector bundles are examples of a more general concept. A fibre bundle on X with fibre
a space F' is a space Y which looks locally like X x F" in the sense that there is given a
map 7 : Y — X, and each z € X has a neighbourhood U such that 77U 2 Ux Fbya
homeomorphism taking Y, = 7~!(y) homeomorphically to {y} x F for each y € U.

Examples.

(i) A smooth n-dimensional manifold X has a tangent space 7 X at each point z, and
TX = UT, X is a vector bundle on X. Thus if X = S" = {z € R**! : ||z|| = 1} then
TeX ={€ e R* : < 2,6 >=0}, and

TX = {(z,8) € R x R*!:||z]| =1 and < z,& >=0}.

(ii) If Y is a smooth m-dimensional submanifold of a smooth n-dimensional manifold X
then 7,Y is a subspace of T, X for each y € Y. The quotient space Ny, =T, X/T,Y
is the normal space to Y at y. If X has a Riemannian structure one can identify N,
with the orthogonal complement of 7,Y in T, X. In any case, NY = Uer Ny is an
(n — m)-dimensional vector bundle on Y, with its topology acquired from T'X.

25
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(iii) Let X be the Grassmannian Gre(R™). There is a “tautological” k-dimensional vector
bundle £ on X whose fibre at = is E, = 2 C R™. The total space F is a subspace of
X xR,
To see that this bundle is locally trivial, choose an inner product on R™ and let U
be the neighbourhood of & consisting of all y such that EyNE} = 0. Then define
E\U - U x E, by

(¥:€) = (v, pr=(€)),

where pr; : R" — E, is orthogonal projection, which maps E, isomorphically to E,
ifyeU.

(iv) The Stiefel manifold Vi(R") is the subspace of (R™)* consisting of orthonormal k-

tuples {vy,---, v} in R™. (Thus V4(R"™) = S"~1, and Va(R™) is the orthogonal group
On.) If k > m we can define

7 Vi(R™) — V. (R™)

by forgetting the last k — m vectors. This is a fibre bundle with fibre Vi—m(R"=™),

There are certain operations we can perform on vector bundles.

(i) If E is a vector bundle on X,and f:Y — X is a map, we can define the pull-back
f*E, which is a vector bundle on ¥ such that (F*B), = Et(z). The total space of f*FE is a
subspace of ¥ x E. In fact it is the fibre product ¥ Xx E:if Y] and Y, are two spaces with
given maps m; : Y; — X, the fibre product ¥; x x Y, is defined as the subspace

{(y1,32) €Y1 x Yo i mi(yn) = ma(2)}

of Yl X Yg
The pull-back operation is defined for all fibre bundles, not just vector bundles. If f is
the inclusion of a subspace ¥ of X then f*E' is just the restriction E|Y.

(i) If E and F are vector bundles on X the Whitney sum E @ F is a vector bundle
such that (£ @ F), = E, @ F;. Its total space is the fibre product £ x x F.

In proving that f*E and E @ F are vector bundles the only point is to show the local
triviality. For this it is helpful to introduce the term pre-vector-bundle for a structure which
1s not necessarily locally trivial. The pull-back and Whitney sum are obviously well-defined
operations on pre-vector-bundles. They clearly take trivial bundles to trivial bundles. On
the other hand they commute with restriction. So they take vector bundles to vector bundles.

An inner product on a vector bundle E is an inner product on each fibre E, such that
&+ (€,€) is a continuous map E — R. This implies that (£,7) — (£, ) is a continuous map
Exx E— R, for

1
(€:m) = SUIE+nll* = [IE1I* ~ |Inlf?).
Proposition 4.1.1 Any vector bundle E on a paracompact base X has an inner product.

Proof. Let {X,} be an open covering of X such that E|Xa = Xo x R™. Use a choice of
local trivialization for each « to define an inner product (,)a on E|X,. Then define

(€ n) = ZAa(z){¢, n)a

for £, € E;, where {\,} is a partition of unity subordinate to {X,}, ie. Aq: X — Ry is
continuous, and supp(Aa) C X,. ~
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Proposition 4.1.2 If E is a vector bundle with an inner product, one can find local trivi-
alizations which are compatible with the inner product.

Proof. A local trivialization of E over U is the same thing as a sequence of sections

51,7+ ,8n of E|U such that s;(z), - -, sn(z) are a basis of E; for each x € U. It is compatible
with the inner product if each s1(z), -+ ,s,(z) is an orthonormal basis. We can get such
a sequence from an arbitrary sequence sy, -- - , s, by the Gram-Schmidt orthonormalization
process. .

Proposition 4.1.3 If E is a veclor bundle on X with an inner product, and F is a sub-
bundle of E, let F- denote the orthogonal complement of Fy in E,. Then the subspace
FL = JF} of E is a vector bundle.

Proof. We have only to prove local triviality, so we can assume £ and F' are trivial. Say
E =X xR"and F = X x R™, where the inclusion F' — E takes (z,¢;) to (x,&;(x)), where
& : X — R™ is continuous. (Here {e;} is the standard basis of R™). Given zo € X, choose
Emy1, -, En € R™ s0 that

51(170), e 1Em(3:0)15m+15 T Jgn-

is a basis. Then

51(3")"" 1Em(m)l£m+lu"' :gn (414)

is a basis for all z in a neighbourhood U of zg. Let ni(z), - ,na(z) be the basis got from
(4.1.4) by the Gram-Schmidt process. Then (z,e;) + (z,n;(2)) defines an isomorphism
E|U — E|U which takes U x (0 ® R"™™) to FL|U. "

A vector bundle F on X is a family of “abstract” vector spaces {E,} parametrized by
z € X. For most purposes one can assumne, if it is helpful to do so, that all the fibres E, are
subspaces of a fixed large vector space R”, i.e. that E is a subbundle of the trivial bundle
X x RN, at least if X is compact. (Actually it is enough for X to be finite dimensional. In
general one must replace RY by an arbitrary infinite dimensional topological vector space.)

Proposition 4.1.5 On a compact space X any vector bundle E is a subbundle of a trivial
bundle X x RV,

For this we need a lemma.

Lemma 4.1.6 If E is a vector bundle on a paracompact space X, and { € E, for some
z € X, then there is a section s : X — E such that s(z) =¢.

Proof. Let a: U x R® — E|U be a trivialization in a neighbourhood U of z. Choose
f: X — Rsuch that f(z) = 1 and supp(f) C U. Define

fy)a(y,§) if yelU
0 if not.

s(y)

Proof. of 4.1.5 It is enough to find sections sy, -+, sy of E such that s1(z), - ,sny(z)
span E, for each 2 € X. For then we can choose an inner product on E and define
E — X x RN by

£ (2;<8(x),€ >, ,<sn(x),€>)
for £ € Es).

To find sy, - - - , sy we choose for each € X sections s7, -+, s% such that s{(z),- -, s5(z)
are a basis of E,. Then s¥(y), -, s%(y) span E, for all y in a neighbourhood U, of z. Choose
a finite number of these neighbourhoods U, which cover X. The corresponding sections s¥
are as desired. u
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Corollary 4.1.7 We have E = f*E forsome f : X — Grn(RY), where |E is the tautological
bundle on Gry(RY). '

Proof. The only point is to show that f is continuous, where f(z) = (E:] € Grn(RY). But
in the neighbourhood of any point of X the space E, is spanned by vectors &i(z), -+ ,€n()
such that the maps & : X — R¥ are continuous. This implies that f is continuous. m

Considerably more is true. Let us define Gr, as the union of the spaces Gry N =
Gra(RN) for all N, where we take

-'°CRNCIRN+1C]RN+2C---

in the obvious way. We define the topology of Gr,, by prescribing that a subset is open if
its intersection with each Gr, n is open. I shall leave it as an exercise to show that any
compact subset of G'r,, is contained in Grp N for some N.

The union of the tautological bundles on Gr, v is a vector bundle E on Gr,.

Proposition 4.1.8 For any compact space X the map f — f*E defines a 1 — 1 corre-
spondence between homotopy classes of maps X — Gr, and isomorphism classes of n-
dimensional vector bundles on X.

This is expressed by saying that Gr, is a classifying space for n-dimensional vector
bundles.

Proof. We have shown that every bundle is of the form f*E. We must prove
(i) If fo= f1 : X — Gr, then f;E= ffE, and
(ii) If fo, fi : X — Grp and f{E= ffE then fy = fi.

For (i) we can assume that fy(X) and fi(X) are both contained in Grpon. U isa
neighbourhood of the diagonal in Gr, v x Gr, n then it is enough to show f§E = fIE
whenever (fo(z), f1(z)) € U for all € X. Take U to be the set of pairs (V, V) such that
Vi N V55 = 0. For such pairs the orthogonal projection V; — V, is an isomorphism, and so
if (fo(X), fi(x)) € U then we have isomorphism (f3E); — (f{E), which fit together to give
an isomorphism of bundles.

For (ii) we shall show that if fo(X) and f;(X) are contained in Gry,n then fy and f;
become homotopic in Gry an. It is enough to show fy « To f;, where T : Granan — Grapan
is induced by

T:RVaRY RV @RV

and T'(&,n) = (=n,€). (For T can be joined to the identity by a path in SOsn). But if Vy
and V; are n-dimensional subspaces of R" than an isomorphism « : Vo — Vi defines a path
7 from Vo 0 to 0@ V1 in Gr, (RN @ RY), where ¥(t) is the image of

tio® (1 —t)i1or : Vo — RN @ RV,

andig : Vo — R¥ and 4, : Vi — RY are the inclusions. The paths so defined by isomorphisms
(f3E)s — (f{E), provide a homotopy from f, to T o fi. n

Sk e i

b
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4.2 The Thom isomorphism theorem

When we have a vector bundle m : B — X the interesting cohomology to consider is that
of the complex of cochains of E which are supported “near” the zero-section i(X) C E. In
fact, it is simplest to consider the relative cohomology H*(E, E#), where E# denotes the
complement of the zero-section in E.

If E is the trivial bundle X x R™ then the Kiinneth theorem tells us that H**"(E, E¥)
is isomorphic to H*¥(X) by multiplication by the generator e, € H"(R" R™ — {0}). We
shall now prove a fundamental theorem which shows that H¥(X) = H**"(E, E#) for any
oriented vector bundle £ — in other words, cohomology does not see the twisting of E.

Definition. An orientation of a vector bundle E on X is a choice of a generator e, of
HM(Ey, E;—{0}) = HJ,,(E,;) for each z € X, the choices being locally constant in the sense
that when E|U =2 U x E, is a local trivialization in a neighbourhood U of z then for every
y € U the induced isomorphism F, = [, takes ¢, to £;.

Theorem 4.2.1 (The Thom isomorphism theorem.) If E is an oriented n-dimensional
vector bundle on X, then

(i) there is a unique element ug € H"(E, E#) such that ug|E, = e, for each z € X, and
(ii) the map a v (7*a) - ug is an isomorphism H*(X) — H*"(E, E#).

The element ug is called the Thom class of E.

Proof. (i) Weknow from (3.5.3) that the theorem is true if £ is trivial. Let & = {Xa} be
an open covering of X such that E|X, is trivial for each a. Then by (3.2.3) the cohomology
groups H*(X) and H*(E, E#) can be calculated from the total complexes of the double
complexes C"'(U{) and @, where

CPU) = @ CUXagoa,), and
QM = POUE|Xey vy B¥ | Kageiay)-

Because the theorem is true for trivial bundles we can find an n-dimensional cocycle ug
of QO representing the Thom class in E|X, for each a. Furthermore, the image of ug in
QU represents zero in @ H™(E|Xap, E#|Xap), so it comes from an element uy € Q'™
But the columns Q,Q%, etc. have zero cohomology below dimension n, so we can find
Us, ug, - - - iteratively so that ug + w1 +us + - - - is a cocycle in the total complex of @, and
represents the desired Thom class ug. As the cohomology class of ug in Q% is prescribed
by the definition, it is easy to see that the total cohomology class of ug + uy +uz + -+ is
uniquely determined.

(ii) Suppose now that we have a Thom class, represented by a cocycle ug in C"(E, E#).
Then the map a + (7*a) - ug defines a map of double complexes

cu)—Q,

raising degrees in each column by n. It induces an isomorphism of cohomology (raising
degrees by n) in each column, and so it induces an isomorphism of the total cohomology.
Thus HY(X) — H"+(E, E#) is also an isomorphism. u

The Thom class ug € H"(E, E#) defines, of course, an element of " (E), which we can
identify with H™(X) by 7* because = : £ — X is a homotopy equivalence. The element
ep € H™(X) obtained in this way is called the Euler class of E. Alternatively, we can say
that ep = i*ug, where i : X — E is the zero-section. The characterization of ug in 4.2.1
(i) shows that eg is an example of a characteristic class for real oriented vector bundles, in
the following sense.
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Definition. 4.2.2 A rule which associates to a bundle 7 : E — X of a certain type a
cohomology class ¢(E) € H*(X) is a characteristic class if

(f E) = f*e(E)

for every map f: Y — X.

The importance of characteristic classes is that they give us a way of describing and
distinguishing the possible bundles on a given base-space X.
A first property of the Euler class is

Proposition 4.2.3 If a real oriented vector bundle E on X has a nowhere-vanishing section
s, then eg = 0.

Proof. We have eg = i*ug, where ¢ is the zero-section. But i = s, so eg = s*up. This
vanishes, for s(X) C E# and ug|E# = 0. n

We shall see presently that if n is even the Euler class of the tangent bundle of the sphere
S™ is twice the generator of H*(S").

4.3 The Gysin sequence

An immediate application of the Thom isomorphism theorem is to obtain the Gysin exact
sequence for a sphere bundle.

Let E be an oriented n-dimensional real vector bundle on X with an inner product, and
let S be the fibre bundle formed by the unit spheres S; in the vector spaces E;. (The bundle
S is locally trivial by 4.1.2). The total space S is clearly homotopy equivalent to E# and
m: F — X is also a homotopy equivalence, so the cohomology sequence

oo H-YE#) - HY(E,E¥) — HY(E) = H'(E#) — - -. (4.341)
becomes (replacing ¢ by i + n, and using 4.2.1)
Proposition 4.3.2 There is a long exact sequence of H*(X)-modules
N Hi+n—1(S) - H:’(X) - Hi+n(X) L Hi+ﬂ(5) —
Here the map H(X) — H'**™(X) is multiplication by the Euler class ep € H™(X).

This sequence is called the Gysin sequence. It is a sequence of H*(X)-module homomor-
phisms because the maps in (4.3.1) are homomorphisms of H*(E)-modules, and we identify
H*(E) as a ring with H*(X) by #*. The map H'*"~}(S) — H!(X) is called integration
along the fibres.

As a first application of the Gysin sequence, let us consider the case when the Euler class
eg is zero. Then we can choose ¢ € H""1(S) which maps to 1 on integration along the
fibres - this element will restrict to the preferred generator of H*~1(S;) on each fibre. From
the Gysin sequence we find at once that the map

H(X) ® H™(X) — H*(S)

given by (a,b) — a+ bo is an isomorphism of H*(X)-modules. This completely determines
H*(S) as a ring in terms of H*(X) once one knows ag € H**~%(X) and by € H"~}(X) such
that o = ag + boo. If, for example, n is even and H?"~2(X) has no elements of order two,
then ¢? = 0 by anticommutativity.
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Proposition 4.3.3 The cohomology ring of the Stiefel manifold Vi (C*) is A(oan—2k+1,- ", Tan-3, Oan—1),
i.e. each group is free abelian, and the ring is generated by the k elements o; € H*(Vi) of
the indicated odd dimensions, with no relations other than those of anticommutativity.

In particular, the rank of H*(V}) is the coefficient of t* in the polynomial

iz, ,p_-(l + t2n—2£+1).

Proof. The result is true for V; = §?"~1, and we proceed by induction on k, observing
that Vi41 is the sphere bundle of a complex vector bundle £ on Vi with fibres C*—*%. All
complex vector bundles are orientable, as the group GLn(C) is connected. The Euler class
eg belongs to H?"~2¥(V}), which is the zero group by the inductive hypothesis, and the
element gy, _ox—1 € H?~2¥~1(V,_1) must have square zero because H*(Vj) is free. n

As another example of the use of the Gysin sequence we can calculate the cohomology
ring of the complex Grassmannian Gri. The sphere bundle S of the tautological bundle IE on
Gry is homotopy equivalent to Gri_1 by the map taking (V,§), where V is a k-dimensional
subspace of C* and £ is a unit vector in V, to the (k — 1)-dimensional subspace V' N &,
Indeed the map S — Grj_; is a sphere bundle whose fibre at W is the infinite dimensional
unit sphere in W+. I shall omit the proof that this map is a homotopy equivalence: we need
only that it induces an isomorphism of cohomology, which I leave as an exercise.

Let us write ci, for the Euler class of E in H?¥(Gry). The Gysin sequence gives us

o= H2%(Gry) — HY(Gri) — HY(Gri—y) — H™¥H(Gry) — -+,

which shows that H*(Gry) — H*(Grg—1) is an isomorphism if ¢ < 2k — 1. In particular,
the element cx—; € H**~2(Grr_1) comes from a unique element, again called Ck—1, in
H?-=2(Gry). In this way we obtain k elements ci,---,cx in H*(Gry), with ¢; € H*,

Proposition 4.3.4 The ring H*(Gry) is the polynomial ring Zlcy, - - - , c].

Proof. This is obviously true when k£ = 0 and Gry is a point, so we use induction on k.
The inductive hypothesis implies that H*(Gry) — H*(Gr_1) is surjective, so the Gysin
sequence becomes

0 — H*(Gri) =% H*(Gry) = H*(Gre-1) — 0. (4.3.5)

We can identify H*(Gri—1) with a subring Rig_; of H*(Gri), and (4.3.5) implies that

H? (Grk) = Rk_.l[Ck]- |

Remarks The first interesting case of the preceding theorem is when k£ = 1 and
Gr, =Pg.

The unit sphere bundle of the tautological bundle over the projective space II"E’:'1 is the
sphere S?"~!. Applying the Gysin sequence to that gives us

Proposition 4.3.6 The ring H*(PE™") is Z[c1)/(c}).
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5. The cohomology of manifolds

5.1 Orientation

For simplicity we shall confine ourselves to n-dimensional manifolds X which possess a finite
convex covering, (i.e. a finite open covering & = {Uqa}aes such that each subset Uq,...q, is
either empty or homeomorphic to ™),

We shall say that X is of type k if it has a convex covering by k sets. By induction on
the type we find

Proposition 5.1.1 (i) H.,(X) is a finilely gencrated abelian group for each i.
(i) HE (X)) =W ifi> n.

ept

(i) If X is connected, then HY,,(X) is cyclic, and i, : Hp, (R™) — H7,,(X) is surjective
for any open embedding i : R™ < X (i.e. a map taking R™ homeomorphically to an

open subset of X ).

Proof. Only (iii) needs discussion. If X = Xo U X}, with X =2 R" and X; and Xo; of
type & — 1 then the Mayer-Vietoris sequence and the inductive hypothesis give us an exact
sequence

Hepo(Xo1) — Hep(Xo) @ Hep(X1) — Hype(X) — 0. (5.1.2)

Now H{,(Xo) = Z, and the map H}p,,(Xo1) — H_,(Xo) is onto, for if X is connected
then Xy is non-empty, and we can choose an embedding R™ — Xjg; and use (2.7.3). So
HZ,(X1) — HT,(X) is surjective, which proves (iii) by induction. "

n

Definition 5.1.3 X is oriented if there is given a generator wy € HP,,(U) for each open
subsel U of X which is homeomorphic to R™, and wy —— wyy when U C U'.

Remark Using (2.7.3) we see that it is enough to be given wy for all sufficiently small
sets [/, e.g. all those which are contained in some set of an open covering i of X.

Proposition 5.1.4 (i) If X is orienled there is a unique map

such that [y i,(wy) = 1 whenever i : U — X is the inclusion of an open subset
homeomorphic to R™.

(ii) If in addition X is connecled, then [ is an isomorphism.

32
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5.2 The Poincaré duality theorem

Let X be an oriented manifold.
Using cohomology with coefficients in any commutative ring A we have an A-bilinear
map

HE(X) x HMH(X) — A

5.2.1
T -

for the product of any cochain with a cochain of compact support has compact support.
Equivalently, we have a map

k
Hcpt

(X) = H* (X)), (5.2.2)
where M* denotes the A-dual of an A-module M, i.e. M* = Homu(M; A).

The contravariant functor M — M™* from A-modules to A-modules is not well-behaved
for most rings A. The best case is the following.

Proposition 5.2.3 If A is a field, or if A= Z/r for some integer r # 0, then M — M™ is
an ezact functor, i.c. il takes exact sequences to ezact sequences.

I leave the proof as an exercise.

Definition 5.2.4 If X is a space with finitely generated cohomology groups, and A s either
a field or Z./r, then we define the homology groups of X with coefficients in A by Hi(X) =
Hi(X)".

For the present I shall not define H; with Z as coefficients.

Theorem 5.2.5 (Poincaré duality) If X 1is an oriented manifold and A 1is a field or Z/r
then the map

HE(X) — B™*(X)" = Hy-s(X)

of (5.2.2) is an isomorphism.

Remark This remains true with integer coefficients when the homology is properly defined.

Proof. Once again we use induction on the type of X, writing X = XoU X} as in the proof
of (5.1.1). The maps (5.2.2) for X, Xo, X1, and Xo; map the Mayer-Vietoris sequence for
H7,, to the dual of the Mayer-Vietoris sequence for H*. Commutativity is obvious, except
perhaps for

HE,(X) —  HY N Xw)
| |
Hn—k(X)* - Hn"k_l(Xgl)*.
This commutes to sign, for if & € CX,(X) and 8 € C"~%~1(Xo1) are cocycles then

dyvo -8 = :i:/' a-dyvi.

Xo1 X
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5.3 Alexander duality

In this section I shall assume that the cohomology has coefficients in a field.
Suppose that X is a compact subset of the sphere S". Poincaré duality gives us
HHSM — X) = HI(S™ — X)*, for S — X is an oriented manifold. By (2.7.4) we have

cpt

HPH(S™ — X) = H~#(S™, X), and, using the sequence for the pair (5™, X) we obtain

cpt
Theorem 5.3.1 (Alezander duality) If X is a compact subset of S™ then
HMi-Y(X) = HY(S" - X)* if0<i<n-—1,
I':”[D(X) Hn-l(sn _ X)"',
H”_l(X) o lEIU(Sﬂ _ X)m_

IR

Here the so called reduced cohomology group ﬁO(Y), for any non-empty space Y, means
the cokernel of Ho(poz’qt) — HY(Y). By choosing a point y € Y we get an isomorphism
HO(Y) = H%(point) & H(Y).

Corollary 5.3.2 If X is a compact subspace of S™ or R™ then the number of connected

components of S® — X is one more than the dimension of H*~'(X).

5.4 The cohomology class of a submanifold

It is a basic result of differential topology that if ¥ is a closed submanifold of a smooth
manifold X there is an open neighbourhood Uy of ¥ in X which is homeomorphic to the
normal bundle NY of ¥ in X by an embedding ¢ : NY — X which is the identity on the
zero-section and is canonical up to “ambient isotopy”. This means that if ip,i; : NY — X
are two choices, there is a continuously varying family of homeomorphisms {¢; : X — X}
such that g is the identity, ¢¢|Yis the identity for all ¢, and ¢ 04 = 7;. Such a neighbour-
hood Uy is called a tubular neighbourhood of Y in X. If y € Y I shall sometimes write Uy,
for the normal disc which is the image of Ny Y under NY = Uy.

If m = dim(X) — dim(Y) is the codimension of ¥, and the bundle NY is oriented, the
Thom class uyy € H™(NY, NY#) can be identified with an element of H™(Uy , Uy —Y) =
H™(X,X =Y). Its image ey in H™(X) is called the cohomology class of Y. I Y is compact
it is naturally an element of H;,(X). It is always defined if X and }" are oriented.

If X is oriented and connected and Y is a point then ey is a generator of Hy,,(X).

The cohomology class ¢y of a submanifold Y is completely characterized by two prop-
erties:
(i) it can be represented by a cocycle with support in Y, and
(ii) its restriction to each normal disc Uy,y is the generator of H3,(Uy,y)-

This follows from the corresponding characterization of the Thom class in (4.2.1). In
fact €y can be regarded as a “S-function along Y¥”, in the following sense.

Proposition 5.4.1 If « € H;™(X) then

fEY -a:f(o:}Y).
Y

X
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Proof. It is enough to prove this when X = NY. In that case, we can assume that
a = 73, where 7 : NY — Y is the projection and § € Hg;™(Y). But then we can assume
further that 3 is the cohomology class of a point of Y, and the result follows from (3.5.4). m

It is not quite true that every cohomology class of a manifold is the class of some sub-
manifold: to obtain all cohomology classes one would have to include submanifolds with
self-intersections and singularities. Nevertheless, the best way to think of the geometric
meaning of the multiplication in cohomology is in terms of the following relation with the
intersection of submanifolds.

Proposition 5.4.2 If Y and Z are closed oriented submanifolds of an oriented manifold

X, and they intersect transversally, then ey -€z = eynz.

Two submanifolds Y and Z of X of codimensions m and r are said to intersect transver-
sally if Y N Z is a submanifold W of codimension m + r, and 1Y + T Z = T, X for each
z €Y NZ. In that case

NW = (NY)|W & (N Z)|W,
and we can assume
Uynz = Uy NYz,
and

Uww EUyvuw xUzw.

Proposition 5.4.2. follows directly from this definition and the characterization of the
cohomology classes of submanifolds, together with (3.5.4).

If f:Z — X is a smooth map of oriented manifolds, and ¥ is a closed submanifold of
X, then f is said to be transversal to Y if the derivative Df(z) maps to T} Z surjectively to
T,X/T,Y = N,Y for all z € f~1(Y), where y = f(z). Then the implicit function theorem
tells us that f~1(Y) is an oriented submanifold of Z, and that N(f~'Y) = f*(NY). We
deduce

Proposition 5.4.3 In this situation we have €j-1y = frey.

On a smooth manifold X we can speak of a smooth vector bundle E. The total space E
is a smooth manifold, and the zero section i : X — E embeds X as a closed submanifold
with normal bundle E. If X is compact and E is oriented, the cohomology class ex of the
zero section is just the Thom class up € H[,,(E).

Proposition 5.4.4 If a smooth section s : X — E is transversal to the zero section, the
cohomology class of the zero-set Z = s~1(0) = s~1(i(X)), is the Euler class of the bundle
E, ie

£z — €ER
in H*(X).

Proof. We have e = s*ug = t*ug = e, because s ~ 1. =
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5.5 The class of the diagonal and the Lefschetz fixed-

point theorem

In this section we shall always use cohomology groups with coefficients in a field.

If X is a compact oriented n-dimensional manifold we can identify H*(X x X) with
H*(X)® H*(X). We shall find a formula for the class ea of the diagonal A C X x X in
H*(X)® H*(X). Let {a;} be a basis of H*(X), with a; € H"~4(X), and let {a}} be the
dual basis, in the sense that [, aiaj = ;.

Proposition 5.5.1
EA = E(—l)d‘a,- Q a:-‘.

Proof. By Poincaré duality for X x X it is enough to show that
[ oeaon=[ EDined o
XxX XxX

for any € € HP(X) and n € H*"?(X). But by (5.4.1) the left-hand side is I &n, while

/(ai @ G:)(f ® 1]) == {g_l)p- IX ai&fx a:'ﬂ ifdy =p

ifd; # p.
jxsn=§:]ai£/a:n.

It is even enough to prove this when § = aj, and then it is obvious. u

So we must prove

Now suppose that f : X — X is a map with non-degenerate fixed points. That means
that F' = (id x f) : X — X x X is transversal to the diagonal A C X x X. The fixed-point
set {z € X : f(z) = z} is F~'A. 1t is necessarily finite, and each point z € F~'A has a
sign & according as DF(z) : T X — Ny = T; X preserves or reverses orientation. The
algebraic number of fixed points is [y €p-1a-

Proposition 5.5.2 (The Lefschetz fized-point theorem). In the preceding situation, the

number of fired-points of f, counted with signs, is
(—1)F trace {f* : H*(X) — H*(X)}.

In particular, if f is homotopic to the identily, then the number of fized points is the Euler

number

x(X) = Z(-1)F dim H*¥(X).

Proof. We have ep-1a = F*ea = B(=1)%a;f*(a}). But [y a;f*(a}) is the (i,4) matrix
element of f* with respect to the basis {a}}. So

/X ep-ia = D% & {f* : H¥(X) = HYX)}.

A closely related result is
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Proposition 5.5.3 If X is a compact oriented manifold, then

/.;c erx = x(X),

and hence x(X) is the number of zeros of any tangent vector field on X which is transversal

to the zero-section.

Proof. Exploiting the fact that the Thom class of T'X is the cohomology class of the

zero-section in HZ,(TX), and also that TX can be identified with the normal bundle to the

diagonal in X x X, we have

2 2
/ eTX"—"'[ UTXETX:j €A =/ €A
x TX fix XxX

5 /5A|A = E(—l)d’jaifl; = x(X).

A X



