Basic Algebraic Geometry, Michelmas 1996 Alessio Corti

Problem Sheet 1

1) Let R be an integral domain. Prove that the ring homomorphism

$$\psi: R[x_1,...,x_n] \to \{\text{functions } f: R^n \to R\}$$

(sending a polynomial to the corresponding polynomial function) is injective if and only if R is infinite.

- 2) The linear system of conics passing through 4 points is 1-dimensional unless the 4 points all lie on a line.
- 3) Let C, D be 2 plane cubics intersecting in 9 distinct points. Assume that 3 of these points lie on a line L. Conclude that the remaining 6 points of intersection lie on a conic [Hint: 1 curve in the linear system $\lambda C + \mu D$ contains the line L].

Generalize to 2 curves of degree n.

4) A smooth cubic curve has 9 distinct flexes and every line containing 2 flexes must also contain a 3rd. In suitable coordinates the 9 flexes are (0, 1, -1), (-1, 0, 1), $(1,-1,0), (0,1,\alpha), (\alpha,0,1), (1,\alpha,0), (0,1,\beta), (\beta,0,1), (1,\beta,0)$ where α and β are the 2 solutions of $x^2 - x + 1 = 0$. Any cubic containing those 9 points has the form

$$x_0^3 + x_1^3 + x_2^3 + 3mx_0x_1x_2 = 0$$

5) Consider the plane 4ic:

$$\lambda_0(x_0^2x_1x_2 + x_0x_1^2x_2 + x_0x_1x_2^2) + \lambda_1(x_0^2x_1^2 + x_0^2x_2^2 + x_1^2x_2^2) = 0$$

For general values of the ratio $\lambda_0:\lambda_1$ the 4ic is reduced and irreducible (prove it!). Find an explicit rational parametrization.

- 6) Prove that if $u, v \in \mathbb{Z}$: $u^2 + v^2$, $u^2 v^2$ both squares implies v = 0. Try hard to do this yourself, then look at the hints in UAG, pg. 41-42.
 - 7) Let

$$C = (y^4 - y^2 + x^4 = 0)$$

$$D = (y^4 - 2y^3 + (1 - x)y^2 - 2x^2y + x^4 = 0)$$

Compute the intersection points of the 2 curves, find local parametrisations for the 2 curves at those points, compute intersection multiplicities both using the resultant and the local parametrisations.

8) Let C be a plane curve.

Let m(C) be the number of tangent lines to C passing through a point $q \in \mathbb{P}^2$, counted with multiplicity, and i(C) the number of inflectional points of C, also counted with multiplicity.

An ordinary node is a singular point $p \in C$ of multiplicity 2 and such that C has 2 distinct tangent lines at p (make sense of these definitions).

If C has degree n and only ordinary nodes as singularities, prove that:

$$m = n(n-1) - 2\delta$$

$$i = 3n(n-2) - 6\delta$$

where $\delta(C)$ is the number of these nodes.

Basic Algebraic Geometry, Michelmas 1996

Alessio Corti

Problem Sheet 2

1) Let X, Y be topological spaces and $f: X \to Y$ a continuous map. If \mathcal{F} is a sheaf on X, define the sheaf $f_{\bullet}\mathcal{F}$ on Y. Similarly, for a sheaf \mathcal{G} on Y, define the sheaf $f^{\bullet}\mathcal{G}$ on X. Prove the formula:

$$Hom_X(f^{\bullet}\mathcal{G}, \mathcal{F}) = Hom_Y(\mathcal{G}, f_{\bullet}\mathcal{F})$$

2) Let (X, \mathcal{O}_X) be an algebraic prevariety. Recall that an open subprevariety of X is a (Zariski) open subset $U \subset X$ with the sheaf of functions:

$$\mathcal{O}_U := \mathcal{O}_X | U$$

[recall that, for any sheaf \mathcal{F} on X, and denoting $j:U\hookrightarrow X$ the inclusion, we use the notation

$$\mathcal{F}|U:=j^{\bullet}\mathcal{F}$$

The reason for this is that j^{\bullet} for the inclusion $j: U \hookrightarrow X$ of an open subset is much easier than f^{\bullet} for an arbitrary continuous map f.]

Given a finite collection X_{α} of algebraic prevarieties, and open subprevarieties $X_{\alpha\beta} \subset X_{\alpha}$ and isomorphisms:

$$\psi_{\alpha\beta}: X_{\alpha\beta} \to X_{\beta\alpha}$$

satisfying

$$\psi_{\alpha\gamma} = \psi_{\beta\gamma} \circ \psi_{\alpha\beta}$$

(whenever both sides are defined), construct an algebraic prevariety gluing the X_{α} . Check that the ensuing object is an algebraic prevariety as pedantically as you can at the same time using up no more than 5 handwritten pages.

- 3) Prove that $\mathbb{A}^2 \setminus \{0,0\}$ is not (isomorphic to) an affine variety.
- 4) Let X be an algebraic variety, U and V open subvarieties. Assume that U and V are affine (i.e., isomorphic to affine varieties). Prove that $U \cap V$ is also affine [hint: if $i: U \subset X$, $j: V \subset X$ are the inclusions and $(i,j): U \times V \to X \times X$ is their product, $U \cap V = (i,j)^{-1}\Delta$]. Show by example that the statement is wrong if X is a prevariety.
 - 5) In class we discussed the following:

Theorem. Let $f: X \to Y$ be a dominating morphism of varieties and r = dim X - dim Y. For all irreducible closed subsets $W \subset Y$ and all components Z of $f^{-1}W$ dominating W:

$$dim Z > dim W + r$$

Show by example that the statement is false if $Z \to W$ is not dominating.

- 6) Prove that the product of 2 projective varieties is again a projective variety [hint: it is enough to prove that $\mathbb{P}^n \times \mathbb{P}^m$ is a projective variety. Think of mapping $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{nm+n+m}$ via $(x_i; y_j) \to (x_i y_j)$]. Conclude that a projective "variety" is a variety.
- 7) Do problem 5.12 on page 92 of Reid's UAG, following the hints given there. When you are done with it, remember that projective varieties are proper and appreciate.
 - 8) Do problem 5.13 on page 93 of Reid's UAG.
- 9) Let X be an algebraic variety, $U \subset X$ an open subvariety. If U is proper, U = X.

Basic Algebraic Geometry, Michelmas 1996 ALESSIO CORTI Problem Sheet 3-4

- 1) Let $C \subset \mathbb{P}^2$ be a plane curve. A line L is a bitangent to C iff L is tangent to C at exactly 2 (distinct) points. Show that if $\deg C \geq 4$, C has a finite > 0 number of bitangents [hint: a constant count. Keep in mind the Fermat curve $x^m + y^m = z^m = 0$]. Show that a "general" curve of any degree has no tritangents.
 - 2) Show that a general surface $S \subset \mathbb{P}^3$ of degree $m \geq 4$ contains no lines.
 - 3) Do all the problems to §7 in UAG [pg. 111-113].
- 4) Consider 6 points $p_i \in \mathbb{P}^2$, $i \in \{1, 2, 3, 4, 5, 6\}$ in general position. By this we mean that no 3 of the points lie on a line, no 6 of them on a conic. Let S be the surface obtained blowing up the 6 points on \mathbb{P}^2 . Let $H \in \mathbb{P}^2$ be a cubic curve passing through the 6 points, $H' \in S$ the strict transform. Prove that the linear system |H'| defines an embedding $S \subset \mathbb{P}^3$, and S is a (smooth) cubic surface. Prove that every smooth cubic surface in \mathbb{P}^3 arises in this way [hint: use UAG 7.4].
- 5) Let $C \in \mathbb{P}^2$ be a smooth plane curve. What is the genus g(C) of C? [there are great many ways to do this, many of which probably accessible to your imagination. It would spoil your fun if I were to give you any hints at this point].
- 6) Let $C \in \mathbb{P}^2$ be a plane curve of degree d and $C^* \subset \mathbb{P}^{2*}$ the dual curve (by definition this is the locus of tangent lines to C. Prove that C^* is an algebraic curve and

$$C\ni p\to T_pC\in C^*$$

a morphism.

a) Let $L \in \mathbb{P}^2$ be a line, not tangent to C. Define $\varphi : C \to L$ mapping $p \to C$.

 $T_pC \cap L$. Show that φ is ramified at p iff $p \in L$ or $p \in C$ is a flex.

b) If L is tangent to C at $p_1, ..., p_r$ and none of the p_i is a flex, then $L \in C^*$ is an ordinary r-fold point (i.e., by definition, a point of multiplicity r with r distinct tangents, and in particular r distinct smooth branches).

c) Let $p \in \mathbb{P}^2$ be a point not lying on C nor on any inflectional or multiple tangent to C, L a line not containing p, $\varphi : C \to L$ the projection from p. Use Hurwitz's formula to compute the degree of C^* (you should get d(d-1)).

d) A sufficiently general point $p \in C$ lies on (d+1)(d-2) tangents of C (not

counting the tangent at p.

e) Calculate the degree of the morphism φ in a) and use Hurwitz to count the flexes of C.

f) Assume that C^* has only ordinary nodes and cusps as singularities (this is true for sufficiently general C). Show that C has

$$\frac{1}{2}d(d-2)(d-3)(d+3)$$

bitangents [this may be quite hard, but should be fun to try]. In particular a plane quartic has 28 bitangents. Do these have anything to do with the 27 lines on a cubic surface? [hint: 28=27+1. A more constructive hint would be to choose a

point $p \in S$ on the cubic surface and project down to \mathbb{P}^2 . This is a finite morphism of degree 2, branched along a 4-ic in \mathbb{P}^2 . Try and see where do the 27 lines go...]

7) Prove that a smooth algebraic curve C over a field of characteristic zero has at most 84(g-2) automorphisms. The idea is to show that C/G is a smooth curve, and apply the Hurwitz formula to the map

$$f:C\to C/G$$

8) Let X be a proper and smooth algebraic surface. Define a suitable *intersection* product:

 $ClX \times ClX \rightarrow \mathbb{Z}$

on the class group of X, by generalising intersections of curves in \mathbb{P}^2 (don't be afraid, you can do it!). Then prove the Riemann-Roch theorem on X:

$$\chi \mathcal{L}(D) = \frac{1}{2}D \cdot (D - K) + 1 + p_a$$

where $K := \Lambda^2 \Omega$ is the canonical line bundle and $p_a := h^2 \mathcal{O} - h^1 \mathcal{O}$ [hint: generalise the proof for curves. Don't be afraid, you can do this one too].

Now go and read Beauville's "Complex Algebraic Surfaces", Chapter I, where the intersection product is defined via the Riemann-Roch formula!