Basic Algebraic Geometry, Michelmas 1996
ALESSIO CORTI
Problem Sheet 1

1) Let R be an integral domain. Prove that the ring homomorphism
Y : R[zy,...,z,] — {functions f : R" — R}
(sending a polynomial to the corresponding polynomial function) is injective if and
only if R is infinite.

2) The linear system of conics passing through 4 points is 1-dimensional unless
the 4 points all lie on a line.

3) Let C, D be 2 plane cubics intersecting in 9 distinct points. Assume that 3
of these points lie on a line L. Conclude that the remaining 6 points of intersection
lie on a conic [Hint: 1 curve in the linear system AC 4 pD contains the line L].

Generalize to 2 curves of degree n.

4) A smooth cubic curve has 9 distinct flexes and every line containing 2 flexes
must also contain a 3rd. In suitable coordinates the 9 flexes are (0,1, -1), (—1,0,1),
(1,-1,0), (0,1, a), («,0,1), (1,e,0), (0,1, 5), (8,0,1), (1,5,0) where o and 3 are

the 2 solutions of 22 —z 4+ 1 = 0. Any cubic containing those 9 points has the form

3
.7:3 +z7 + :cg + 3mzozi122 =0

5) Consider the plane 4ic:
Mo(z2z122 + Toxizy + zoz123) + Mi(2d2? + 222} + 2323) =0

For general values of the ratio Ao : A1 the 4ic is reduced and irreducible (prove it!).
Find an explicit rational parametrization.

6) Prove that if u,v € Z: u® + v? , u? — v? both squares implies v = 0. Try hard
to do this yourself, then look at the hlnts in UAG, pg. 41-42.

7) Let
C=(y" -y’ +2*=0)
D=(y* -2 +(1-2)y* —22°y +2* =0)
Compute the intersection points of the 2 curves, find local parametrisations for the

2 curves at those points, compute intersection multiplicities both using the resultant
and the local parametrisations.

8) Let C be a plane curve.

Let m(C') be the number of tangent lines to C' passing through a pomt q € P2,
counted with multiplicity, and #(C') the number of inflectional points of C, also
counted with multiplicity.

An ordinary node is a singular point p € C of multiplicity 2 and such that C has
2 distinct tangent lines at p (make sense of these definitions).

If C has degree n and only ordinary nodes as singularities, prove that:

m=n(n—1)—26
i =3n(n —2)— 66

where §(C') is the number of these nodes.
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Basic Algebraic Geometry, Michelmas 1996
ALESsIO CORTI
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1) Let X, Y} be topological spaces and f: X — } a continuous map.
If F is a sheaf on X, define the sheaf f,F on Y.
Similarly. for a sheaf G on Y, define the sheat f*G on X,

Prove the formula:
Homx(f*G,F) = Homy (G, foF)

2) Let (X, Ox) be an algebraic prevariety. Recall that an open subprevariety of
X is a (Zariski) open subset U C X with the sheaf of functions:

Ou := Ox|U

[recall that, for any sheaf F on X, and denoting j : U — X the inclusion, we use
the notation

F|U s=3*F

The reason for this is that j* for the inclusion j : U — X of an open subset 1s much
easier than f* for an arbitrary continuous map f.]

Given a finite collection X, of algebraic prevarieties, and open subprevarieties
Xaog € X, and isomorphisms:

'l;ba,B : ‘on,ﬁ — -Y,Ga

satisfying

"/}cw = %‘7 o "paﬁ

(whenever both sides are defined), construct an algebraic prevariety gluing the X,.
Check that the ensuing object is an algebraic prevariety as pedantically as you can
at the same time using up no more than 5 handwritten pages.

3) Prove that A% \ {0,0} is not (isomorphic to) an affine variety.

4) Let X be an algebraic variety, U and V open subvarieties. Assume that U
and V are affine (i.e., isomorphic to affine varieties). Prove that U NV is also affine
[hint: if ¢ : U C X, j : V C X are the inclusions and (z,7) : U x V — X x X is
their product, U NV = (4,j) ! A]. Show by example that the statement is wrong
if X is a prevariety.

5) In class we discussed the following:

Theorem. Let f : X — Y be a dominating morphism of varieties and r =
dimX — dimY . For all irreducible closed subsets W C Y and all components Z of
f~'W dominating W:

dimZ > dimW +r

Show by example that the statement is false if Z — W 1s not dominating.
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6) Prove that the product of 2 projective varietios s again a projective variety
[hint: it is enough to prove that P x P™ is a projective variety. Thiuk of mapping
P x P s POkt yig (@55 y;) — (eiy;)]. Conclude that a projective “variety”
1s a variety. :

7) Do problem 5.12 on page 92 of Reid’s UAG, following the hints given there.
When vou are done with it, remember that projective varieties are proper and
appreciate.

8) Do problem 5.13 on page 93 of Reid’s UAG.

9) Let X be an algebraic variety, U C X an open subvariety. If U 1s proper,

L= s
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Problem Sheet 3—4

1) Let C C P? be a plane curve. A line L is a bitangent to C iff L is tangent
to C at exactly 2 (distinct) points. Show that if degC > 4, C has a finite > 0
number of bitangents [hint: a constant count. Keep in mind the Fermat curve
z™ 4+ y™ = z™ = 0]. Show that a “general” curve of any degree has no tritangents.

2) Show that a general surface S C IP? of degree m > 4 contains no lines.
3) Do all the problems to §7 in UAG [pg. 111-113].

4) Consider 6 points p; € P%, i € {1,2,3,4,5,6} in general position. By this
we mean that no 3 of the points lie on a line, no 6 of them on a conic. Let S be
the surface obtained blowing up the 6 points on P2, Let H € P? be a cubic curve
passing through the 6 points, H' € S the strict transform. Prove that the linear
system |H'| defines an embedding S C P?, and S is a (smooth) cubic surface. Prove
that every smooth cubic surface in P® arises in this way [hint: use UAG 7.4].

5) Let C € P? be a smooth plane curve. What is the genus g(C) of C? [there are
great many ways to do this, many of which probably accessible to your imagination.
It would spoil your fun if I were to give you any hints at this point].

6) Let C € P? be a plane curve of degree d and C* C P?* the dual curve (by
definition this is the locus of tangent lines to C. Prove that C* is an algebraic curve
and

Cap—-T,CeC”

s

a morphism. '

a) Let L € P? be a line, not tangent to C’ Define ¢ : C — L mapping p —
T,C N L. Showtha.t(plsram.lﬁedatplﬁ'peLorpeC:saﬂex

b) If L is tangent to C at py,...,pr and none of the p; is a flex, then L € C* is
an ordinary r-fold point (i.e., by definition, a point of multiplicity r with r distinct
tangents, and in particular r distinct smooth branches).

¢) Let p € P? be a point not lying on C nor on any inflectional or multiple
tangent to C, L a line not containing p, ¢ : C — L the projection from p. Use
Hurwitz’s formula to compute the degree of C* (you should get d(d — 1)).

d) A sufficiently general point p € C lies on (d + 1)(d — 2) tangents of C' (not
counting the tangent at p.

e) Calculate the degree of the morphism fp in a) and use Hurwitz to count the

flexes of C.

f) Assume that C* has only ordinary nodes and cusps as s1ngu1a,r1t1es (this is
true for sufficiently general C). Show that C has '

Sd(d—2)(d~3)(d+3)

bitangents [this may be quite hard, but should be fun to try]. In particular a plane
quartic has 28 bitangents. Do these have anything to do with the 27 lines on a
cubic surface? [hint: 28=27+1. A more constructive hint would be to choose a
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point p € S on the cubic surface and project down to P2, This is a finite morphism
of degree 2, branched along a 4-ic in P2, Try and see where do the 27 lines go...]

7) Prove that a smooth algebraic curve C over a field of characteristic zero has
at most 84(g —2) automorphisms. The idea is to show that C//G is a smooth curve,
and apply the Hurwitz formula to the map

f:C—=CJG

8) Let X be a proper and smooth algebraic surface. Define a suitable intersection
product:
CIXxCIX—-1Z

on the class group of X, by generalising intersections of curves in P? (don’t be
afraid, you can do it!). Then prove the Riemann-Roch theorem on X:

1

X£(D) = 3

where K := A2Q is the canonical line bundle and p, := RO — h'O [hint: generalise
the proof for curves. Don’t be afraid, you can do this one too].

Now go and read Beauville’s “Complex Algebraic Surfaces”, Chapter I, where
the intersection product is defined via the Riemann-Roch formula!




