Example sheet 1 (of 4).

All rings are commutative with 1

- 1. Let A be a set satisfying all the axioms for a ring with identity except for commutativity of addition. Show that this can be deduced from the other axioms.
- 2. Show from the ring axioms that $0 \times x = 0$.
- 3. (a) Let R be a ring, X a set. Show that the set R^X of all maps $f: X \to R$ is a ring under pointwise operations. When is R^X a field?
- (b) Define a function $f \in R^X$ to be of finite support if the set $\{x \in X : f(x) \neq 0\}$ is finite. Show that the functions of finite support form a subring $R^{(X)}$ of R^X . When is it a field?
- 4. Which of the following sets of functions are rings under the pointwise operations?
 - (a) continuous functions $(0,1) \rightarrow [0,1]$;
 - (b) continuous functions $(0,1) \to \mathbb{R}$;
 - (c) differentiable functions $(0,1) \to \mathbb{R}$;
 - (d) analytic functions $\mathbb{C} \to \mathbb{C}$;
 - (e) continuous functions $f:(0,1)\to\mathbb{R}$ such that 1/f is also continuous.
- 5. Let A be an Abelian group (written additively) and A^A the set of all maps from A to A with pointwise addition. Define multiplication to be composition of maps.
 - (a) Show that this does not in general give A^A a ring structure.
- (b) Let $\mathcal{E}(A)$ be the subset of A^A consisting of group homomorphisms from A to itself. Show that with multiplication defined as composition, $\mathcal{E}(A)$ satisfies all the axioms for a ring except commutativity of multiplication.
 - (c) Show that $\mathcal{E}(A)$ is a ring when A is a cyclic group.
- 6. Let $R = \mathbb{Z}[\sqrt{-d}]$ be the set of all complex numbers of the form $z = a + b\sqrt{-d}$ where a, b are integers and d is a square-free natural number. Show that R is a ring with 4 units if d = 1 and 2 units otherwise.

[Hint: define $N(z) = z\bar{z}$ and deduce that z is a unit iff N(z) = 1.]

7. Let R be a ring and $d \in R$. Define addition and multiplication on $R \times R$ by

$$(x, y) + (u, v) = (x + u, y + v)$$

 $(x, y) \cdot (u, v) = (xu + dyv, xv + yu).$

Show that with these operations, $R \times R$ is a ring, denoted by $R[\sqrt{d}]$. What is $R[\sqrt{1}]$?

- 8. Let S be a non-zero subring of a ring R. Say which of the following assertions are true and which are false, giving proofs or counter-examples.
 - (i) If R has no non-zero divisors of zero, then neither has S.
 - (ii) If S has no non-zero divisors of zero, then neither has R.
 - (iii) The characteristics of R and S are equal.

- 9. (a) If I, J are ideals of R, show that $I \cap J$ and I + J are also ideals. Show that IJ is an ideal contained in $I \cap J$. Give an example to show that IJ may be strictly contained in $I \cap J$.
 - (b) If I_1, I_2, I_3 are ideals of R, show that the following laws hold:
 - (i) $I_1 \cap (I_2 + I_3) \supseteq (I_1 \cap I_2) \cap (I_1 \cap I_3);$
 - (ii) $I_1 + (I_2 \cap I_3) \supseteq (I_1 + I_2) \cap (I_1 + I_3);$
 - (iii) If $I_1 \supseteq I_2$ then $I_1 \cap (I_2 + I_3) = I_2 + (I_1 \cap I_3)$.
- 10. Let $R = F_1 \times F_2 \times \cdots \times F_n$, where the F_i are fields. Describe all the ideals of R and show that they are principal.
- 11. Suppose that $A \supseteq B$ are ideals of the ring R. Prove that A/B is an ideal of R/B and that $R/A \cong (R/B)/(A/B)$.

Prove also that if C, D are ideals in R, then the ideals $C \cap D$ and C + D satisfy $C/(C \cap D) \cong (C + D)/D$.

12. Let R be a ring and $R[X_1, \ldots, X_n]$ the ring of polynomials in n (commuting) variables over R. For $p = \sum c_{i_1 \ldots i_n} X_1^{i_1} \cdots X_n^{i_n}$, not zero, define the *total degree* to be

$$d^{0}(p) \equiv \max \left\{ \sum_{j=1}^{n} i_{j} : c_{i_{1}...i_{n}} \neq 0 \right\}.$$

Put $d^0(0) = -\infty$. Show that $d^0(pq) \leq d^0(p)d^0(q)$ and that equality holds for all p, q in $R[X_1, \ldots, X_n]$ if and only if R is an integral domain.

13. Let R be a ring and S a subring of R. The elements r_1, \ldots, r_n of R are algebraically independent over S if, for a function $c: \mathbb{N}^n \to R$ of finite support, the condition

$$\sum_{\mathbf{i} \in \mathbb{N}^n} c(\mathbf{i}) r_1^{i_1} \cdots r_n^{i_n} = 0$$

implies c is the zero function.

Prove that, given a ring S and an integer $n \geq 1$, there exists a unique (up to isomorphism) ring $R \supset S$ such that R is generated by S and n elements which are algebraically independent over S.

14. Let A be an additive group and R a ring. Let $R^{(A)}$ be the set of functions from R to A of finite support. Define addition on $R^{(A)}$ pointwise and multiplication by convolution:

$$f \cdot g : b \mapsto \sum_{a \in A} f(a)g(b-a).$$

Show that this gives a ring structure on $R^{(A)}$.

Identify the ring R(A) when A is (i) \mathbb{Z} , (ii) \mathbb{Z}^n .

- 15. Is there a ring (with identity) whose additive group is the group $\mathbb{Z}^{(\mathbb{Z})}$ of functions of finite support from \mathbb{Z} to itself?
- 16. (a) Let R be a ring, let P denote the positive integers and D(R) the functions from P to R of finite support with pointwise addition and Dirichlet multiplication

$$f \times g : n \mapsto \sum_{d|n} f(d)g(n/d),$$

summing over the positive disivors of n. Show that this defines a ring structure on D(R).

- (b) Let $\zeta: P \to R$ denote the function $\zeta: n \mapsto 1$ and let $\mu: P \to R$ the function $\mu(n) = 0$ if n has a square factor and $\mu(p_1 \cdots p_r) = (-1)^r$ when the p_i are distinct primes. Show that ζ and μ are in the multiplicative group of D(R).
- 17. Construct an Abelian group which is not (isomorphic to) the additive group of any ring with identity.
- 18. (a) Suppose R is a ring with every element *idempotent*, that is, $x^2 = x$ for all x. Show that R has characteristic 2. Give examples of such rings with 2^n elements for $n = 1, 2, \ldots$
- (b) Given a set X, let P(X) denote the power set of X, that is, the set of all subsets of X (including X itself and the empty set). Define addition and multiplication on P(X) as follows:

$$A + B = (A \cup B) \setminus (A \cap B)$$
$$A \times B = A \cap B.$$

Show that under these operations P(X) is a ring. What are the zero and unity elements? Show that every element of P(X) is idempotent.

- _ (c) Let X be an infinite set and F—the collection of finite subsets of X. Show that F is a subring of P(X), but that F is not isomorphic to P(Y) for any set Y.
- 19. Suppose R is a finite non-zero ring. Show that R is made up of elements which are either units or zero-divisors but not both.
- 20. Let R be a ring and I, I ideals of R such that R = I + J. Show that R/IJ is isomorphic to the direct product of R/I and R/J.
- 21. Let R, S be rings. Show that the ideals of $R \times S$ are precisely the products $I \times J$ where I, J are ideals of R, S respectively. Deduce that every ideal of $\mathbb{Z} \times \mathbb{Z}$ is principal.
- 22. An ideal I of A is maximal if $I \neq A$ and whenever J is an ideal of A with $I \subseteq J \subseteq A$ then either I = J or J = A.
 - (i) Show that an ideal I of A is maximal iff A/I is a field.
 - (ii) Show that if A is a field then $\{0\}$ and A are the only ideals.
 - (iii) Show that every maximal ideal is prime.
- 23. Does every ring have a maximal ideal?
- 24. Let I be a proper ideal of R. Show that R has I as unique maximal ideal iff every element of $R \setminus I$ is a unit in R.
- 25. Suppose that I is a maximal ideal of $\mathbb{Z}[X]$. Show that $I \cap \mathbb{Z} \neq \{0\}$ and deduce that $\mathbb{Z}[X]/I$ is finite.
- 26. Let C be the ring of all continuous functions from $\mathbb R$ to $\mathbb R$ and let

$$I = \{ f \in C : f(0) = 0 \}.$$

Show that I is a maximal ideal of C and identify the structure of C/I (that is, find a "well-known" ring isomorphic to it). Is the ideal I principal?

27. If A is a subring of B and I is an ideal of A, define

$$IB = \{b_1p_1 + \dots + b_np_n : b_i \in B, \ p_i \in I\}$$

Show that

$$\frac{A[X]}{IA[X]} \cong \left(\frac{A}{I}\right)[X].$$

28. Let R be a ring, $a, b, c \in R$ and put

$$d_k = ka + bc^k, \qquad k = 0, 1, \dots$$

Show that the ideal generated by all the d_k is finitely generated. Let $a, b_i, c_i \in R$ for i = 1, ..., n and put

$$d_k = ka + \sum_{i=1}^n b_i c_i^k, \qquad k = 0, 1, \dots$$

Show that the ideal generated by all the d_k is finitely generated.

Hint: you might find it helpful to note that if $p = \sum_{i=0}^{m} p_i X^i$ is divisible by $(X - q)^r$ then the formal derivative $Dp = \sum_{i=1}^{m} i p_i X^{i-1}$ is divisible by $(X - q)^{r-1}$.

29. Let I be any ideal of the ring R, and define the radical of I to be

$$\sqrt{I} = \{x \in R : x^n \in I \text{ for some integer } n \ge 1\}.$$

Show that \sqrt{I} is an ideal of R, and that $\sqrt{\sqrt{I}} = \sqrt{I}$.

30. Let R be a ring and A, B ideals of R. Show that the set

$$(A:B) = \{x \in R : xb \in A \text{ for all } b \in B\}$$

is an ideal of R such that $(A:B)B \subseteq A \subseteq (A:B)$. Show also that (A:B) = (A:A+B) and that if C is also an ideal of R then ((A:B):C) = (A:BC).

- 31. Find the idempotent elements of the residue class rings $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/10\mathbb{Z}$, $\mathbb{Z}/11\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$.
- 32. An element x of a ring R is nilpotent if $x^n = 0$ for some integer $n \ge 0$. Find the nilpotent elements of the residue class rings $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/10\mathbb{Z}$, $\mathbb{Z}/11\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$.
- 33. Let R be a ring. Show that the set N of nilpotent elements is an ideal of R and that the quotient ring R/N has no nilpotent elements.
- 34. Let A denote a ring. The nilradical of A, N(A) is the set of all nilpotent elements of A. An ideal I of A is prime if $I \neq A$ and whenever $xy \in I$ then $x \in I$ or $y \in I$. Prove that N(A) is the intersection of all the prime ideals of A.
- 35. Let R be a ring and $a \in R$. Show that 1 aX is a unit in R[X] if and only if a is nilpotent.

- 36. List the units, zero-divisors, idempotent and nilpotent elements of $\mathbb{Z}/m\mathbb{Z}$ for $m=2,\ldots,12$. Generalise.
- 37. Let I be an ideal and S a subring of R. Show that $I\cap S$ is an ideal of S , that I+S is a subring of R and that

$$S/(I \cap S) \cong (I+S)/I$$
.

- 38. Show that $\mathbb{R}[X]/\langle X^2+1\rangle \cong \mathbb{C}$.
- 39. Which of the following properties of a ring are preserved under taking (i) subrings (ii) quotient rings (iii) product rings (iv) polynomial rings?
 - (a) having no non-zero divisors of zero;
 - (b) having no non-zero nilpotent elements;
 - (c) having a unique maximal ideal.
- 40. Let R be a ring for which R[X] is a PID: show that R is a field.
- 41. Let R, S be rings. The Cartesian product $R \times S$ is a ring under componentwise operations. Show that there are homomorphisms from $R \times S$ to R and to S, and homomorphisms from R and from S to $R \times S$. Identify the kernels and images of these morphisms.
- 42. Suppose R is a ring with characteristic p prime. Show that $\phi: R \to R$, where $\phi(r) = r^p$, is a homomorphism. Give an example for which ϕ is not injective.
- 43. Show that the only ring homomorphisms from \mathbb{Z} to \mathbb{Z} are the zero map and the identity map.
- 44. Let R, R' be rings with identity elements $1_R, 1_{R'} S, S'$ subsets of R, R' respectively and $\alpha : R \to R'$ a homomorphism such that $\alpha(S) \subseteq S'$. Show that there exists a unique homomorphism $\alpha_{\star} : R[S^{-1}] \to R'[S'^{-1}]$ such that $\alpha_{\star}(a/1_R) = \alpha(a)/1_{R'}$ for all $a \in R$.
- 45. Let R be a principal ideal ring, S a multiplicative system in R. Show that $R[S^{-1}]$ is a principal ideal ring.
- 46. (i) Show that an ideal of R is prime iff R/I is an integral domain.
 - (ii) Is the set of continuous functions $\mathbb{R}^n \to \mathbb{R}$ an integral domain?
 - (iii) Show that if D is an integral domain, then so is D[X].
- 47. (i) Show that \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.
 - (ii) Show that \mathbb{Z} is not a field.
 - (iii) Show that for any ring A, the polynomial ring A[X] is not a field.
- 48. Let R be a ring, P a prime ideal of R and S the complement of P in R. Show that $R[S^{-1}]$ has a unique maximal ideal, consisting of all elements of the form p/s for $P \in P$ and $S \in S$.
- 49. For which values of n is $\mathbb{Z}/n\mathbb{Z}$ a field? An integral domain? When does it have non-zero nilpotent elements? Non-trivial idempotents? Just one maximal ideal? An element which is not a square?

- 50. Let R_1 be the ring of rational numbers with denominator a power of a given prime p and let R_2 be the ring of rational numbers with denominator not divisible by p. Show that R_1 and R_2 are principal ideal domains, that R_1 has infinitely many prime ideals and R_2 has only two.
- 51. For a set ϖ of rational primes, write $\mathbb{Z}_{(\varpi)}$ for the ring of all rationals m/n such that the only prime divisors of n are in ϖ . Suppose R is a subring of \mathbb{Q} . Show that $R = \mathbb{Z}_{(\varpi)}$ for some set ϖ . Show further that if ϖ consists of all primes except one, then no proper subring of \mathbb{Q} properly contains R.
- 52. Suppose $\theta: R \to S$ is a homomorphism of rings and that I is an ideal of R. Show that $\theta(I)$ is an ideal of $\theta(R)$. By considering the map $x \mapsto \theta(I) + \theta(x)$, show that $R/(I + \ker \theta) \cong \theta(R)/\theta(I)$. Deduce that if I is an ideal of I then I then I then I is an ideal of I then I then I is an ideal of I then I is an
- 53. Suppose $\theta: R \to S$ is a homomorphism of rings. Show that every ideal of $\theta(R)$ has the form $\theta(I)$ for some ideal I of R and that there is only one such I that contains $\ker \theta$. By taking $R = \mathbb{Z}$ and $S = \mathbb{Z}/2\mathbb{Z}$, show that I need not be unique.
- 54. (a) Show that if $\theta : \mathbb{Z} \longrightarrow \mathbb{Q}$ is a homomorphism then $\theta n = n$ for all n in \mathbb{Z} .
- (b) Suppose $\theta: R \longrightarrow S$ is a homomorphism from a ring R to a ring S and that x is in R. Show that if $f \in R[X]$ and θf has its obvious meaning and if f(x) = 0 then $\theta f(\theta x) = 0$.
 - (c) Show that $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt{3}]$, $\mathbb{Z}[\frac{1}{17}]$ are mutually non-isomorphic.
- 55. Let k be a field and a an element of k. Let P be the subset of k[X] comprising all polynomials f such that f(a) = 0. Prove that $k[X]/P \cong k$ and deduce that P is a maximal ideal of k[X]. Suppose now that K is another field properly containing k and that a is in K but not k. What can you definitely say about P? Need P be maximal?
- 56. Let P be a prime ideal of R. Prove that P[X] is a prime ideal of R[X]. If P is a maximal ideal of R, does it follow that P[X] is a maximal ideal of R[X]?
- 57. Let k be a field and let R = k[X, Y] be the polynomial ring. Let I be the ideal of R generated by X + Y. Show that $R/I \cong k[X]$.
- 58. Show that the following conditions on a ring A are equivalent
 - (N1) Every ideal I of A is finitely generated;
- (N2) Given any chain of ideals $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots$, there exists an N such that $I_n = I_N$ for all $n \ge N$;
- (N3) Every non-empty set of ideals in A has a maximal element (with respect to \subseteq). Such a ring is *Noetherian*.

The questions on these example sheets are intended to provide a choice for the student and supervisor. Many are easy: most are straight-forward. A possible selection might be 2, 3, 5, 6, 9(a), 16, 18, 20 or 21, 22, 29, 42, 49; with a further selection from 25, 28, 30, 33, 43, 59 for those who want something a little harder.

Comments to R.G.E. Pinch at DPMMS or email rgep@dpmms.cam.ac.uk

Example sheet 2.

All rings are commutative with 1

- 1. Let a be an element of a ring R. Show that the kernel of the evaluation map $f(X) \mapsto f(a)$ from R[X] to R is the principal ideal $\langle X a \rangle$.
- 2. Show that if d < -1 the unit group of $\mathbb{Z}[\sqrt{d}]$ is $\{\pm 1\}$. Show that $U(\mathbb{Z}[\sqrt{2}]) \supseteq \{\pm (1+\sqrt{2})^m : m \in \mathbb{Z}\}$. Is this the whole group?
- 3. Define a map $\lambda : \mathbb{Z}[\sqrt{d}] \to \mathbb{R}^2$ by $\lambda : (a + b\sqrt{d}) \mapsto (a + b\sqrt{d}, a b\sqrt{d})$. Show that the image of λ is discrete and deduce that the unit group of $\mathbb{Z}[\sqrt{d}]$ is of the form $\{\pm \alpha^n : n \in \mathbb{Z}\}$ for some α .
- 4. Show that 2 is irreducible in $\mathbb{Z}[\sqrt{10}]$. Is 2 prime in this ring?
- 5. By considering the elements $n + i\sqrt{n}$ and $1 + i\sqrt{n}$, show that $\mathbb{Z}[i\sqrt{n}]$ is not a UFD for n > 3.
- 6. In $\mathbb{Z}[\sqrt{6}]$, it is clear that $6 = (\sqrt{6})^2 = 3.2$. Does this show that $\mathbb{Z}[\sqrt{6}]$ is not Euclidean?
- 7. By considering the ideal of $\mathbb{Z}[\sqrt{-5}]$ generated by 3 and $2 + \sqrt{-5}$, show that $\mathbb{Z}[\sqrt{-5}]$ is not a PID. Show further that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
- 8. Factorise the following elements into products of primes:
 - (a) 11 + 7i in $\mathbb{Z}[i]$;
 - (b) $4 + 7\sqrt{2}$ in $\mathbb{Z}[\sqrt{2}]$;
 - (c) $4 \sqrt{-3}$ in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.
- 9. Let R be a UFD and K its field of fractions. Suppose a/b is a non-zero element of K with a, b relatively prime in R. Show that if a/b is a root of $a_0 + a_1X + \cdots + a_nX^n$ (where $a_i \in R$, $0 \le i \le n$) then $a \mid a_0$ and $b \mid a_n$.

What are the rational roots of $2x^4 - 2x^3 + x^2 + 6x - 7$?

- 10. Let R be an integral domain. Show that the remainder after dividing $X^m 1$ by $X^d 1$ (in R[X]) is $X^r 1$, where m = qd + r, $0 \le r < d$. Show that an h.c.f. of $X^m 1$ and $X^n 1$ is $X^d 1$, where d is the h.c.f. of m and n. Show further that for a positive integer l, $(l^m 1, l^n 1) = l^{(m,n)} 1$.
- 11. Let d be a positive integer, not divisible by any square, and suppose that $\mathbb{Z}[\sqrt{-d}]$ is a principal ideal domain. Show that d is prime.
- 12. Show that a field is its own field of fractions.
- 13. Let $\mathbb{Z}[\omega]$ be the set of complex numbers of the form $a + b\sqrt{-3}$ where a and b are either both integers or both half odd integers. Show that $\mathbb{Z}[\omega]$ is a ED with respect to the function $\mathcal{N}(a+b\sqrt{-3})=a^2+3b^2$. What is the group of units of this ring?

- 14. (a) Show by direct verification that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a field.
 - (b) Let $\omega = \exp(2\pi i/3)$. Show that $\mathbb{Q}(\omega) = \{a + b\omega : a, b \in \mathbb{Q}\}$ a subfield of \mathbb{C} .
 - (c) In each case, give yet another proof that the object in question is a field.
- 15. Let D be an ID with infinitely many elements, of which only finitely many are irreducible. Suppose every non-unit has an irreducible factor. Show that D has infinitely many units.
- 16. Recall that an integer a is a quadratic residue modulo a prime p if the equation $x^2 \equiv a \mod p$ holds for some integer x, otherwise a is a quadratic non-residue. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be 0 if $a \equiv 0 \mod p$, otherwise +1 for a quadratic residue and -1 for a non-residue. Assume $p \neq 2$.
 - (a) Show that the map $x \mapsto x^2$ is exactly two-to-one on the unit group $(\mathbb{Z}/p)^*$.
 - (b) Show that the quadratic residues form a subgroup of $(\mathbb{Z}/p)^*$.

 - (c) Show that $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$. (d) Show that $a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \mod p$.
- 17. Show that if $p \equiv 1 \mod 4$ then -1 is a quadratic residue of p. Deduce that p is not an irreducible element of $\mathbb{Z}[i]$. Hence determine the irreducible elements of $\mathbb{Z}[i]$.
- 18. Show that every prime $p \not\equiv 3 \mod 4$ is a sum of two squares: $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$. Deduce that an integer is a sum of two squares if and only if every prime factor which is $\equiv 3 \mod 4$ occurs to an even power in the prime factorisation.

Express 2210 as the sum of two squares in four different ways.

- 19. Give a complete description of the integer solutions to the equation $x^2 + y^2 = z^2$.
- 20. Let D be an ID. Show that D[X] is an ID, and that it is a PID if and only if D is a field.
- 21. Exhibit a UFD which is not a PID.
- 22. Let D be a UFD with field of fractions F. Let $f(X) = a_n X^n + \cdots + a_0 \in D[X]$ with degree $n \geq 1$. Suppose there is a prime element p in D such that $p \mid a_i$ for $1 \leq i \leq n-1$ and that $p \nmid a_n$, $p^2 \nmid a_0$. Prove that f(X) is irreducible in F[X].

Suppose that f(c) = 0 for some $c \in F$. Show that $c \in D$ and that $c \mid a_0$.

- 24. Given a ring R, let R[X] denote the ring of formal power series in X over R. Show that if K is a field, then $K[\![X]\!]$ is a PID. What are the units of $K[\![X]\!]$? What are the primes?
- 25. Prove that a finite integral domain is a field.
- 26. Show that the ring of Gaussian integers Z[i] is isomorphic to the quotient ring $\mathbb{Z}[X]/\langle X^2+1\rangle$. Show that the principal ideals $\langle 3\rangle$, $\langle 1+\mathrm{i}\rangle$ and $\langle 2+\mathrm{i}\rangle$ are prime, but that $\langle 2 \rangle$ and $\langle 5 \rangle$ are not.
- 27. Let R be a commutative principal ideal ring, S a multiplicative system in R. Show that $R[S^{-1}]$ is a principal ideal ring.

- 28. A ring R is simple if R has no ideal other than 0 and R itself, and the multiplication in R is not always zero. Prove that a (commutative) simple ring is a field.
- 29. (i) Let K be a finite field and let ϕ be a mapping of K into K. Show that there is a polynomial f(x) such that $f(a) = \phi(a)$ for every $a \in K$.
- (ii) Give an example to show that the finiteness condition in (i) cannot be dropped.
- (iii) Let $f \in \mathbb{C}[X]$ be a polynomial of degree m and let a_1, \ldots, a_{m+1} be distinct rational numbers such that $f(a_i)$ is a rational number. Show that the coefficients of f are rational numbers.
- 30. (a) Find integers x, y such that 95x + 432y = 1.

 - (b) Express $\frac{77}{505}$ as a fraction $\frac{a}{5} + \frac{b}{101}$. (c) Find P, Q, in $\mathbb{Q}[X]$ such that $(X^2 + 2)P + (X^3 7)Q = 1$.
 - (d) Show that x^2+2 is invertible in the ring $(\mathbb{Z}/7\mathbb{Z})[X]/\langle X^5+5\rangle$, where x=X mod $X^5 + 5$, and find its inverse.
- 31. Show that \mathbb{Z} is not a field and that for any ring A, the polynomial ring A[X] is not
- 32. Show that $\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ is a Euclidean domain for d=3,7,11. What can you say about the case d = 15?
- 33. Let R be a ring satisfying $a^2 = a$ for every a in R. Give an examples to show that R may be a PIR, or have an ideal which is not principal.
- 34. Show that every irreducible in $\mathbb{C}[X]$ is linear and that every irreducible in $\mathbb{R}[X]$ is linear or quadratic.
- 35. Show that there is an irreducible quadratic in $F_p[X]$.
- 36. Find the two irreducible cubics in $F_2[X]$, say f_1 and f_2 . Establish an explicit isomorphism between the fields $F_2[X]/\langle f_1(X)\rangle$ and $F_2[Y]/\langle f_2(Y)\rangle$. and deduce that $\mathbb{Z}[X]/I$ is finite.
- 37. Show that the following are Euclidean domains: $\mathbb{Z}[\sqrt{d}]$ for d=-1,-2,2,3 and $\mathbb{Z}[\omega]$ where ω is a primitive 6th root of 1.
- 38. For $\alpha = \sqrt{d}$, with $d \equiv 3 \mod 4$, show that $\mathbb{Z}[\alpha]/\langle 2 \rangle$ contains a nilpotent element, and that $\langle 2 \rangle = \langle \alpha + 1, 2 \rangle^2$.
- 39. For $\alpha = 2^{1/3}$, show that $\langle 7 \rangle$ is a prime ideal in $Z[\alpha]$ and that $\langle 31 \rangle$ is not.
- 40. Let K be a finite field with q elements and put $F(X) = X^q X$. Show that F(a) = 0 for all $a \in K$ and that if G is any polynomial in K[X] with this property then F divides G.
- Show that $X^3 X + 1$ is irreducible in $\mathbb{F}_3[X]$ and that the quotient ring $\mathbb{F}_3[X]/\langle X^3-X+1\rangle$ is a field with 27 elements.
- 42. Let ξ be the image of $X \mod X^3 X$ in $\mathbb{F}_3[X]/\langle X^3 X \rangle$. Show that the map $\phi: \xi \mapsto (f(0), f(1), f(2))$ gives an isomorphism from $\mathbb{F}_3[X]/\langle X^3 - X \rangle$ to the product $\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{F}_3$.

43. Let $d \geq 3$ and $R = \mathbb{Z}[\sqrt{-d}]$. Show that 2 is irreducible but not prime in R.

44. Factorise the following polynomials in $\mathbb{Q}[X]$:

$$X^2 + 1$$
, $X^2 - X + 1$, $2X^5 - 6X^3 + 9X^2 - 15$, $2x^4 - 2x^3 + x^2 + 6x - 7$.

45. (a) Let K be a finite field of order q. Let $I_q(d)$ be the number of irreducible polynomials of degree n in K[X]. Show that

$$q^n = \sum_{d|n} dI_q(d)$$

where the sum runs over the positive divisors d of n. Deduce that

$$I_q(n) = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}$$

where μ is the function defined in question 1.16(b).

(b) By estimating $I_q(n)$ directly, show that there is a finite field of every prime power order.

46. Discuss the factorisation of $X^n - 1$ over the field of $q = p^f$ elements.

The questions on these example sheets are intended to provide a choice for the student and supervisor. Many are easy: most are straight-forward. A possible selection might be 2, 4, 5, 8, 13, 21, 25, 26, 30, 32, 36, 37 with a further selection from 3, 10, 15, 33, 38, 39, 42, 45(a) for those who want something a little harder. Questions 16–18 review material from Quadratic Mathematics in the spirit of this course.

Comments to R.G.E. Pinch at DPMMS or email rgep@dpmms.cam.ac.uk

All rings are commutative with I

- 1. Review your notes on Linear Mathematics. Which standard results on vector spaces and linear maps over a field remain true for modules and homomorphisms over a ring? Look for counterexamples for those that fail.
- (a) Give an example in a Z-module for which the exchange lemma fails.
- (b) Give an example of a free \mathbb{Z} -module F and a set S which generates F, such that no subset of S generates F, but S is not a basis.
 - (c) Give an example of a Z-module with a proper submodule of the same rank.
 - Show that R has a natural structure as R-module. What are the submodules?
- 4. Let A and B be submodules of M. Show that
 - (i) $A \cap B$ is a submodule of M;
- (ii) $A + B = \{a + b : a \in A, b \in B\}$ is a submodule of M;
 - iii) $(A+B)/B \cong A/(A \cap B)$.
- 5. Let θ be a surjective homomorphism from the R-module M onto N. Let V be a submodule of N and U be the complete inverse image of V under θ . Show that M/Uis isomorphic to N/V.
- 6. Let T, U, W be submodules of the R-module M. Prove or give counter-examples to the following statements.
 - (i) $T + (U \cap W) = (T + U) \cap (T + W)$;
- (ii) $(T+U)\cap W=(T\cap W)+(U\cap W)$;
- (iii) $(T+U)\cap W=T+(U\cap W)$ if $T\subseteq W$;
 - iv) $T \cap (U + (T \cap W)) = (T \cap U) + (T \cap W)$
- Let M be an R-module.
- (a) Show that the intersection of any collection of submodules of M is again a submodule of M.
 - (b) Let $S \subseteq M$. Show that

$$\langle \mathcal{S} \rangle = \{ r_1 s_1 + \dots + r_n s_n : s_i \in \mathcal{S} \} = \bigcap_{\mathcal{S} \subset U \le \mathcal{M}} U$$

where the intersection runs over all submodules U of M containing S.

- (c) Show that $U + W = \langle U \cup W \rangle$
- 8. An R-module M is finitely generated or FG if there are $m_1, \ldots, m_n \in M$ such that $M = Rm_1 + \cdots + Rm_n$. If N is a submodule of M, show that M is FG if N and M/Nare. Does the converse hold?
- 9. Let M be a module over R and X any set. Show that the set of maps M^X becomes a module over R under pointwise operations. When is it finitely generated?

Od:Rings and Modules

RGEP Lent 96

Ex 4.1

$$M^{(X)} = \{ f \in M^X : \sigma(f) \text{ is finite } \}.$$

Show that $M^{(X)}$ is a submodule of M^X

- b) Identify $R^{(N)}$ with the additive group of a well-known ring.
- (c) Prove a similar result to (a) for the functions of countable support.
- 11. An R-module M is cyclic if there is $m \in M$ such that M = Rm.
- (a) Show that any FG Z-submodule of the additive group of rationals is cyclic.
 - (b) Show that R/J is a cyclic R-module for any ideal J of R.
- (c) Show that if M is cyclic then there is an ideal I of R such that M is isomorphic to R/I as R-module.
- (d) Give an example to show that a submodule of a cyclic module need not be
- 12. An R-module M is irreducible if the only submodules of M are O and M
- (a) Show that irreducible implies cyclic, but not conversely.
- (b) Let M, N be irreducible. Describe the R-module homomorphisms from Mto N.
- 13. Let M be an irreducible R-module. Let $m \in M$, $m \neq 0$ and let ann m = 1 $\{r \in R : rm = 0\}$. Show that ann m is a maximal ideal of R and that M is isomorphic to R/ ann m.
- 14. Let R be an ID, F a free R-module and M a submodule of F. Must M be free? Must M be finitely generated?
- 15. For any R-module V, let $\gamma(V)$ denote the smallest number of elements in a generating set for V. If B is a submodule of the R-module A and C = A/B, show that

$$\gamma(C) \le \gamma(A) \le \gamma(B) + \gamma(C).$$

Give examples to show that equality need not hold. Is it true that $\gamma(B) \le \gamma(A)$?

- 16. Let R be an ID and F a free R-module of rank n. Suppose F is generated by $S = \{m_1, \dots, m_n\}$. Show that S is a basis of F. Deduce that $R^m \cong R^n$ iff m = n.
- 17. Let $\mathcal{X} = \{x_{\alpha} : \alpha \in A\}$ be a subset of a module M. Show that \mathcal{X} is a basis for M iff whenever N is a module and $\mathcal{Y} = \{y_{\alpha} : \alpha \in A\}$ is a subset of N, there is a unique module morphism $\phi: M \to N$ such that $\phi(x_{\alpha}) = y_{\alpha}$ for all $\alpha \in A$.

If such a morphism always exists (without assuming uniqueness), must $\mathcal X$ be inearly independent? If there is always at most one such morphism (without assuming existence), must \mathcal{X} be a generating set for M? 18. (a) Let W be a subset of the R-module M. Define the annihilator of W to be the

$$W^b = \{ a \in R : aw = 0 \text{ for all } w \in W \}.$$

Show that W^b is a ideal of R and that $W^b = \langle W \rangle^b$.

(b) Let I be an ideal of R. Define

$$I^\sharp = \{m \in M : im = 0 \text{ for all } i \in I\}.$$

Show that I^{\sharp} is a submodule of M.

- (c) Show that $(W^b)^{\sharp} \supseteq W$ and $(I^{\sharp})^b \supseteq I$. Give examples to show that equality need not hold in either case.
 - (d) Show that $W^{b\sharp b} = W^b$ and $I^{\sharp b\sharp} = I^{\sharp}$

[The annihilator W^b is often denoted ann W.]

- 19. Let R be a commutative ring with 1. Define an R-module structure on $\operatorname{Hom}_R(M,N)$, the set of all R-module homomorphisms from the R-module M to the R-module N.
- 20. Let R and S be rings, A a R-module, B a S-module (with the action written on the right) and C a R-module which is also an S-module (again, with the action written on the right) and satisfies r(ss) = (rc)s for $c \in C$, $r \in R$ and $s \in S$. Show low to define the structure of a R-module on $Hom_S(B,C)$ and the structure of an S-module on $Hom_R(A,C)$. Prove that the Abelian groups $Hom_R(A,Hom_S(B,C))$ and $Hom_S(B,Hom_R(A,C))$ are isomorphic.
- 21. Prove the equivalence of the following three properties of a module P:
- (i) Given a morphism $\phi: P \to M/N$ there is a morphism $\psi: P \to M$ such that $\phi = \psi \pi$ where π is the quotient morphism $\pi: M \to M/N$;
 - (ii) If $P \cong M/N$ then $M = N \oplus P'$ for some $P' \cong P$;
 - (iii) There is a module Q such that $P \oplus Q$ is free.

[A module with these properties is projective.]

22. A sequence of maps between R-modules

$$\dots M_{i-1} \xrightarrow{\phi_{i-1}} M_i \xrightarrow{\phi_i} M_{i+1} \dots$$

is exact if $\ker \phi_i = \operatorname{im} \phi_{i-1}$ whenever this condition makes sense.

What can you say if $0 \to A \to B$ is exact? What if $B \to C \to 0$ is exact? Hence interpret the statement that $0 \to A \to B \to C \to 0$ is exact.

23. Show that if A is projective then every short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$

is split: that is, $A \cong A' \oplus A''$.

24. Prove that the short exact sequence

$$0 \to A' \stackrel{\alpha}{\to} A \stackrel{\beta}{\to} A'' \to 0$$

is split if and only if there exist homomorphisms $\phi: A'' \to A$ and $\psi: A \to A'$ such that $\alpha \psi + \phi \beta = 1_A$.

O4:Rings and Modules

Ex 4.3

O4:Rings and Modules

F.v. 4.4

25. Let V_k , for $k \in K$; be a family of R-modules, and $V = \bigoplus_{k \in K} V_k$ the external direct sum. If W is any R-module, show that the Abelian group $\operatorname{Hom}_R(V,W)$ is isomorphic to the external direct product of the family $\operatorname{Hom}_R(V_k,W)$, for $k \in K$.

26. Prove that that the external direct sum of a family of projective modules is projective.

27. If R is Noetherian and M is a FG R-module, show that every submodule of M is FG. Is the result true if R is not Noetherian?

28. Suppose that in the following diagram of modules and linear maps the rows are exact and that the diagram commutes: that is, any maps with the same domain and codomain (such as ϕg and $f\phi'$) are equal.

$$0 \rightarrow A \stackrel{\phi}{\rightarrow} B \stackrel{\psi}{\rightarrow} C \rightarrow 0$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h$$

$$0 \rightarrow A' \stackrel{\phi'}{\rightarrow} B' \stackrel{\psi'}{\rightarrow} C' \rightarrow 0$$

- (a) Show that if f and h are injective, then g is injective.
- (b) Show that if f and h are surjective, then g is surjective.

29. Let R be a principal ideal domain. Prove that a finitely generated R-module is free iff it is torsion-free: that is, rm=0 implies r=0 or m=0.

30. Let R be a principal ideal domain. Let M be a free R-module on n generators and let N be a submodule of M with $N \neq M$. Prove that N is also a finitely generated free module of rank at most n. Show by an example that N can have rank n. Deduce that a submodule of a finitely generated R-module is again finitely generated.

31. Let E, F be modules over a principal ideal domain. Suppose F is free and $\phi : E \to F$ is a surjective morphism. Show that E has a free submodule F' such that E is the direct sum of $\ker \phi$ and F', and that ϕ restricted to F' is an isomorphism.

32. Let U be a subspace of a (not necessarily FD) vector space V over a field F. The coset of $x \in V$ is

$$U+x=\{v\in V:v-x\in U\}$$

and the quotient of V by U is the set of cosets $V/U = \{U + x : x \in V\}$.

(a) Verify that U+x=U+y if and only if $x-y\in U$ and that U+x and U+y are either disjoint or equal.

Define operations of addition and scalar multiplication on V/U by (U+x)+(U+y)=U+(x+y) and $\lambda(U+x)=U+\lambda x$.

(b) Show that these operations are well-defined: that is, if U+x=U+x' and U+y=U+y' then (U+x)+(U+y)=(U+x')+(U+y') and $\lambda(U+x)=\lambda(U+x')$. Show that they make V/U into a vector space: the quotient space.

(c) Show that the quotient map $q:V\to V/U$ defined by $x\mapsto U+x$ is linear, surjective, and has kernel U. Note that any subspace of any vector space is the kernel of some linear map.

(d) If V is finite-dimensional, show that $\dim(V/U) = \dim V - \dim U$.

- (e) If $\alpha:V\to W$ is linear with keruel U, show that in α is naturally isomorphic to V/U. If V is FD, what result on dimensions does this imply?
- (f) If $\alpha:V\to W$ is linear and $U\subseteq\ker\alpha$, show that there is a linear map $\alpha_1:V/U\to W$ such that $\alpha(x)=\alpha_1(q(x))$.
- (g) If W is a direct complement of U in V, show that q restricted to W is an isomorphism of W with V/U. If V is FD, what result on dimensions does this imply?
 - (h) If X is a subspace of V, show that (U+X)/U is naturally isomorphic to $X/(U\cap X)$. If V is FD, what result on dimensions does this imply?
- (i) If Y is a subspace of V with $U\subseteq Y$, show that Y/U can be regarded as a subspace of V/U and that (V/U)/(Y/U) is naturally isomorphic to V/Y.
- 33. Let ϕ be an endomorphism of a free Abelian group A of finite rank. Show that ϕ is injective if and only if $A/\phi(A)$ is finite.
- 34. Find the invariant factors over $\mathbb{C}[X]$ of

$$\begin{pmatrix} 2X-1 & X & X-1 & 1 \\ X & 0 & 1 & 0 \\ 0 & 1 & X & X \\ 1 & X^2 & 0 & 2X-2 \end{pmatrix}$$

and

$$\begin{pmatrix} X^2 + 2X & 0 & 0 & 0 & 0 \\ 0 & (X+2)(X+1) & 0 & 0 & 0 \\ 0 & 0 & X^3 + 2X^2 & 0 \\ 0 & 0 & 0 & X^4 + X^3 \end{pmatrix}$$

- 35. (a) How many Abelian groups are there of order 15? 32? 120? 900?
- (b) Let p(n) be the number of partitions of n: so p(3) = 2 (3 = 1 + 1 + 1 = 1 + 2). Use this function to express the number of Abelian groups of order N.
- 36. A is a 4×4 matrix over $\mathbb Q$ which satisfies $(A^2 4A + I)(A^2 + I) = 0$. What are the possible rational canonical forms for A?
- 37. Let A and B be $n \times n$ matrices over a field K. Prove that A and B are similar over K if and only if $X1_n A$ and $X1_n B$ are equivalent over K[X].
- 38. Show that the matrices

$$\begin{pmatrix} 3 & 2 & -5 \\ 2 & 6 & -10 \\ 1 & 2 & -3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 6 & 20 & -34 \\ 6 & 32 & -51 \\ 4 & 20 & -32 \end{pmatrix}$$

are similar.

39. Find the Jordan normal forms of

$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} \quad ; \quad \begin{pmatrix} 0 & -1 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \quad ; \quad \begin{pmatrix} 0 & 1 & -2 & 1 \\ -2 & 1 & -6 & 3 \\ 2 & -3 & 0 & 1 \\ 2 & -3 & -2 & 3 \end{pmatrix} \quad ;$$

O4:Rings and Modules

$$\begin{pmatrix} 0 & 0 & 0 & \dots & 0 & n \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

- 40. Show that the minimal and characteristic polynomial determine an $n \times n$ complex matrix up to similarity for $n \leq 3$ but not for $n \geq 4$.
- 41. Let α be an endomorphism of the FD vector space V with minimal polynomial $\mu(X)$. Suppose that $\mu = fg$ where f and g are coprime. Show that $V = U \oplus W$ where the restriction of α to U has minimal polynomial f and the restriction of α to W has minimal polynomial g.

Show that the result does not hold if f, g are not assumed coprime.

- 42. Let $R = \mathbb{Z}[\sqrt{d}]$ for some square-free integer d. Show that every ideal of R can be generated by at most two elements.
- Let p be a prime number which is not irreducible in R. Show that there is an element $\pi \in R$ such that $\langle p, \pi \rangle$ is a prime ideal of R. Find such an ideal when d=-5 and p=7.
- 43. Let α be an endomorphism of the FD complex vector space V such that $\alpha^m = 1_V$ for some m, and make V a $\mathbb{C}[X]$ -module via α . Show that the irreducible submodules of V have dimension 1, and that V is a direct sum of such submodules.

The questions on these example sheets are intended to provide a choice for the student and supervisor. Many are easy: most are straight-forward. A possible selection might be 1, 3, 4, 29, 34–40 with a further selection from 8, 11, 12, 31, 42, 43 for those who want something a little harder.

Comments to R.G.E. Pinch at DPMMS or email rgep@dpmms.cam.ac.uk