04 Rings and Modules Lent 1996
Example sheet 1 (of 4).

All rings are commutative with 1

1. Let A be a set satisfying all the axioms for a ring with identity except for commu-
tativity of addition. Show that this can be deduced from the other axioms.

2. Show from the ring axioms that 0 x £ = 0.

3. (a) Let R be aring, X a set. Show that the set R of all maps f : X — R is a ring
under pointwise operations. When is RX a field? =

(b) Define a function f € R¥ to be of finite support if the set {z € X : f(z) # 0}
is finite. Show that the functions of finite support form a subring R(*) of RX. When
is it a field?

4. Which of the following sets of functions are rings under the pointwise operations?
(a) continuous functions (0,1) — [0, 1];
(b) continuous functions (0,1) — R;
(c) differentiable functions (0,1) — R;
(d) analytic functions C — C;

(e) continuous functions f : (0,1) — R such that 1/f is also continuous.

5. Let A be an Abelian group (written additively) and A# the set of all maps from A
to A with pointwise addition. Define multiplication to be composition of maps.

(a) Show that this does not in general give A4 a ring structure.

(b) Let £(A) be the subset of A4 consisting of group homomorphisms from A
to itself. Show that with multiplication defined as composition, £(A) satlsﬁes all the
axioms for a ring except commutativity of multiplication.

(c) Show that &£ (A] is a ring when A is a cyclic group.

6. Let R = Z[/—d] be the set of all complex numbers of the form z = a + bv/—d where
a,b are integers and d is a square-free natural number. Show that R is a ring with 4
“units if d = 1 and 2 units otherwise.

[Hint: define N(z) = 2z and deduce that z is a unit iff N(z) = 1]
7. Let R be a ring and d € R. Define addition and multiplication on R x R by
(z,9) + (w,v) = (T +w,y +v)
(z,9) - (u,v) = (zu + dyv, zv + yu).
Show that with these operations, R x R is a ring, denoted by R[v/d]. What is R[v/1]?

8. Let S be a non-zero subring of a ring R. Say which of the following assertions are
true and which are false, giving proofs or counter-examples.
(i) If R has no non-zero divisors of zero, then neither has 5.
(ii) If S has no non-zero divisors of zero, then neither has R.
(iii) The characteristics of R and S are equal.

O4:Rings and Modules Ex 1.1 RGEP Lent 96



9. (a) If I, J are ideals of R, show that I N J and I + J are also ideals. Show that
I.J is an ideal contained in I N J. Give an example to show that IJ may be strictly
contained in I N J.
(b) If I, I3, I3 are ideals of R, show that the following laws hold:
(1) Iin (Ig = Ig) 2 (Il N Ig) N (Il N _[3);
(ii) I + (Iz NIz 2 (I, + L)n (Il + Ig);
(i) If I; D Ip then Iy N (fy + I3) = I + (11 N I3).

10. Let R = F; x Fy x --- X Fy, where the F; are fields. Describe all the ideals of R
and show that they are principal.

11. Suppose that A D B are ideals of the ring R. Prove that A/B is an ideal of R/B
and that R/A = (R/B)/(A/B).

Prove also that if C, D are ideals in R, then the ideals C N D and C + D satisfy
C/(CnD)=(C+ D)/D.

12. Let R be a ring and R[Xy,..., X»] the ring of polynomials in n (commuting)
variables over R. For p=Y_ ¢i, i, Xi- -X;", not zero, define the total degree to be

d%(p) = ma,x{zgle i TG e T 0}.

Put d®(0) = —oo. Show that d°(pg) < d°(p)d°(q) and that equality holds for all p, g in
R[X1,...,Xy) if and only if R is an integral domain.

13. Let R be aring and S a subring of R. The elements ry,...,7x of R are algebraically
independent over S if, for a function ¢ : N* — R of finite support, the condition

B Z c(i)ri1 coepin =
ieNn

implies ¢ is the zero function. B

Prove that, given a ring S and an integer n > 1, there exists a unique (up to
isomorphism) ring R D § such that R is generated by S and n elements which are
algebraically independent over S.

14. Let A be an additive group and R a ring. Let R(4) be the set of functions from
R to A of finite support. Define addition on R(#) pointwise and multiplication by
convolution:

frg:b— > fla)g(b—a).

acA
Show that this gives a ring structure on R4,
Identify the ring R(A) when A is (i) Z, (ii) Z™.
15. Is there a ring (with identity) whose additive group is the group Z(T) of functions
of finite support from Z to itself?

16. (a) Let R be a ring, let P denote the positive integers and D(R) the functions from
P to R of finite support with pointwise addition and Dirichlet multiplication

fxgine Y f(dg(n/d),

dln
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summing over the positive disivors of n. Show that this defines a ring structure on
D(R).

(b) Let ¢ : P — R denote the function ¢ : n+— 1 and let u: P — R the function
p(n) = 0 if n has a square factor and p(p; - -pr) = (=1)" when the p; are distinct
primes. Show that ¢ and y are in the multiplicative group of D(R).

17. Construct an Abelian group which is not (isomorphic to) the additive group of any
ring with identity.

18. (a) Suppose R is a ring with every element idempotent, that is, 5? = g for all z.

Show that R has characteristic 2. Give examples of such rings with 2™ elements for
R W S
(b) Given a set X, let P(X) denote the power set of X, that is, the set of all
subsets of X (including X itself and the empty set). Define addition and multiplication
on P(X) as follows:
A+B=(AuB)\(ANnB)
= Ax B=ANB.

Show that under these operations P(X) is a ring. What are the zero and unity ele-
ments? Show that every element of P(X) is idempotent.

f (¢) Let X be an infinite set and Fthe collection of finite subsets of X. Show
that F is a subring of P(X), but that F' is not isomorphic to P(Y") for any set Y.

19. Suppose R is a finite non-zero ring. Show that R is made up of elements which are
either units or zero-divisors but not both.

20. Let R be a ring and I, J ideals of R such that R = I + J. Show that R/IJ is
isomorphic to the direct product of R/I and R/J.

21. Let R, S be rings.” Show that the ideals of R x S are precisely the products IxJ
where I, J are ideals of R, S respectively. Deduce that every ideal of Z x Z is principal.

29. An ideal T of A is mazimal if I # A and whenever .J is an ideal of Awith I C J C A
then either I = J or J = A.

(i) Show that an ideal I of A is maximal iff A/I is a field.

(ii) Show that if A is a field then {0} and A are the only ideals.

(iii) Show that every maximal ideal is prime.

23. Does every ring have a maximal ideal?

24. Let I be a proper ideal of R. Show that R has I as unique maximal ideal iff every
element of R\ I is a unit in R.

25. Suppose that I is a maximal ideal of Z[X]. Show that INZ # {0} and deduce that
Z[X]/I is finite.

26. Let C be the ring of all continuous functions from R to R and let
I={feC:f(0)=0}.

Show that I is a maximal ideal of C and identify the structure of C /I (that is, find a
“well-known” ring isomorphic to it). Is the ideal I principal?
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27. If A is a subring of B and I is an ideal of A, define

IB={bipr+ - +bupn:b;€B, pi €I}
A

= Vix].

(7))

dy, = ka + be”, kE=0,1,....

Show that

1%

A[X]
TA[X]

28. Let R be a ring, a,b,c € R and put

Show that the ideal generated by all the di is finitely generated.
Let a,b;,c; € Rfori=1,...,n and put

de =ka+» bick,  k=0,1,....
i=1

Show that the ideal generated by all the dy is finitely generated.

Hint: you might find it helpful to note that if p = S opiXtis divisible by (X —¢q)"
then the formal derivative Dp = 3 ;= ip; X*~* is divisible by (X —g)" L

29. Let I be any ideal of the ring R, and define the radical of I to be
VI = {z € R:z™ €I for some integer n > 1}.

Show that +/T is an ideal of R, and that v/ VI =TI
30. Let R be a ring and A, B ideals of R. Show that the set

(A:B)':{.T:GR:$b€Aforallb€B}
is an ideal of R such that (4 : B)B C AC (A : B). Show also that (A:B)=(A: A+B)
and that if C is also an ideal of R then ((4: B): C) = (4: BC).

31. Find the idempotent elements of the residue class rings Z/9Z, Z/10Z,Z/11Z,Z/121.

32. An element z of a ring R is nilpotent if z" = 0 for some integer n > 0. Find the
nilpotent elements of the residue class rings Z/92,7/10Z, Z/11Z, Z/12Z.

33. Let R be a ring. Show that the set N of nilpotent elements is an ideal of R and
that the quotient ring R/N has no nilpotent elements.

34. Let A denote a ring. The nilradical of A, N(A) is the set of all nilpotent elements
of A. An ideal I of A is prime if I # A and whenever zy € I then r € Toryel.
Prove that N(A) is the intersection of all the prime ideals of A.

35. Let R be a ring and a € R. Show that 1 — aX is a unit in R[X] if and only if a is
nilpotent.
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36. List the units, zero-divisors, idempotent and nilpotent elements of Z/mZ for m =
2,...,12. Generalise.

37. Let I be an ideal and S a subring of R. Show that I N S is an ideal of S , that
I + § is a subring of R and that

S/(InS)=(I+S)/I.

38. Show that R[X]/(X?®+1) 2 C.

39. Which of the following properties of a ring are preserved under taking (i) subrings
(ii) quotient rings (iii) product rings (iv) polynomial rings ?

(a) having no non-zero divisors of zero; -

(b) having no non-zero nilpotent elements;

(c) having a unique maximal ideal.

40. Let R be a ring for which R[X] is a PID: show that R is a field.

41. Let R, S be rings. The Cartesian product R x § is a ring under componentwise
operations. Show that there are homomorphisms from R x S to R and to S, and
homomorphisms from R and from S to R x S. Identify the kernels and images of these

morphisms.

42. Suppose R is a ring with characteristic p prime. Show that ¢ : R — R, where
¢(r) = rP, is a homomorphism. Give an example for which ¢ is not injective.

43. Show that the only ring homomorphisms from Z to Z are the zero map and the
identity map. '

44. Let R, R’ be rings with identity elements 1g, 1z S, S’ subsets of R, R’ respectively
and a : R — R’ a homomorphism such that a(S) C S’. Show that there exists a unique
homomorphism a, : R[S™!] — R/[S'~!] such that a,(a/1g) = a(a)/1g for all a € R.

45. Let R be a principal ideal ring, S a multiplicative system in R. Show that R[S™}]
is a principal ideal ring.

46. (i) Show that an ideal of R is prime iff R/I is an integral domain.
(ii) Is the set of continuous functions R® — R an integral domain?
(iii) Show that if D is an integral domain, then so is D[X].

47. (i) Show that Q, R, C are fields.
(ii) Show that Z is not a field.
(iii) Show that for any ring A, the polynomial ring A[X] is not a field.

48. Let R be a ring, P a prime ideal of R and S the complement of P in R. Show
that R[S~!] has a unique maximal ideal, consisting of all elements of the form p/s for
PePand SeS.

49. For which values of n is Z/nZ a field? An integral domain? When does it have
non-zero nilpotent elements? Non-trivial idempotents? Just one maximal ideal? An
element which is not a square?
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50. Let R, be the ring of rational numbers with denominator a power of a given prime
p and let Ry be the ring of rational numbers with denominator not divisible by p. Show
that R; and R are principal ideal domains, that R; has infinitely many prime ideals
and R, has only two.

51. For a set w of rational primes, write Z(g) for the ring of all rationals m/n such
that the only prime divisors of n are in w. Suppose R is a subring of Q. Show that
R = Z() for some set @. Show further that if @ consists of all primes except one,
then no proper subring of @ properly contains E.

52. Suppose 8 : R — S is a homomorphism of rings and that I is an ideal of R.
Show that 8(I) is an ideal of §(R). By considering the map z +— 6(I) + 6(z), show
that R/(I + ker8) = 6(R)/6(I). Deduce that if J is an ideal of R then RI(I+J) 2

(R/)/(J+1/J).

53. Suppose 6 : R — S is a homomorphism of rings. Show that every ideal of O(R)
has the form 6(I) for some ideal I of R and that there is only one such I that contains
ker . By taking R = Z and S = Z/2Z, show that I need not be unique.

54. (a) Show that if & : Z— @ is a homomorphism then fn = n for all n in Z.

(b) Suppose § : R — S is a homomorphism from a ring R to aring S and that
z is in R. Show that if f € R[X] and @f has its obvious meaning and if f(z) = 0 then
6f(0z) = 0.

(c) Show that Z[v/2], Z[v3], Z[$] are mutually non-isomorphic.

55. Let k be a field and a an element of k. Let P be the subset of k[X] comprising
all polynomials f such that f(a) = 0. Prove that k[X]/P = k and deduce that P is a
maximal ideal of k[X]. Suppose now that K is another field properly containing & and
that @ is in K but not k. What can you definitely say about P? Need P be maximal ?

56. Let P be a prime ideal of R. Prove that P[X] is a prime ideal of R[X]. If P is a
maximal ideal of R, does it follow that P[X] is a maximal ideal of R[X]?

57. Let k be a field and let R = k[X, Y] be the polynomial ring. Let I be the ideal of -
R generated by X + Y. Show that R/I = k[X].

58. Show that the following conditions on a ring A are equivalent
(N1) Every ideal I of A is finitely generated;
(N2) Given any chain of ideals I; C I C --- C I, C In41 C -+, there exists an N
such that I, = Iy for all n > IV; '
(N3) Every non-empty set of ideals in A has a maximal element (with respect to C).

Such a ring is Noetherian.

The questions on these example sheets are intended to provide a choice for the
student and supervisor. Many are easy: most are straight-forward. A possible selection
might be 2, 3, 5, 6, 9(a), 16, 18, 20 or 21, 22, 29, 42, 49; with a further selection from
25, 28, 30, 33, 43, 59 for those who want something a little harder.

Comments to R.G.E. Pinch at DPMMS or email rgep@dpmms . cam.ac.uk
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04 Rings and Modules Lent 1996

Example sheet 2.
All rings are commutative with 1

1. Let a be an element of a ring R. Show that the kernel of the evaluation map
f(X) — f(a) from R[X] to R is the principal ideal (X — a).

2. Show that if d < —1 the unit group of Z[v/d] is {£1}. Show that U(Z[v?2]) 2
{£(1+ v2)™ :m € Z}. Is this the whole group?

3. Define a map A : Z[Vd] — R? by X : (a +bV/d) — (a+b\/a,a—b\/c_i). Show

that the image of A is discrete and deduce that the unit group of Z[\/d] is of the form
{+a™ : n € Z} for some a.

4. Show that 2 is irreducible in Z[+/10]. Is 2 prime in this ring ?

5. By considering the elements n + iy/n and 1 + iy/n, show that Z[i\/n] is not a UFD
for n > 3. ‘

6. In Z[V/6), it is clear that 6 = (v/6)> = 3.2. Does this show that Z[v/6] is not
Euclidean?

7. By considering the ideal of Z[v/=5] generated by 3 and 2 + /=5, show that Z[v/—5]
is not a PID. Show further that Z[/—5] is not a UFD.

8. Factorise the following elements into products of primes:
(a) 11+ Tiin Z[i] ; '
(b) 4+ 72 in Z[V?2] ;
(c) 4~\/—_3inz[lﬂ"*{—:§].

9. Let R be a UFD and K its field of fractions. Suppose a/b is a non-zero element of
K with a, b relatively prime in R. Show that if a/b is a root of ag + a1 X + - - + ap X™
(where a; € R, 0 <1< n) thena|apand b | an.

What are the rational roots of 224 — 22% + 2% + 6z — 77

10. Let R be an integral domain. Show that the remainder after dividing X™ — 1 by
X% -1 (in R[X]) is X" — 1, where m = gd + 7, 0 < r < d. Show that an h.c.f. of
X™_1and X™—11is X% —1, where d is the h.c.f. of m and n. Show further that for
a positive integer I, (I™ — 1,1" — 1) = I(™™) — 1,

11. Let d be a positive integer, not divisible by any square, and suppose that Z[v/—d]
is a principal ideal domain. Show that d is prime.

12. Show that a field is its own field of fractions.

13. Let Z[w] be the set of complex numbers of the form a + by/—3 where a and b are
either both integers or both half odd integers. Show that Z[w] is a ED with respect to
the function N(a 4+ bv/=3) = a? + 3b%. What is the group of units of this ring?
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14. (a) Show by direct verification that Q[V2] = {a+bV2:4a,b € Q} is a field.
(b) Let w = exp(2mi/3). Show that Q(w) = {a + bw : a,b € Q} a subfield of C.
(c) In each case, give yet another proof that the object in question is a field.

15. Let D be an ID with infinitely many elements, of which only finitely many are irre-
ducible. Suppose every non-unit has an irreducible factor. Show that D has infinitely
many units.

16. Recall that an integer a is a quadratic residue modulo a prime p if the equation
22 = a mod p holds for some integer z, otherwise a is a quadratic non-residue. The
Legendre symbol (%) is defined to be 0 if a = 0 mod p, otherwise +1 for a quadratic
residue and —1 for a non-residue. Assume p # 2.
(a) Show that the map = — z? is exactly two-to-one on the unit group (Z/p)".
(b) Show that the quadratic residues form a subgroup of (Z/p)”.

(¢) Show that (“?f’) = (%) (%).

(d) Show that aP~1/2 = (g-) mod p.

17. Show that if p = 1 mod 4 then —1 is a quadratic residue of p. Deduce that p is not
an irreducible element of Z[i]. Hence determine the irreducible elements of Z[i].

18. Show that every prime p # 3 mod 4 is a sum of two squares: p = a?+b? fora,b € Z.
Deduce that an integer is a sum of two squares if and only if every prime factor which
is = 3 mod 4 occurs to an even power in the prime factorisation.

Express 2210 as the sum of two squares in four different ways.

19. Give a complete description of the integer solutions to the equation 24yt =22

20. Let D be an ID. Show that D[X] is an ID, and that it is a PID if and only if D is
a field.

91. Exhibit a UFD which is not a PID.

99. Let D be a UFD with field of fractions F'. Let f(X) = an X" +---+ao € D[X] with
degree n > 1. Suppose there is a prime element p in D such that p | a; for 1 <i <n-1
and that p t an, p? 1 ao. Prove that f(X) is irreducible in F° [X].

Suppose that f(c) = 0 for some ¢ € F. Show that ¢ € D and that ¢ | ao.

24. Given a ring R, let R[X] denote the ring of formal power series in X over R. Show
that if K is a field, then K[X] is a PID. What are the units of K [X] ? What are the
primes?

25. Prove that a finite integral domain is a field.

26. Show that the ring of Gaussian integers Z[i] is isomorphic to the quotient ring
Z[X]/{X? +1). Show that the principal ideals (3), (1 +1) and (2 + i) are prime, but
that (2) and (5) are not.

27. Let R be a commutative principal ideal ring, S a multiplicative system in R. Show
that R[S~] is a principal ideal ring.
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28. A ring R is simple if R has no ideal other than 0 and R itself, and the multiplication
in R is not always zero. Prove that a (commutative) simple ring is a field.

29. (i) Let K be a finite field and let ¢ be a mapping of K into K. Show that there is
a polynomial f(z) such that f(a) = ¢(a) for every a € K.

(i) Give an example to show that the finiteness condition in (i) cannot be
dropped.

(iii) Let f € C[X] be a polynomial of degree m and let ay,...,am41 be distinct
rational numbers such that f(a;) is a rational number. Show that the coefficients of f
are rational numbers.

30. (a) Find integers x,y such that 953: + 432y = 1.

77
(b) Express g5z as a fraction g + ﬁi

(c) Find P, @, in Q[X] such that (X24+2)P+(X3-7)Q =1.
(d) Show that z%+2 is invertible in the ring (Z/?Z)[X]/(X5 + 5), where z = X mod
X5 + 5, and find its inverse.

31. Show that Z is not a field and that for any ring A, the polynomial ring A[X] is not
a field.

32. Show that Z[@l is a Euclidean domain for d = 3,7,11. What can you say
about the case d = 157

33. Let R be a ring satisfying a? = a for every a in R. Give an examples to show that
R may be a PIR, or have an ideal which is not principal.

34. Show that every irreducible in C[X] is linear and that every irreducible in R[X] is
linear or quadratic.

35. Show that there is an irreducible quadratic in Fp[X].

36. Find the two irreducible cubics in F3[X], say fi and f;. Establish an explicit
isomorphism between the fields F»[X]/{f1(X)) and F5[Y]/(f2(Y)). and deduce that
Z[X]/I is finite.

37. Show that the following are Euclidean domains: Z[v/d] for d = —1,-2,2,3 and

Z[w] where w is a primitive 6th root of 1.

38. For a = v/d, with d = 3 mod 4, show that Z[a]/(2) contains a nilpotent element,
and that (2) = (a +1,2)%.

39. For a = 21/3, show that (7) is a prime ideal in Z[a] and that (31) is not.

40. Let K be a finite field with ¢ elements and put F(X) = X9 — X. Show that

F(a) = 0 for all a € K and that if G is any polynomial in K[X] with this property
then F' divides G.

41. Show that X3 — X + 1 is irreducible in F3[X] and that the quotient ring
F3[X]/(X®— X +1) is a field with 27 elements.

42. Let € be the image of X mod X3 — X in F3[X]/(X? — X). Show that the map
¢ : &€ (F(0), f(1), £(2)) gives an isomorphism from F3[X]/(X? — X) to the product
Fs; x F3 x Fs.
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43. Let d > 3 and R = Z[V/—d]. Show that 2 is irreducible but not prime in R.

44. Factorise the following polynomials in Q[X]:

X241, X2 X +1, 2X° —6X3 +9X2 — 15, 2z — 22° + 2° + 62 — 7.

45. (a) Let K be a finite field of order g. Let I,(d) be the number of irreducible
polynomials of degree n in K[X]. Show that

q" = Z dly(d)
d|n
where the sum runs over the positive divisors d of n. Deduce that

Iy(n) = % > u(d)g

d|n

where p is the function defined in question 1.16(b).
(b) By estimating I,(n) directly, show that there is a finite field of every prime
power order. .

46. Discuss the factorisation of X™ — 1 over the field of ¢ = pfl elements.

The questions on these example sheets are intended to provide a choice for the
student and supervisor. Many are easy: most are straight-forward. A possible selection
might be 2, 4, 5, 8, 13, 21, 25, 26, 30, 32, 36, 37 with a further selection from 3, 10,
15, 33, 38, 39, 42, 45(a) for those who want something a little harder. Questions 16-18
review material from Quadratic Mathematics in the spirit of this course.

Comments to R.G.E. Pinch at DPMMS or email rgep@dpmms.can.ac.uk
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