NUMBER THEORY (MICHAELMAS 1995)

Problem Sheet 1

- (1) Prove that 2 is a primitive root modulo 3^n (for every $n \ge 1$).
- (2) For a given $n \ge 1$, determine all possible orders of elements in $(\mathbf{Z}/3^n\mathbf{Z})^*$ and numbers of elements of a given order.
- (3) (a) For $n \ge 1$, determine the exponent of $(\mathbf{Z}/6^n\mathbf{Z})^*$ (i.e. the smallest integer d > 0 such that $x^d \equiv 1 \pmod{6^n}$ holds for all integers x, relatively prime to 6).
 - (b) Prove: If gcd(a,6) = gcd(b,6) = gcd(c,6) = 1 and $x \equiv y \pmod{2}$, then

$$a^{\left(b^{(c^x)}\right)} \equiv a^{\left(b^{(c^y)}\right)} \pmod{6^3}$$

(4) For $n \geq 1$, compute the number of solutions of the congruence

$$x^{(10^n)} \equiv 1 \pmod{10^{2n}}$$

- (5) Let $n = p_1 \cdots p_k$ be a product of distinct prime numbers p_i . Prove that the following conditions are equivalent:
 - (a) Every integer a with gcd(a, n) = 1 satisfies $a^{n-1} \equiv 1 \pmod{n}$.
 - (b) $p_i 1$ divides n 1 (for every i = 1, ..., k).
 - (c) Every integer a satisfies $a^n \equiv a \pmod{n}$.
- (6) Find all integers n of the form n = 3pq (with p > q > 3 prime numbers) which satisfy the equivalent conditions in (5).
- (7)* Given a prime number r > 2, show that there are only finitely many integers n of the form n = pqr (with p > q > r prime numbers) which satisfy the equivalent conditions in (5).
- (8) Let p be a prime number. Prove that, for every integer n > 0,

$$\sum_{x=1}^{p} x^{n} \equiv \begin{cases} 0 \pmod{p}, & \text{if } (p-1) \not\mid n \\ -1 \pmod{p}, & \text{if } (p-1) \mid n \end{cases}$$

(9) Prove: if $n \ge 1$ satisfies $2^{n-1} \equiv 1 \pmod{n}$, then $N := 2^n - 1$ satisfies $2^{N-1} \equiv 1 \pmod{N}$.

NUMBER THEORY (MICHAELMAS 1995)

Problem Sheet 2

(1) For $n \ge 1$, define

$$\Lambda(n) := \begin{cases} \log(p), & \text{if } n = p^k \text{ is a power of a prime number } p \\ 0, & \text{otherwise} \end{cases}$$

Prove that

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} = -\frac{\zeta'(s)}{\zeta(s)}$$

- (2) Let n > 1 be an odd integer. Prove:
 - (a) If a prime number p divides $n^2 + 4$, then $p \equiv 1, 5 \pmod{8}$.
 - (b) If a prime number p divides $n^2 + 2$, then $p \equiv 1, 3 \pmod{8}$.
 - (c) If a prime number p divides $n^2 2$, then $p \equiv 1, 7 \pmod{8}$.
- (3) Using (2), prove that there are infinitely many prime numbers p satisfying (a) $p \equiv 5 \pmod{8}$; (b) $p \equiv 3 \pmod{8}$; (c) $p \equiv 7 \pmod{8}$.
- (4) Let p > 2 be a prime number, a > 1 an odd number. Put $b := (a^{2p} + 1)/(a^2 + 1)$. Prove:
- (a) If q is a prime dividing b, then $q \equiv 1 \pmod{4}$ and $q \equiv 0, 1 \pmod{p}$. (Hint: consider the order of $a \pmod{q}$.)
 - (b) There are infinitely many prime numbers $q \equiv 1 \pmod{4p}$.
- (5) Prove: If p is a prime number dividing $2^{2^k} + 1$ (for $k \ge 1$), then
 - (a) $p \equiv 1 \pmod{2^{k+1}}$. (Hint: consider the order of 2 (mod p).)
 - (b) $p \equiv 1 \pmod{2^{k+2}}$. (Hint: look at the value of the Legendre symbol $\left(\frac{2}{p}\right)$.)
- (6) For $k \ge 1$, let $n = 2^{2^k} + 1$. Prove:
 - (a) If n is a prime number, then 3 is a primitive root modulo n.
 - (b) If n is not a prime number, then $3^{(n-1)/2} \not\equiv -1 \pmod{n}$.
 - (c) n is a prime number if and only if $3^{(n-1)/2} \equiv -1 \pmod{n}$.
- (7) Find the continued fraction expansion of \sqrt{d} and the minimal solutions of $x^2 dy^2 = \pm 1$ $(x, y \ge 1)$ for d = 13, 23.
- (8) Let $a, b \ge 1$ be integers. Which real number α has a continued fraction expansion

$$\alpha = [a, b, a, b, a, b, \ldots]$$
?

NUMBER THEORY (MICHAELMAS 1995)

Problem Sheet 3

In the problems (1)–(3), p > 2 is a prime number.

- (1) Prove: for an integer b not divisible by p, the congruence $y^2 \equiv x^2 + b \pmod{p}$ has (p-1) solutions $(x,y) \in \mathbf{F}_p \times \mathbf{F}_p$. (Hint: $y^2 - x^2 = (y+x)(y-x)$.)
- (2) Prove: for a polynomial P(x) with integral coefficients, the number of solutions $(x,y) \in$ $\mathbf{F}_p \times \mathbf{F}_p$ of the congruence $y^2 \equiv P(x) \pmod{p}$ is equal to

$$p + \sum_{x \in \mathbf{F}_p} \left(\frac{P(x)}{p} \right)$$

(Hint: consider first the congruence $y^2 \equiv a \pmod{p}$.)

- (3) Prove: for integers a, b not divisible by p, the number of solutions $(x, y) \in \mathbf{F}_p \times \mathbf{F}_p$ of the congruence $y^2 \equiv ax^2 + b \pmod{p}$ is equal to $p - \left(\frac{a}{p}\right)$. (Hint: combine (1) and (2).)
- (4) Let $p \neq q$ be prime numbers. Show that n = pq is a pseudoprime with respect to the base b if and only if $b^{gcd(p-1,q-1)} \equiv 1 \pmod{n}$.
- (5) Assume that $n \ge 1$ is a pseudoprime with respect to the base 2. Prove that $N := 2^n 1$ is: (a) A strong pseudoprime with respect to the base 2.
 - (b) An Euler pseudoprime with respect to the base 2.

(6) Let $b \in (\mathbb{Z}/341\mathbb{Z})^*$ (341 = 11 · 31). Prove:

- (a) 341 is a pseudoprime with respect to the base $b \iff b^{10} \equiv 1 \pmod{341} \iff$ $b^{10} \equiv 1 \pmod{31}$.
- (b) 341 is an Euler pseudoprime with respect to the base $b \iff b^{10} \equiv 1 \pmod{341}$ and $\binom{b'}{11} = \binom{b}{31} \iff b^{10} \equiv 1 \pmod{31}$ and $\binom{b}{11} = \binom{b}{31}$. (c) 341 is a strong pseudoprime with respect to the base $b \iff b^5 \equiv \pm 1 \pmod{341}$.
- (d) 341 is an Euler pseudoprime with respect to the base $b \iff$ 341 is a strong pseudoprime with respect to the base b.
- (7) Using (6), compute the number of bases $b \in (\mathbb{Z}/341\mathbb{Z})^*$, with respect to which 341 is a preudoprime (resp. a strong pseudoprime).
- (8) Prove that, for every pair of integers $p, q \in \mathbf{Z}$ $(q \neq 0)$, the following inequality holds:

$$\left|\frac{p}{q} - \sqrt{5}\right| \ge \frac{1}{(\sqrt{5} + 2)q^2}$$

(Hint: distinguish three cases $p/q > \sqrt{5}$; $2 \le p/q < \sqrt{5}$; p/q < 2.)