EXAMPLE SHEET

NUMBER FIELDS

Mich. Term 1995 Prof. A. Baker

- 1. Find the minimum polynomials over Q of $(1+i)\sqrt{3}$, $i+\sqrt{3}$, $i+e^{i\pi/3}$.
 - 2. Find the field polynomials of i and $\sqrt[3]{5}$ in $\mathbb{Q}(i+\sqrt[3]{5})$.
- 3. By the symmetric function theorem, or otherwise, prove that any zero of a monic polynomial p(x) with algebraic integer coefficients is an algebraic integer.
 - 4. Which of the following are algebraic integers?

$$1/2, (\sqrt{3} + \sqrt{5})/2, (\sqrt{3} + \sqrt{7})/\sqrt{2}, (1 + \sqrt[3]{10} + \sqrt[3]{100})/3.$$

5. Explain why the equation

$$2.11 = (5 + \sqrt{3})(5 - \sqrt{3})$$

is not inconsistent with the fact that $\mathbb{Q}(\sqrt{3})$ has unique factorisation.

- 6. Find equations to show that $\mathbb{Q}(\sqrt{d})$ does not have unique factorisation for d=-10,-13,-14 and -15.
- 7. What is the Galois group of the field $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ where p, q are distinct primes? Find an integral basis for the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Calculate the discriminant of the field.
- 8. Let d be a square-free integer not divisible by 3, and let $\delta = \sqrt[3]{d}$. Show that $\Delta(1, \delta, \delta^2) = -27d^2$.

Let $\alpha = u + v\delta + w\delta^2$ be the general element of $Q(\delta)$ with u, v, w rational. Calculate the norm of $\alpha - u$ and the traces of α , $\alpha\delta$, $\alpha\delta^2$.

Hence, or otherwise, show that if $d \not\equiv \pm 1 \pmod{9}$ then $1, \delta, \delta^2$ is an integral basis for $\mathbb{Q}(\delta)$.

- 9. Find single generators for the ideals [2613, 2171] in \mathbb{Z} and [51-5i, 43+7i] in the Gaussian field $\mathbb{Q}(i)$.
- 10. Factorise the ideals [2] and [6] in the field $\mathbb{Q}(\sqrt{-6})$ into a product of prime ideals. Similarly factorise [5] in $\mathbb{Q}(\sqrt[3]{3})$ and [13] in $\mathbb{Q}(\sqrt{3},\sqrt{5})$.

- 11. Find the fundamental unit in $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{5})$.
- 12. Describe all the integers solutions of the equations

$$x^2 - 2y^2 = 1$$
, $x^2 - 3y^2 = -1$, $x^2 - 5y^2 = -1$.

13. Show that $\mathbb{Q}(\sqrt{5})$ has class number 1. Describe all the integer solutions of the equations

$$x^2 - 5y^2 = 7$$
, $x^2 - 5y^2 = 11$, $x^2 - 5y^2 = 121$.

14. Show that $\mathbb{Q}(\sqrt{7})$ has class number 1 and find a fundamental unit. Describe all the integer solutions of the equations

$$x^2 - 7y^2 = 2$$
, $x^2 - 7y^2 = 13$.

- 15. For which primes p is the equation $x^2 + 13y^2 = p$ soluble in integers?
- 16. Establish the following facts about the factorisation of principal ideals in $\mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer.
 - (i) If d is composite and p is an odd prime divisor of d then $[p] = \wp^2$ where \wp is not principal.
 - (ii) If $d \equiv 1$ or $2 \pmod{4}$ then $[2] = \wp^2$ where \wp is not principal unless d = 1 or 2.
- (iii) If $d \equiv 7 \pmod{8}$ then $[2] = \wp \overline{\wp}$ where \wp is not principal unless d = 7.

Hence show that if $\mathbb{Q}(\sqrt{-d})$ has class number 1 then either d=1, 2 or 7, or d is prime and $d \equiv 3 \pmod{8}$.

- 17. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for d=1,2,3,7,11,19,43,67,163 [These are in fact the only values].
 - 18. Find the class group of $Q(\alpha)$, where α is

$$\sqrt{-6}$$
, $\sqrt{-29}$, $\sqrt{79}$, $\sqrt[3]{2}$, $\sqrt[3]{7}$, $e^{2\pi i/5}$.

19. Find the class group of $\mathbb{Q}(\sqrt{-6}, \sqrt{2})$. Determine how a prime ideal in the subfield $\mathbb{Q}(\sqrt{-6})$ factorises into prime ideals in the field itself.

TYPICAL TRIPOS QUESTIONS: NUMBER FIELDS

- [1992] Factorise (2) in the ring of integers of $\mathbb{Q}(\sqrt{65})$. Show that the primes dividing (2) are not principal. Find the ideal class group of $\mathbb{Q}(\sqrt{65})$.

 Describe all integer solutions of $X^2 65Y^2 = 40$.
- [1992] Find the discriminant of $\mathbb{Q}(\sqrt[3]{2})$. [You may assume that $\mathbb{Z}[\sqrt[3]{2}]$ is the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$]. Find the norm of the principal ideal $(a+b\sqrt[3]{2}+c\sqrt[3]{4})$ in $\mathbb{Z}[\sqrt[3]{2}]$. Show that $1-2\sqrt[3]{2}+\sqrt[3]{4}$ is a unit in $\mathbb{Z}[\sqrt[3]{2}]$. How many integer solutions do the Diophantine equations $X^3+2Y^3+4Z^3-6XYZ=n$ have for n=1,-1,2 and 7?
- [1993] Factorise the ideals (2), (5), $(1+\sqrt{-26})$ and $(2+\sqrt{-26})$ in the ring of integers of $\mathbb{Q}(\sqrt{-26})$. Find the ideal class group of the ring of integers of $\mathbb{Q}(\sqrt{-26})$.
- [1993] Write an essay on factorisation in number fields and applications to Diophantine equations. [Your account need not be exhaustive].
- [1994] Factorise the ideals (2), (3) and $(2 + \sqrt{-14})$ in the ring of integers of $\mathbb{Q}(\sqrt{-14})$. Find the class group of the ring of integers of $\mathbb{Q}(\sqrt{-14})$.
- [1994] Find a fundamental unit in the ring of integers of $\mathbb{Q}(\sqrt{10})$.

 Describe all integer solutions of the equation $x^2 10y^2 = n$ for n = -1, 6 and 7.
- [1994,III] State Dedekind's theorem on the ideal factorisation of rational primes in fields k with a power integral basis. Briefly outline the proof.
 Determine how the primes 2 and 5 factorise in Q(ς), where ς = e^{2πi/5}. [It can be assumed that Q(ς) has an integral basis 1, ς, ς², ς³].
 - [1995] State Dedekind's theorem on the ideal factorisation of rational primes in fields k with a power integral basis. Find the ideal class group of the quadratic field $k = \mathbb{Q}(\sqrt{-22})$. [It can be assumed that every ideal in k is equivalent to one with norm at most $(2/\pi)\sqrt{|d|}$, where d is the discriminant of k.]
 - [1995] State Dirichlet's theorem on the units of an algebraic number field k. State also a simplified version in the case of a real quadratic field.

Show that there are only finitely many ideals in k with a given norm m. Hence verify that there are only finitely many non-associated elements in the ring of integers of k with norm m.

What does this tell us about the general form of the solutions, if any, of the equation

$$x^2 - dy^2 = m$$

in integers x, y, where d is a positive integer?

[1995] Explain what is meant by a basis $\gamma_1, ..., \gamma_n$ of an ideal in a number field k. Define the discriminant $\Delta = \Delta(\gamma_1, ..., \gamma_n)$ and state the fundamental property of Δ when $\gamma_1, ..., \gamma_n$ is a basis. Hence prove that every ideal in k has a basis.

Write down a formula for the norm of an ideal in terms of Δ and the discriminant of k. Show that the norm of the principal ideal generated by α is given by $|N\alpha|$, where N is the field norm of k. Show further that the norm of a prime ideal has the form p^f for some rational prime p and integer f.

Prove that if

$$\gamma_i = u_{i1}\omega_1 + \ldots + u_{in}\omega_n \quad (1 \leqslant i \leqslant n),$$

where $\omega_1, ..., \omega_n$ is an integral basis for k and the u_{ij} are rational integers, then the norm of the ideal with basis $\gamma_1, ..., \gamma_n$ is given by $|\det u_{ij}|$.