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METHODS OF MATHEMATICAL PHYSICS. Revision Document

The following is a summary of material that will be assumed to be familiar. The exposition
is not intended to teach, only to remind. The material appears in detail in many texts.
A small set of revision examples follows. They can be used to check familiarity with the
material, but they should not be allowed to take up supervision time. It is assumed that
the reader is already familiar with real variable analysis. The symbols C1, P3, etc refer to
the Part IA and IB courses denoted by them.

Chapter 0. Revision of Complex variable

0.1 Elementary properties

0.1.1 Algebraic definitions (See C1 and C2)
Define C as R x R, with notation z = (z,y), 2 € C, z,y € R, with 0 = (0,0) and forming
a 2-dimensional vector space with usual axioms.

Multiplication: z;z2 = (z172 — Y1y2, T1Y2 + T2y1), wWith 1 = (1,0).

Verify distributive, associative and commutative laws (hint: identify z with (_xy z)

and complex multiplication with matrix multiplication),

—1 def T ==l
Define - i (;r:? v Kl yz) (z # 0)

giving an inverse. Thus C is a commutative field. The subset {z : y = 0} forms a subfield

isomorphic with R.

Change of notation write (0,1) = ¢ and (by abuse of notation) (1,0) = 1. Then (z,y)
becomes z + iy, and i = —1. Introduce the terms real, 1maginary, complez plane, Argand
diagram. '

C has the same algebraic properties as R, but the order property is lost [Attempts at similar
generalisations to > 2 dimensions result in loss of more properties, e.g. commutative. For

example, vector product in R?]



0.1.2 Modulus, complex conjugate

def
2| =

1
(x2 + yz) 2 > (0 with equality only if z =10} 74— 1y .

0.1.3 Elementary functions (see C; and Cz)

A function of a complex variable will mean f : C — C, written f(z). Polynomials,
remainder theorem, Rational functions: R(z) = P(z)/Q(z), P,Q being polynomials. (So

far all similar to real case).

The Riemann Sphere. (see D1) Project point P on the

Globe from O to Q on the plane, giving a bijection

from the sphere to the plane provided an additional
point, {co} is added to C to correspond to O itself.
Mobius transformations ¢ = (az 4 b)/(cz + d), are bijections C — C provided {oo} is

included. Can map any 3 points onto any other three, and map circles or lines onto circles

: . BeE oy  SEEp §
or lines. The cross ratio (z1, z2; 23, 24) = %_—;’3 54_2—2‘11 is preserved. Note (0,00;z,1) = 2.
Mébius transformations form a group (generated by translations and inverses). The 6

values of cross ratio resulting from permuting {z;} also form a group: ¢,1 — C.17Es

L =)ol = 1J/&
0.1.4 Metric Properties, limits, continuity (see C5 and C6, also C9).

Introduce a “distance” between z1, 29

el
d(z1 —22) = |21 — 22

Satisfies axioms for metric:
d(z1,22) =d(22,21); d(z1—22)=0 &= z1=2
d(z1,22) + d(z2,23) = d(21,23) (triangle inequality, verify directly).

This can be used to define convergence of sequences {z.} (n € N). Converges to a if
|z, — a| < € for n > N(e).

Cauchy sequences. Completeness: every Cauchy sequence has limit point. Convergence
of sums 3 a, by convergence of sequence of partial sums. Absolute convergence, uniform
convergence of functions, etc. Continuity of functions of a complex variable by €,¢ char-
acterization or by open sets mapped onto open sets. So far these properties introduce
nothing novel compared to real case; they are equivalent to same statements about u and

v where f = u(z,y) + 1v(z,y).

o



0.1.5 Power series (see C5 and C6)

Converges for |z — a| < R, diverges |z — a| > R, needs further investigation on the circle

of convergence, |z — a| = R. Here R is the radius of convergence, where

—1 def ..
R™'E lim sup|a,|'/™ .
n—o0

Note any of 0 < R < oo is possible. Where convergent, in |z —a| < R, f(z) is analytic (see
below). Technical theorems about multiplication, uniformity of convergence, continuity of

sum function, etc.

0.1.6 The exponential and related functions (see C5 and C6)
oo

exp(z) ef Z z"/n!. R = oo (use ratio test)
0

Fundamental property exp (z; + z2) = exp (z1)exp (z2). Write exp(1) = e. Periodicity
of exp(if) for § € R, period 2x. The functions In, cosh, sinh, cos, sin, etc. and their
properties. Polar representation z = r exp(i6).

The exponential limit:

lim (1 + %) ¢ = exp(z)

k—oco

0.2 Differentiation
0.2.1 Differentiability and the Cauchy—Riemann Equations (C5 and C6)
f(z) = u(z,y) + iv(z,y), assumed differentiable wrt (z,y) in the sense of real analysis. In

complex analysis f’(::)déf lim{f(z + h) — f(z)}/h is required to be independent of route

along which h — 0. This has far-reaching consequences (see below). It implies

ou Qv 1 [0u Ov
/ — e Zh a2 ‘ _ .- ‘
Filz) = o +Ia$ ; (8y +zay> , hence the Cauchy—Riemann (CR) equations
ou_ov o
oz Oy’ dz Oy

These are necessary for f(z) to be differentiable; to be sufficient the four partial derivatiess

must also be continuous. (see Copson p.41)



0.2.2 Terminology

To classify functions in a domain, D, it is best to make D open (i.e. excludes the
boundary) otherwise differentiability for z on the boundary gets messy as not all directions
of h are available.

A function f(z), 2z € D, is analytic if f'(z) exists wherever f(z) is defined. The
exceptional points are called singularities. If there are no singularities, f(z) is regular.
Ex: sinz is regular in C, 1/z is analytic with a singularity at z = 0.

A singularity is removable if it can be removed by a sensible definition of f(z) there.
Ex: If f(z) = z !sinz, then z = 0 is a singularity, which can be removed by defining
f(0) = 1. We shall always assume that removable singularities have been removed!

A singularity z = a is isolated if f(z) is regular in 0 < |z — a| < § for some ¢ > 0.

The behaviour at z = co can be classified by the transformation ¢ = 1/z.

0.2.3 Harmonic Functions (C5 and CG6; P3)

Assuming u,v are twice differentiable (as they must be: see §0.3.2 below)

CR equations give

Viu=V? =0
Also Vu Vo=10

Each analytic f(z) automatically provides 2 solutions of Laplace equation in R?, such
that the curves u = const and v = constant are everywhere orthogonal (conjugate harmonic
functions). This is extremely useful in classical applied mathematics, e.g. fluid dynamics,
electrostatics (see course on Fluid Dynamics for the main applications). The method
can be extended by making successive analytical transformations, e.g. to g(f) where g is

analytic, known as conformal transformations. (see P3, O5)
0.2.4. Stationary values of harmonic functions (C5 & C6)

Where f'(z) = 0 we have Vu = Vv = 0 so both u and v are stationary. They cannot
be maximum or minimum. At such a point, rotate the axes to make the matrix of second
derivatives of u (or v) diagonal. As V?u = 0, the two diagonal entries must be of opposite
sign. Such a point is a saddle-point. Identifying these is important in the method of
steepest descent (see Chap. 3 below). We try to distort a contour to pass through a saddle
point, with v = constant along it. This ensures that, on the contour u is maximum at the
saddle point and diminishes on rapidly as possible as we leave it on either side. Ex. Draw

the curves u = const and v = const for f(z) = 2.
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0.3 Integration and Cauchy’s Theorem (P3; C12)
0.3.1 Cauchy’s Theorem (P3)

Given f(z) within a domain D, if “integration” means the inverse of differentiation,
we need F(z) such that F'(z) = f(z). If it exists we have an indefinite integral. A definite
integral, f: f(z)dz can be defined by developing the Riemann integral from the real case,
defining a contour, C, as a path running from a to b (C' C D), parametrised by a real
t, z(t). (Subject to conditions, has to be rectifiable, of finite length). If F(z) exists, the
definite integral must be [F(z)]z
along different paths) ¢ f(z)dz = 0 around a closed loop. Cauchy’s theorem is a statement
of conditions under which this holds. Weak version (P3): the theorem holds if f(z) is

defined and analytic in the interior of C, and the four derivatives

and is independent of the path, so (going out and back

Ou/0z etc. are continuous there. This can &
be proved from the CR equations using Green’s

theorem (conditions for Green’s theorem require the

continuity).

As an example where the theorem fails because f(z) has a singularity, consider

dz

>
c ~

calculation this is 27i. Idea of contour distortion in a domain of analyticity. Clearly

where C is a circle centred on O. By direct

) d—: = 271 for any C encircling O once anticlockwise, and vanishes if O is outside C'. More

generally

1 dz

271 z—a

= number of times C encircles a anticlockwise (the winding number)

(as 1/z does have continuous derivatives, these results follow from the weak version).

0.3.2 The strong version (C12)

These results can be obtained, at the cost of harder proofs, without assuming con-
tinuity of derivatives. Needs more careful preparation (Jordan curve theorem, winding

numbers, etc.)



0.3.3 Cauchy Integral Formula
For f(z) regular, e

52) = 5 § 2 ¢

T 2mi J (-2

for z inside C' (= 0 for z outside)

As this can be legitimately differentiated wrt z

RN U OO (9
= zmﬁ{(c—z)?dC

and so on to higher derivatives; thus f'(z) it itself analytic, and so on, with

Fil) = il % SO d¢

2m1 (¢ — z)n+!

0.3.4 Taylor’s Theorem obtained direct from previous

f(z) = f(a) + ch(z — a)" where ¢, = f(™(a)/n!
1

0.3.5 Laurent’s Theorem

If z = a is an solated singularity, use contour

shown to get the Laurent expansion

In particular



0.3.6. Terminology

If in the above, for some k > 0, c—x # 0 but ¢, = 0 for n < —k, the singularity
at z = a is called a pole of order k, in which case (z — a)¥ f(2) is regular. If k = 1, it

is a simple pole. But if the series fails to terminate for negative n we have an essential
singularity (e.g. exp(1/z)).

There can also be non-isolated singularities, for example at z = a if a is the limit of
a sequence of singularities {a,}, an — a as n = co. Ex: f(z) = {sin(1/z}~'. A branch
point (see §1.6 of course) is another form of non-isolated singularity. There is no Laurent
expansion about a non-isolated singularity, and no residue there!

f(2) is meromorphic in D if the only singularities are poles. f(z) is entire or integral
if it is regular on the whole of C, excluding oo.

0.4 Applications of Cauchy’s Theorem

0.4.1 The Residue Theorem (P3)

§ f(z)dz = 2mi {sums of residues of poles inside C} (shrink contour to small loops
surrounding poles, assumed isolated). This provides methodology for evaluating many

definite integrals by crafty choice of f(z) and C. Note Jordan’s Lemma.

0.4.2 Liouville’s Theorem (C12)

A bounded function in C must be constant.

0.4.3 The Fundamental Theorem of Algebra (C12)

Every polynomial in C has a zero.

0.4.4 The principle of the argument (C12)

Use of ¢ In f(z)dz to count zeros and poles.
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Introductory Examples

You should be able to do these unaided - they are not intended for supervision use. If you

have difficulties, some revision of Part IB work is indicated.

L.
2,

Plot the curves u constant and v = constant where f = u + 1v = 2?

If f(z) = g(z)/h(z), with g(a) # 0, and h(z) has a simple pole at z = 0, show that
the residue of f(z) at z = a is g(a)/h’(a). (This is a useful trick, but bear in mind
that is works only for a simple pole)

Evaluate for real a

*® cosz dz re~lel
e (answer : ———— )
—eo T2t a ||
Evaluate for real a
/2” cos nfdf (answer T )
ans L S
o a®—2acosf+1 2a™(a? — 1)

[Use unit circle as a contour. What values of a are acceptable?]

Evaluate
e dx 7
2 (answer: — )
o (2241)"(22+4) 18
Evaluate
> sin’ z T
d ¢
./o e (answer 5 )
(hint: sin® z = (1 — cos2z))
Evaluate
/ > dz
0 1 + il
where n > 2. n an integer (answer: I cosec T )



