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Here A, is the alternating group of degree n, and p is a prime.

_ 1. Let P be a finite p-group with 1 # @ < P. By considering the action of P on the
elements of () by conjugation, prove that @ N Z(P) # 1.

2. a. Show that any group of order p? is abelian. What are the possible isomorphism
types of such groups? :

b. Show that a non-abelian group G of order p® has centre of order p, and that G has
pPP+p—1 conjugacy classes.

3. Describe the conjugacy classes of elements in the symmetric group S,,. Let g € A,,.
Prove that the S,-class of g either is a single A,-class, or splits into two A,-classes of
equal size. Prove further that the latter occurs precisely when all the cycles of ¢ (in its
disjoint cycle decomposition) have distinct odd lengths.

[Consider centralizers.]

4. Find a Sylow p-subgroup of As and of Ag for p = 3 and for p = 5. Find the
corresponding normalizers.

5. Consider the symmetric group Sp. Show that the only elements which commute
with a p-cycle are its powers. If P is a Sylow p-subgroup, show that |P| = p and |[N(P)| =

p(p — 1)

6. Prove that any group G of order pgr, where p, ¢ and r are prime ﬁumbers, has a
normal Sylow subgroup.

7. (IB 75/4/5) Let H be a proper subgroup of finite index n in the group G. Show
that G has a normal subgroup K, contained in H, of index at most n! in G. Show further
that, if G is also simple and non-Abelian, then n > 5 and G is isomorphic to a subgroup
of the alternating group A, on n symbols.

Prove that a simple non-Abelian group having a subgroup of index 6 must either be
isomorphic to Ag or have order 60.

[Sylow’s theorems and the simplicity of Ag may be assumed.]

8. Prove that any simple group of order < 60 must be cyclic of prime order.

9. (75/1/4) Let p be a prime and P a Sylow p-subgroup of the finite group G. Show
that the index of the normalizer of P in G is congruent to 1 modulo p.

Prove that a simple group of order 1092 has a single conjugacy class of subgroups of
index 14 but no subgroup of index 13.

[It may be assumed that in a finite group Sylow p-subgroups exist and are all conju-
gate.]



10. Let G be a finite group of even order with a cyclic Sylow 2-subgroup P. By
considering the left regular action of P on G (or otherwise) show that G has a normal
subgroup of index 2. Deduce that G has a normal 2-complement, that is, G has a normal
subgroup of index |P|. '

11. This exercise provides an alternative proof of the existence of Sylow subgroups in
finite groups.

(a) Assume that the group G contains a Sylow p-subgroup P, and let H be a subgroup
of G. Let H act on the set (G : P) of the left cosets of P in G by left multiplication; there
is an orbit ¥ of size prime to p. If P € ¥, show that the stabilizer H,p is a Sylow
p-subgroup of H. [Note that H,p = HN Gyp = HNzPz™ 1]

(b) Show that the subgroup of unitriangular matrices is a Sylow p-subgroup in the
group GL,(p) of non-singular n x n matrices over the field of p elements.

(¢) Deduce that the symmetric group S,, and hence any finite group, has a Sylow
p-subgroup. i

12. Let G = SL4(3), the groups of all 2 x 2 matrices of determinant 1 over the field
of 3 elements. Show that G has order 24. Show also that G has a unique element of order
2. Prove that G has A4 as a quotient group but has no subgroup isomorphic to A4.

13. Find the conjugacy classes in the group GLs3(2) of non-singular 3 x 3 amtrices
over the field of 2 elements (they have sizes 1, 21, 42, 56, 24, 24). Deduce that GL3(2) is

a simple group.
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1. a. Prove that any group generated by two involutions is dihedral. More precisely,
if G is generated by s and ¢ of order 2 with st of order m, then G = Dj,,, the dihedral
group of order 2m.

b. Deduce that any homomorphic image of a dihedral group is dihedral (possibly
degenerate).
2. Let W be a reflection group on V' with root system ®. Prove that the following

are equivalent:

i. W is essential (so fixes no non-zero vector),

iV = (@),
iii. [ Ha = {0}, where H, = at.
ac®

3. Let G be the reflection group I>(m) isomorphic to the dihedral group Day, of order
2m.

a. Find all the reflections in G; show that they are all conjugate if m is odd, whereas
there are two conjugacy classes if m is even.

b. Draw the root system of G with roots of length 1. Choose fundamental reflections
s1 and sy and indicate on your drawing the corresponding fundamental set A = {a, a2}
and the set @1 of all positive roots containing it.

c. Find all the fundamental sets and verify that they are conjugate under G.

4. Let G be the symmetric group S, 41 acting as a reflection group of type A, on the
Euclidean space V = R®. Show that the reflections are precisely the transpositions of G.

5. Let G = B, be the set of n x n signed permutation matrices - that is matrices with
entries 0, +1, with precisely one non-zero entry in each row and each column. Prove that
G is a subgroup of GL,(R). Using a natural homomorphism from G to the group S, of all
permutation matrices prove that |G| = 2"n!. Show that G is generated by the reflections
on R™ with roots e, and +e;+¢; (1 <k <n,1<i<j<n). Show that &, —¢3, €2 — €3,
<., En—1 — En, €n is a fundamental system for G. Show finally that ¢; + €2 is the highest
root (with respect to this fundamental system).

6. Formulate and prove a question corresponding to question 5 for G of type D,.



7. Let w € W, with w = s152---5, a reduced expression for w in terms of the
fundamental reflections s; = s,,. Writing II(w) for the set @+ Nw~1®~, prove that

H('U)) = {auy SyQty—1, SySy—1Qy—2; -+ SySy—~1- .- 32(11}.

8. Let w € W, with w = s;85...8, an expression in terms of the fundamental
reflections. If I(ws) < I(w) for some fundamental reflection s, show that there exists an

index i such that ws = 81 ---§;---8,. Deduce that w has a reduced expression ending in
s iff l(ws) < l(w).

Classification Theorem The positive definite connected Coxeter graphs are pre-
cisely as in the table:

Type Graph |W | | D det 24
Ap,m21 o0 .. 00— (n+1) n(n+1) n+1
Bpy m>2  o—o—0 . o—oto | 2™n! 2n? 2
Dp,n24 oo-o... o_c< l 2n=1nt  2n(n-—1) 4

In(m), m>5 om0 = 2m 2m 4sin® =

Eg ' H_I_o_o 27345 i) 3
E- | 210345 7 126 2
Eg I 21435527 240 1

i

Fy pigs 48
o—o-3 0—0o
H; 120 30 3—-5
o P
H, 14400 120 1(7-3V5)
oio—o0—o0 _
9. Let A be the matrix corresponding to the graph I' (so a;; = — cos -ﬂ:’—J) Verify the

formula for det 24 in the table (at least for the first four lines).

Hint: If the vertex n is joined precisely to one other vertex (say n — 1) with label
m = Mp_1n € {3,4}, then det2A = 2det2B — (m — 2)det 2C, where B is the matrix
corresponding to the subgraph I'\ {n} and C is the matrix corresponding to the subgraph
'\ {n,n—1}.

10. Prove that there are no positive definite connected Coxeter graphs other than
those listed in the table.
You may use without proof the following facts:

A. Principal Lemma: A non-empty labelled subgraph I’ of a positive definite graph
T is positive definite (here I is obtained from I' by deleting some vertices and/or lowering
some labels).

5 5 .
B. The graphs o — o — o —oand o — o — 0 — 0 — o are not positive definite.
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C. Each of the following graphs (though positive semidefinite) has determinant of the
corresponding matrix equal to 0:

Raln32) o{\o—v

fiy= Cz

AT >o—o - o—oto ‘

Citn33)

o

.
S NN

A o—o—oto—0

G o—ofo o )
11. Let ® be a root system in V with fundamental system A, let W = (s, | @ € A).
The fundamental chamber is
C={veV|(v,a)>0foral a €A}

The fundamental domain is

D={veV|(v,a)>0forall a € A}.

The chambers associated with ® are w(C) for various w € W (these are the connected
components of V' \ | Ha).

a. Prove that any vector v € V is W-conjugate to some u € D.
b. Prove that if u,v € C are W-conjugate then they are equal.
c. The number of chambers equals |W]|.

12. Let W be a reflection group on V, with a fixed fundamental systern A of roots in
its root system 3.

(a) If v € V with (v, ) > 0 for all @ € A, then the stabilizer W, = {w € W |w(v) = v}
is generated by the fundamental reflections fixing v.

(b) If v € V then W, is generated by those reflections s, ( € @) it contains.

(c) If U is any subset of V, the pointwise stabilizer W,y of U is generated by those
reflections it contains.

, 13. Let W be a reflection group, with a fundamental system A of roots. For J C A,

write Wy = (sq | @ € J) - this is the parabolic subgroup corresponding to J. For J,
K C A, prove that



a. WJ:WK iffJZK,
b. WJUK = (WJaWK>}
c. Wiag = Wyn Wg.

14. Let ® be a root system, let W = (s, | @ € ®) be the corresponding reflection
group. Prove that any reflection in W is s, for some o € ®.
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Unless otherwise stated, all vector spaces are finite dimensional over a ficld F of charac-
teristic zero,

1. Let 6 : G — GL(F) be a 1-dimensional representation of the group G and p: G —
GL(V) another representation. Show that both

0 :x— 0z and  O.p:a— 0(x)p(x)

are representations and that 6.p is irreducible if and only if p is irreducible. Show that
the set of all 1-dimensional representations of G over F' forins an Abelian group under this
multiplication. (It is called the dual group of G.)

2. Let p: G — GL(V) be a representation. Show that p* : G — GL(V™*), given by
p*+ x— p(z~!)* is also a representation on the dual space V* of V.
Prove that p is irreducible if and only if p* is irreducible.

3. Let ( , ) be an inner product on a complex vector space V. Let p: G — GL(V)
be a representation which maps into the unitary group U(V'); then we will say that p is an
unitary representation of G. Prove the following results for any group G, finite or infinite.

(a) p(z~1) = p(z)* for z € G.

(b) If W is a subrepresentation space of V then its orthogonal complement W+ is

also a subrepresentation space and V = W & W+,
(¢) Any finite dimensional unitary representation is the direct sum of irreducible
representations.

4. Let p: G — GL(V) be a complex representation of the finite group G, and let
( , ) be an inner product on V. Show that

(0, w) = 3 (plw)o, plz)w)

zeG

is also an inner product and, if we give V' this inner product, the representation p is unitary.
Use this, and the previous question to give an alternative proof of Maschke’s theorem
for complex (or real) representations.

5. Suppose that a representation space V is the sum of irreducible subrepresentation
spaces V = V) + Vo + ...+ V,,. Show that V' is the direct sum of some of the V;.

If W is any subrepresentation of V' then V = W & U with U a direct sum of some of
the V;.

6. Let = be an element of a finite group G. Show that z is conjugate to its inverse in
G if and only if x(x) is real for every character x of G over the complex field.

Show that the quaternion group Qg is an example of a finite group in which every
clement is conjugate to its inverse but not every complex representation is equivalent to a

real oue.



7. Let ¥ be a character of a finite group G and let ¢ € G have order 2. Show that
x(g) is an integer congruent to x(e) modulo 2. Show further that x(g) is congruent to
x(e) modulo 4 unless G has a subgroup of index 2. [Hint for the last part: consider
determinants. | |

8. Find the character tables of Cn, Doy, S4, A5, S5.

9. (1975/3/4) A group of order 720 has 11 conjugacy classes. Two representations of
this group are known and have corresponding characters « and (3, The table below gives
the sizes of the conjugacy classes and the values which « and 3 take on them.

1 15 40 90 45 120 144 120 90 15 40
v 6 2 0 0 2 2 1 1 0 -2 3
g 21 1 -3 -1 1 1 1 0 -1 =3 0

Prove that the group has an irreducible representation of degree 16 and write down the
corresponding character on the conjugacy classes.

10. (1987/3/3) A finite group has 7 conjugacy classes C) = {e},Ca....,C7 and the
values of 5 of its irreducible characters are given in the following table.
w0 W IS (o g 10

|
Ci C; C3 Cy Cs Cg Cy

1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1
4 1 -1 0 2 -1 0
4 i 0 =2 | 0
5 -1 0 1 1 1 -1
¢ -1 o ' - i ‘

I3 0 | 2 [ [+] 0

Calculate the number of elements in the various conjugacy classes and the remaining
ireducible characters.

11. (1987/1/2) State and prove Schur’s Lemma. Show that a finite group with a
faithful irreducible complex representation must have a cyclic centre.

Let G be a group of order 18 containing an elementary abelian group P of order 9
and an element ¢ of order 2 with tzt = 7! for each z in P. By considering the action
of P on an irreducible CG-module (or otherwise) prove that G has no faithful irreducible
complex representation.

12. Let V be a real representation space for a group G. Define V¢ to be the V & V
and show that this becomes a complex vector space if we define scalar multiplication by
‘@ + 1y by
(z + iy).(v1,v2) = (zv1 — Yoo, Tv2 + Yv1).

Show that the action of G on the direct sum V ¢ V is C-linear so Vg is a complex
representation space for G. Prove that if Ve is an irreducible complex representation
space then V is an irreducible real representation space but that the converse is false. (It
is more elegant to define Vg to be the tensor product C g V)

Find all the irreducible real representations of C's.
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Unless otherwise stated, all vector spaces are finite dimensional over an algebraically closed
field F of characteristic zero.

1. Prove the transitivity of induction: given H < K < G, with ¢ a character of H,
show that (¢%)¢ = ¢€.

2. Find all the characters of S5 induced by the irreducible representations of Sy.
Hence find the character table of Ss.

3. Let H be a subgroup of the group G. Show that for every irreducible representation
space V for G there is an irreducible representation space W for H with V' a component
of the induced representation W¢.

Prove that, if A is a commutative subgroup of G, then every irreducible representation
for G has degree at most |G/A].

4. a) Prove that if G is a finite group acting on a finite set X with permutation
character m and on a set Y with permutation character 7 then (7, 7) equals the number of
orbits of G on the set X x Y.

b) The symmetric group Sy permutes the set X (r) of r element subsets of _
{1,2,...,N}. Let x{™) denote the corresponding permutation character. Show that

(XX =7 +1

if 0 <7 <s< N —r. Deduce that there are inequivalent irreducible characters (") for
0 < r < N/2 with x(") being the sum of the ¢ with 0 < <.

¢) The linear group GL,(g) acting naturally on the n-dimensional vector space V =
Vo.(q) permutes the set V() of r-dimensional subspaces of V. Let x{") denote the corre-
sponding permutation character. Show that

o x@)y=r+1

if0<r <s <N —r. Deduce that there are inequivalent irreducible characters 1,0('"} for
0 < r < N/2 with x(") being the sum of the ¢(*) with 0 <i <r .

5. Show that the complex character table of a finite group G is invertible when viewed
as a matrix.

Prove that the number of irreducible characters of G which take only real values is
equal to the number of self-inverse conjugacy classes. [Consider the permutation action
induced by complex conjugation on rows and on columns. |

6. Let a finite group G act on itself by conjugation and find the character of the
corresponding permutation representation. Prove that the sum of the elements in any row
of the character table for G is a non-negative integer.

1



7. (87/3/3) State and prove the Frobenius Reciprocity Theorem. Illustrate its use by
finding the irreducible characters of the dihedral group D, of order 2n, where n is even.

8. (88/4/3) Define the character ¢ of a finite group G which is induced by a character
¢ of a subgroup H of G. Prove the Frobenius reciprocity formula

W% x)e = W, xu)u,

where y is any character of G and xp is the restriction of y to H.
Now let H be a subgroup of index 2 in G. An irreducible character 1 of H and an
irreducible character x of G are "related” if

W% x)e = (¥, xz)m > 0.

By considering (1), %) or otherwise show that each v of degree n is either ” monog-
amous” in the sense that it is related to one x (of degree 2n), or "bigamous” in the sense
that it is related to precisely two distinct characters x1, x2 (of degree n). Show that each
X is either related to one bigamous 1, or to two monogamous characters 1, , 1) (of the
same degree).

Write down the degrees of the complex irreducible characters of As. Find the de-
grees of the irreducible characters of a group G containing A5 as a subgroup of index 2,
distinguishing two possible cases.

9. (89/4/3) Let x be an element of order n in a finite group G. Say, without detailed
proof, why

(a) if x is a character of G, then x(z) is a sum of n-th roots of unity;

(b) 7(x) is real for every character 7 of G if and only if  is conjugate to z~;

(c) z and z~! have the same number of conjugates in G.

State the orthogonality relations that hold between the rows and columns of the
character table of G.

A group of order 168 has 6 conjugacy classes. Three representations of this group are
known and have corresponding characters «, 8 and . The table below gives the sizes of
the conjugacy classes and the values «, 3 and v take on them.

1 21 42 56 24 24
a 14 2 0 -1 0 0
B 15 -1 -1 0 1 1
¥y 16 0 0 -2 2 2

Construct the character table of the group.
[You may assume, if needed, the fact that \/T is not in the field Q(C), where ¢ is a
primitive 7th root of unity.]

10. Construct the character table of the symmetric group Sg of degree 6.



L1. If V is an irreducible complex representation space for G- with character x, find
the characters of the representation spaces V 0o V., Sym?(V) and A%(V).
Deduce that:

i 0, if x is not real-valued;

Ll Z (z%) = +1, if V is equivalent to a real representation;
|G| G ! ) =1, if x is real-valued but V is not
T

equivalent to a real representation.

12**. (Brauer) If 8 is a faithful character of the group G, which takes r distinct values
on G, prove that each irreducible character of G is a constituent of # to power i for some
§ <, ‘

[The Vandermonde r x r matriz involving the colurnn of the distinct values ay, ..., ar
of 0 is nonsingular.]

13**. (Burnside) If # is an irreducible character of degree > 1 of the group G then
6(g) = 0 for some g in G.



