GALOIS THEORY EXAMPLES
NIS-B

0. Refresh your memory, by reading either your notes from the Rings and Modules course
or some other source, such as van der Waerden vol. 1, ch. 3, of the following topics:
fields, polynomial rings, ideals, taking quotients of rings by ideals, principal ideal domains
(PIDs), prime ideals, maximal ideals, unique factorization in PIDs.

1.(i) Let K = Q(a) where « is the real cube root of 2. Write the inverses of 1 + o and
1 + a? as polynomials in o with rational coefficients.
( ii) Put w = exp(2mi/3). Show that @(wa) is isomorphic to Q(a).

2. Let K = Q(a) with a® = 2. Find Aut(K/Q).

3. Prove that any finite integral domain is a field. (Hint: Show that multiplication by any
nonzero element is an isomorphism of sets.)

Suppose that L is an integral domain containing a field K such that L is finite di-
mensional as a vector space over K. Prove that L is a field. (Hint: Show that multiplication
by any nonzero element is an isomorphism of vector spaces.)

4. Which of the following are fields? Which are integral domains?
Z/TZ (the integers modulo 7).

Z/81Z.

The ring of all continuous functions on the unit interval.
The ring of all meromorphic functions on C.

Z[X]/(X3 - 2).

Z/2Z[X]/( X3+ X +1).

Q[X]/(X*+ X2 +1).

@ w0 T

5. Suppose that K < L is a field extension such that [L : K] = 2 (such an extension
is called quadratic) and char K # 2. Show that there is an element a € L such that
L = K(a) and o? € K. Prove that this extension is Galois, and describe the Galois
group together with its action on L.

6. Find all irreducible polynomials over Fy of degree at most 4. (One method is to
use the “sieve of Eratosthenes”: Write out all nonconstant polynomials in order of
their degree. Then repeatly add the first new uncrossed out polynomial to your list
of irreducible polynomials and cross out all polynomials of larger degree divisible
by it.)

7. Let o be the complex number e2*¥/5, Show that Q[a] is a field of degree 4 over Q.
Show that it contains the field @(v/5). (Hint: o + 1/c.)

8. Show that (P) is divisible by p whenever p is prime and 0 < n < p. If K is a
field of characteristic p (this means that p = 0 in K, for example Z;) show that
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9.

10,

(z +y)? = zP + yP. If f is the function such that f(k) = kP for k € K show that f
is an isomorphism from the field K to a subfield of K. (It is called the Frobenius
endomorphism.)

Find the highest common factors of the polynomials X —3 and X 2—4in Q[X] and
in F5[X]. In each case write the highest common factor in the form (X? —3)a(X) +
(X2 — 4)b(X) for polynomials a(X) and b(X).

: 0 1 0 -1 i 0
Let I, J, and K be the matrices (z 0), (1 0 ), and (0 ) (These are

=3
the Pauli spin matrices from quantum mechanics multiplied by 72 = Vv—-1.)
Show that 2 = J2 = K?=IJK =-1,1J =-JI =K, JK = -KJ = I,

KI=<IK=J.

Define the ring H of quaternions to be the matrices of the form a + bI + cJ + dK

with a, b, c,d real. (Note that H is a non-commutative ring.) Show that the determinant
of this matrix is a2 + b2 + ¢? + d? and deduce that every nonzero element of H has an
inverse. (A ring such that every nonzero element has an inverse is called a skew field or
division Ting.) What is the inverse of a + bl + cJ + dK?

Show that H has an infinite number of automorphisms fixing every element of the

subring R of diagonal matrices. (Hint: consider conjugation by quaternions.)

11.

12.

Suppose the roots of X3 —e; X2 +e,X —e3 are a, §, and y. Write 1/a+1/6+1/7,
a2 + 82 +~2, and a?B? + B%y% +~%a? in terms of ey, ez, and e3. Find a polynomial
whose roots are o2, 42 and 2.

(Newton’s identities.) Let f(X) be the polynomial X™ — er X" 4.+ (-1, €
C[X] with roots aj,...a, and let p; be of + ...+ of,. Show that if |X| is large

enough then
Xf(X) 1 i
= —_—— X J_
F(X) 2 1—ap/X j;pf

1<k<n

(Hint: look at the derivative of log J,(X — «;).) Use this to prove

D1 =e€e;
D2 = p1e1 — 2ey

Pn-1 =DPn_2€1 —DPn-3€2+...— (=1)*pren_2 + (=1)"(n — 1)en—1
Pk = pPg-1€1 — Pk—282+ ... — (_1)n'pk—-nen (k > n).

Use this to prove that all the p’s can be written as polynomials in the €’s. (Remark:
These identities are used in group representation theory and algebraic topology
to express the exterior powers e; of a representation or vector bundle in terms
of the Adams operations p;. For example e; = (e? — p;)/2 implies the formula
Tr(g|A2(V)) = (Tr(g|V ® V) — Tr(¢%|V))/2 from the representation theory course.)
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13. We keep the notation of question 12. Show that § = [],, ;(a: — @;) is equal to the
Vandermonde determinant

| 1 1
23] 85) Qn
a?  al a2
n—1 'ﬂ:;l n—1

5 Qy an

(Hint: Show that the Vandermonde determinant is 0 whenever two of the a’s are
equal.) By multiplying this matrix by its transpose show that the discriminant
A = 62 of f is the determinant of the matrix

Do Pr -.- DPn-1
P p2 ... DPn
P Pn-1 DPn --- P2n-2

If o, 3, v are the roots of X —e; X?+e2X —e3 then express (a—PB)2(B—7)%(y—a)?
in terms of ey, e2, and e3.

14. We keep the notation of questions 12 and 13 with n = 3, so that X)) =X 3 -
e1 X%+ e, X —e3. Let w be a primitive cube root of 1. Express (@ +wf+w?y)? and
(o + w?B +w7)? in terms of ey, ez, e3, and § = (a — B)(8 —v)(y — ). Deduce that
the roots of a cubic polynomial can be written explicitly in terms of the coefficients
by using field operations and extraction of square and cube roots. (First show that
a+ B+, a+wl+wy, and a + w?B + wy can be written in this form by using
the result of the previous exercise to express d in this form.) Do not try to write
the roots out explicitly unless you are unusually obstinate; the expressions are very
complicated!

15. Find all subgroups of S3 (the symmetric group). Let L = @(z1, 2, 73) be the field

G of rational functions in 3 variables, with S3 acting in the obvious way by permuting
) the variables T, T2,z3. Recall (Newton’s theorem on symmetric functions) that
the fixed field under this group is K = Q(e1, €2, e3) where the e’s are defined by
(z—x1)(z—22)(z —73) = ° — €12 + €32 — e3. Find all the subfields of L containing

K. (Hint: use the fundamental theorem of Galois theory, and look at Question 14.)

16. Is true that if K — L and L «— M are Galois extensions, then K — M is also
Galois? (Hint: consider composites of quadratic extensions.)

17. Suppose that ps, ... ,p, are distinct prime numbers and that K = Q(v/Pyr--- VP,)-
Show that K/Q is a Galois extension, and compute its Galois group. Show also

that K = Q(y/p, +---+/P,)-

18. Let K = Q(v/2 + v/2). Show that K/Q is Galois and compute its Galois group.
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19.

20.

21.

22.

23.

24.

Prove Eisenstein’s criterion: if p is a prime number and and f(z) = 2" +an—12" "1 +
...+ ag € Z[z] is a polynomial with pla; (0 < i < n) and p? does not divide ay,
then f is irreducible. If n is any positive integer, show that (zP" —1)/(z? o) =
g@=0p"" 4 g(e-2P"7 L 4 gP"7" 41 s irreducible. (Hint: change z to z + 1
and apply Eisenstein.)

Let a = e2™¥/?", Show that [Q[a] : Q] = (p — 1)p"~!. Show that if m is coprime
to p then there is an automorphism of @[] taking a to a™. Show that the Galois
group Gal(Q[a]/Q) is isomorphic to the group of units in the ring Z/(p").

This question shows that if z is an indeterminate, then the group Aut(K(z)/K) is
isomorphic to PGLy(K) = GLy(K)/A, where A is the subgroup of elements of the
form (2°). Let (2%) act on K (z) by fixing K and mapping z to (az + b)/(cz + d).
Show that this gives a homomorphism of groups from PGLy(K) into Aut(K (z)/K).
Show that any homomorphism of K (z) to itself fixing K maps z to t = p(z)/q(z) for
some coprime polynomials p(z) and ¢(z) in K(z) (not both constant, ¢ # 0), and
conversely there is a homomorphism for any such pair of polynomials. Show that
the polynomial ¢(y)t — p(y) € K (t)[y] is irreducible and is the minimal polynomial
satisfied by = over the field K(t). Show that [K(z) : K(t)] = max(deg(p), deg(q))
and deduce that if the homomorphism is onto then p and ¢ both have degree at
most 1. Show that Aut(K(z)/K) = PGLy(K).

Show that the automorphisms of K(z) given by z — 1 — z and z — 1/z generate
a group G of order 6 isomorphic to the symmetric group S3. Let ¢ be the element
(22 — z+1)3/z%(z — 1)? Show that t is fixed by G, and show that [K(z) : K(t)] < 6
(by finding a polynomial of degree 6 with coefficients in K (¢) having z as a root).
Deduce that [K(z) : K(t)] = 6 and that K (t) is the field of all elements of K (z)
fixed by G. Find all the 6 subgroups of G and for each one find the subfield of K (z)
of elements fixed by it.

This action of S3 on K (z) arises in the following way. Suppose that z is the cross-
ratio z = (z4—x1)(z3—22)/(z3—4)(z2—x1); this definition makes the cross-ratio of
(0,1, 00, A) equal to A. The symmetric group S4 permutes the variables z1,..., T4,
and the subgroup V consisting of the identity and permutations with cycle type
(2,2) leaves the cross-ratio invariant. The transposition (13) sends z — 1 /z and
(12) sends £ — z — 1, so that the quotient group Sy/V & S3 acts as described.)

Find all the subfields of Q[e?™*/7].

Suppose that p is an odd prime, and let 7=} ., P e2min’ /P Show that 77 = p. If
—1 is a square mod p show that 7 is real, and if —1 is not a square mod p show that
7+7 = 0, so that 7 is imaginary. Show that L = Q[e**/P] has a unique subfield K
of degree 2 over @ (hint: (Z/pZ)* (* denoting group of units) is cyclic). Describe
K explicitly. Show that if m|n then Q[e?™/™] C Q[e?™/"]. Show that if k is any
nonzero integer then Q[v/k] is contained in the field Q[e?™*/4¥].
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(This can be done more easily using the discriminant of the ring of integers in a

number field. By Vandermonde’s identity (q. 13) the discriminant of Oy, is (up to sign) a
power of p, so that the discriminant of Ok is too. Now use the fact that K is quadratic
to determine it.)

Remark A field extension is Abelian if it is Galois and the Galois group is Abelian.

The Kronecker-Weber theorem states that any Abelian extension of Q is a subfield of some
cyclotomic field. The proof is much deeper than anything in this course and belongs to
class field theory. See e.g. “Algebraic Number Theory” (ed. Cassels and Fréhlich) or
“Class Field Theory” by Artin and Tate.

25.

26.

27.

28.

29.

30.

Let L be the splitting field of z¢ — 3 over Q.

a. Show that [L : Q] = 8 and the Galois group is the dihedral Dg group of order
8.

b. List all the subgroups of Dg (there are (is?) 1 of order 1, 5 of order 2, 3 of
order 4, and 1 of order 8). Draw a diagram showing which subgroups are
contained in which.

c. Find the subfields corresponding to each subgroup and draw a diagram show-
ing their inclusions.

d. For each subfield M work out the Galois group of L/M. Find the 6 subfields
M that are Galois extensions of @, and for each work out the Galois group
Gal(M/Q).

Repeat question 25 for the (reducible) polynomial z* —4 (except that this time L/Q
has degree 4 and Galois group (Z/2Z)?).

Repeat question 25 for the polynomial z° + 2z + 6. (This time the Galois group has
order 6).

Find the Galois group of the (splitting field of the) polynomial z* + 2 + 1 over the
finite fields Fo, F3, and Fj4.
(You should get 3 different answers. Recall that if f is any irreducible poly-
nomial of degree n over a finite field, then the extension generated by 1 root
of f is already Galois, with Galois group cyclic of order n.)

Show that any irreducible polynomial in F4[z] of degree dividing n splits into linear
factors over the field Fyn.

a. For each prime p find an irreducible polynomial of degree p with exactly two
non-real roots. (Hint: try a polynomial of the form z? — (mp)®z(z — 1)(z —
2)...(z — (p — 4)) — p for some large integer m coprime to p. Show that for
m large it has p — 2 real roots (close to 0,1,...,p—5,p — 4, and mp), and
use Eisenstein to show that it is irreducible.)

b. Show that for each prime p there is a Galois extension of Q@ with Galois group
Sp. (Recall that any subgroup of Sp of order divisible by p and containing a
transposition must be Sp.)



c. Show that any finite group is a subgroup of the symmetric group S, for some
prime p. (Hint: recall that letting a group of order n act on its own elements
by left multiplication makes it into a subgroup of Sy).

d. Show that for any finite group G, there are finite extensions M C L of @ such
that L/M is Galois with Galois group G. (Hint: recall that if @ C M C L
and Q@ C L is Galois, then M C L is Galois with Galois group equal to the
subgroup of G corresponding to M.) The “inverse problem” of Galois theory
asks whether for any finite group G there is an extension L/Q of @ which
is Galois with Galois group G; it is an extremely difficult unsolved problem.
See Serre’s “Topics in Galois Theory” (1992) for a statement (complete up
to about 1990) of what is known, together with a description of various
techniques, mostly from algebraic geometry and number theory.

31. This question shows that it is not possible to trisect an angle or duplicate a cube
using ruler and compass. A complex number is called Euclidean if it can be obtained
from rational numbers using the usual field operations and taking square roots.

a. Show that a number is Euclidean if and only if its real and imaginary parts
are both constructible by ruler and compass from a line segment of length
1. (This is long but straightforward and can be missed out. In one direction
show that the coordinates of the point of intersection of (say) two circles can
be written in terms of their centers and radii using the operations above.
In the other direction you need to find constructions for the product of two
constructible numbers and the square root of a constructible number and so
on.)

b. Show that a is a Euclidean number if and only if there is a finite tower of
fields @ = Ko C K, C ... C K, such that [K, : K,—1] =2 and a € K.

c. Show that the irreducible polynomial satisfied by any Euclidean number has
degree a power of 2. (Hint: [K, : Q] = [K, : Q[a]][Q[a] : Q].)

d. Show that it is not possible to construct 2}/3 with ruler and compass (in
other words, duplicate the cube).

e. Find an irreducible polynomial of degree 3 satisfied by cos(27/9) and deduce
that it is not possible to trisect an angle of 7/3 using ruler and compass.
(Hint: cos(27/9) = (a + a~')/2 where « is a root of (z° —1)/(z® — 1).)

It is not possible to square the circle because 7 s transcendental, but this is
much more difficult to prove. (See chapter 6 of Stewart’s book for a proof.)

32. Let F} be the finite field of prime power order g. This exercise finds the number of
irreducible polynomials of some degree in F[z].
a. Show that an irreducible polynomial in Fy[z] of degree m divides 19 —z if
and only if m|n. (Hint: use that fact that the splitting field Fgn of 27" — z
contains Fym if and only if m|n.)
b. Show that 29" — z is the product of all irreducible polynomials in Fy[z] of
degree dividing n which have leading coefficient 1. Check this explicitly for
g = 2, n = 4 using the list of irreducible polynomials over F» in example
sheet 1.



c. If a,(q) is the number of irreducible polynomials of degree n over F, with
leading coefficient 1 then show (by looking at the degree of 29" — x) that

> daa(e) = g™

d. Use this to calculate the number of irreducible polynomials of degree 6 over
Fy.
e. If you know about the Mobius function p(n) then use the Mdbius inversion
formula to show that i
an(g) = = > u(n/d)g"

d|n

33. Show that any irreducible polynomial in F[z] of degree dividing n splits into linear
factors over the field Fyn. (Hint: either use the previous question, or use the fact
that any two finite fields of order ¢™ are isomorphic.)

34. Recall that any finite separable extension is generated by a single element, and has
only a finite number of intermediate fields. In this exercise we show that this is
not always true for non separable extensions. Let L be the field F,(z,y) of rational
functions in two variables, and let K be the subfield Fj(z?,y?).

a. Show that [L : K] = p?. (Hint: look at K C K|z] C L.)

b. Show that the Frobenius endomorphism is an isomorphism from L onto K.

¢. Show that every element of L not in K generates and extension of degree p
of K. (Hint: show that it is a root of an equation of the form t* —a € K[t].)

d. Show that there are an infinite number of extensions of K contained in L,
and that L is not generated over K by any single element.

35 (i) Consider the action of the symmetric group Sy, on the field L = Q(X1, ..., Xn).
Show that the field L4~ of invariants under the alternating group is (o4, ... ,0n,6),
where § =[], j(X,- — X ;) is the square root of the discriminant and o7y, ... ,0n are
the elementary symmetric functions.

(ii) An element f € Z[X1,... , Xn] is anti-invariant if 7(f) = sgn(7) f for all 7 € Sy,

where sgn(7) is the signature of 7. Show that if f is anti-invariant, then it is divisible

by 6. (That is, f/§ is a symmetric polynomial.)

(Remark: (ii) has applications in the representation theory of compact Lie groups,
notably to proving the Weyl denominator formula.)

36 Suppose that f is an irreducible polynomial over @ of degree n. Show that the
Galois group of f is a subgroup of the alternating group A, if and only if the
discriminant of f is a square in Q.

37 Suppose that f is an irreducible cubic polynomial over @ with just one real root.
Show that the Galois group of f is Ss.
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38 This question describes a technique involving reduction modulo p for finding various
kinds of elements in Galois groups of splitting fields.

The result is this: suppose that f € Z[X] is a polynomial of degree n with leading
coefficient a,, and that f has no repeated roots. Suppose that p is a prime number such
that a, is prime to p and that f, the reduction of f modulo p, also has no repeated roots.
Let f = 1. ... .¢, be the prime factorization of f in Fp[X]. Say deg ¢; = n;. Then Gal(f),
regarded as a subgroup of the symmetric group S,, has an element whose cycle type is
(Bynee o Bip)-

The rest of this question is concerned with proving this; the following questions give
examples of its use.

Fix some notation: K is a field, f € K|[z] is of degree n and has no repeated
factors, L is a splitting field for f over K, G = Gal(f) = Gal(L/K), which we regard as
a subgroup of the symmetric group Sy, and p,...,pn € L are the roots of f. Y1,...,¥,
are independent indeterminates and for any s € S, we put

Hs P (.’.E = (ps(l)lfl + -4 ps(n)Yn)) (= L(Yl-;- . s ,Yn)[.'L']

We then set F = [[,cg. Hs. Notice that also F' = [ g (2 — (p1Y501) + -+ + Pr¥s(n))-
(i) Show that F' € K[Y,...,Yy][z].

(ii) Suppose that the prime factorization of F' in K(Y3,...,Ys)[z] is F' = Fi..... F.. By
Gauss’ lemma, we can assume that F; € K[Y1,...,Y,][z] for all &. Choose one of the
factors Hy = H, say, of F1. By considering [] ¢ g(H ), show that the degree of F} is the
order of G. Also, consider the permutation action of S, on the given linear factors H; of
F, and show that G is precisely the subgroup of S, that preserves each factor Fj.

(iii) Now assume that f € Z[z] and that f is monic. Suppose that p is a prime number not
dividing the discriminant of f; notice that this is equivalent to the reduction f € Fplz] of
f having non-zero discriminant. Let k be a splitting field for f over Fp, with Galois group
Gal(k/F,) = Gal(f).

Show that F; € Z[Y1,...,Yy][z], and let F; denote the reduction of F; mod p, so
that F = Fy.... .F.. Of course, 1t is quite possible that some or all of the F; will factorize
further; say F; = HJ ®; ;.

Deduce from (ii) that Gal(f) is the subgroup of S, that preserves each factor in the
factorization F' = []; ; ®;;, and deduce from this that Gal(f) is a subgroup of Gal(f).

[The idea is that you should use (ii) twice, first with K = Q and secondly with
K =F,, and by comparing what you get, deduce that Gal(f) is a subgroup of Gal(f).]
(iv) Suppose that f,p and f are as in (iii), and that the prime factorization of f is
f = ¢1.... .¢r, where degp; = n;. Use the fact that Gal( f) is cyclic (why?) to de-
duce that Gal(f) has an element s that is a product of disjoint cycles of lengths ny, ... ,n,
respectively.

39 Compute the Galois group of f = X*+ X2+ X + 1 over Q.
[Hint: test the factorization of f and of its cubic resolvent by reduction modulo
small primes. Alternatively use the mod p method described above.|
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40

41

42

43

By using Vandermonde’s determinant (q. 13) show that the discriminant of z™ +
pz + ¢ is (=) =L(p — 1)n=lpn 4 (—1)Hn(-D-lpngn=l where n(n) = 0 if
n=0or 1 (mod4) and n(n) =1if n =3 or 4 (mod 4).

Compute the Galois group over @ of X° + 3X + 1.

(i) Work out the cyclotomic polynomial ®,(z) for 1 <n < 10.

(ii) Show that ®,(z) = zP~1 +zP~2 + ...+ z + 1 if p is prime.

(iii) If n is odd show that ®2,(z) = ®5(—z). (Hint: 2 is a primitive n’th root of 1
if and only if —z is a primitive 2n’th root of 1.)

(iv) If p is prime and p|n then show that ®pn(z) = ®,(x?). (Hint: Show that z is
a primitive pn’th root of 1 if and only if 2? is a primitive n’th root of 1.)

(v) If p and g are distinct primes show that the nonzero coefficients of ®pq(z) are
alternately +1 and —1. (Hint: First show that if 1/(1 — 2P)(1 — z9) is expanded in
a power series in z, than the coefficient of ™ for m < pg is 0 or 1.)

(vi) If n is not divisible by at least 3 distinct odd primes show that all coefficients
of ®,(z) are —1, 0, or 1.

(vii) Work out ®3x5x7(z).

A theorem of Wedderburn says that every finite division ring (“possibly noncom-
mutative ring such that every nonzero element has an inverse”) is commutative.
(Cf. the ring H of quaternions.) In this exercise we will use cyclotomic polynomials
to prove this. (This argument is due to Witt and can be found on p. 1 of Weil’s
“Basic Number Theory”.)

Let L be a finite division ring, and let K be the centre of L (that is, the set of

elements of L that commute with all elements of L). We can suppose by induction that
every division ring of order less than that of L is commutative.

(i) Show that K is a field of order ¢ for some prime power ¢, and L is a vector space
over K of dimension n for some integer n, and that the multiplicative group L* of
non-zero elements in L is a group of order ¢g" — 1.

(ii) Show that any subring of L is a division ring (so that by the induction hypothesis
any proper subring of L is a field).

(iii) If a € L* and is not in the centre of L, then show that the elements of L that
commute with a form a field of order g™ for some m|n.

(iv) Show that the number of conjugates of a in L* is of the form (¢" —1)/(¢™ — 1)
for some m dividing n. (Recall that if a is an element of some group G, then the
number of conjugates of a is (order of G)/(order of centralizer of a).)

(v) By counting the number of elements in each conjugacy class of L* show that

#L)=q"-1=q-1+)» (¢"-1)/(¢™ -1)

a

where the sum is over a set of representatives a; of the conjugacy classes of the
group L* which are not in the centre, and the centralizer of a; is a field of order ¢™
(mi|n, m; < n). (The term ¢ — 1 is the number of elements in the centre of i
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45

46

(vi) Show that ®,(q)|(¢™ —1)/(¢g™ — 1) for each 7 and ®,(g)|¢™ — 1, and deduce
that ®,(q)|lg — 1. (P, is the n’th cyclotomic polynomial.)

(vii) Show that if n > 1 then ®,(q) > ¢ — 1 (using ®n(2) = [Lic(z/nz)- (7 — ¢*))
and deduce that n = 1, so that L = K and is commutative.

(i) Show that if p and ¢ are primes and a? = 1 mod p for some integer a then a has
order 1 or q in the group (Z/pZ)*, and deduce that a =1 mod p or p =1 mod gq.
(ii) If p # q and p divides (a? — 1)/(a — 1) = ®4(a) show that p = 1 mod g.

(iii) Deduce that there are an infinite number of primes congruent to 1 mod ¢. (Hint:
If p1,...,pi are some set of such primes, consider prime divisors of ®4(p1p2 - ..piq).)

In this exercise we use cyclotomic polynomials to prove the special case n = 1
of Dirichlet’s theorem that any arithmetic progression mz + n with m, n coprime
positive integers contains an infinite number of primes.

(i) Show that if m is not divisible by the prime p then the roots of z™ — 1 € Fp[z]
are all distinct, and each root has order m. (Recall that f has no multiple roots if
f is coprime to f’.)

(ii) Deduce that if neither m nor n are divisible by p and m # n then ®,,(z) and
®,,(z) are coprime in Fp[z].

(iii) Show that if m, n are integers with m not divisible by p then ®,(n) = 0 mod p
if and only if m is the smallest integer such that a™ = 1 mod p.

(iv) Show that if a prime p divides ®,,(n) for any positive integers m, n, then either
p divides m or p = 1 mod m. (Use part (iii), and recall that a?~! = 1 mod p for
any integer a coprime to the prime p.)

(v) Use (iv) to show that there are an infinite number of primes congruent to
1 mod m. (Hint: if p;,...p; are any finite set of primes 1 mod m then show that
not all prime divisors of ®,,(p1p2 - . .pim + 1) can divide m, and show that none of
them can be p1,...,pi.)

In this question, assume the result of the previous question, that given any integer
a there are an infinite number of primes congruent to 1 modulo a.

(i) Show that any finite abelian group G is a quotient group of (Z/mZ)* for some
integer m. (Hint: recall that any finite abelian group is a product of cyclic groups
of order a; for some integers a;. Take a set of distinct primes p; with p; = 1 mod a;,
take m to be the product of the p;’s, and use the fact that (Z/mZ)* is the product
of the groups (Z/p;Z)*.)

(ii) Deduce that any finite abelian group G is the Galois group of L/Q for some finite
extension L of the rationals. (Hint: Take L to be a subfield of the field generated
by the m’th roots of 1 (with Galois group (Z/mZ)*), for some suitable m.)

(iii) Find an explicit real number o (written using the cos function) such that Q()
is a Galois extension of Q with Galois group Z/23Z.
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