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§1 Field extensions

(Much of the material in §1 and 2 was covered in the IB Rings and Modules
course. )

Recall that a field is something in which the elements can be added, subtracted,
multiplied and divided (except that division by zero is prohibited) and all the
usual rules of arithmetic are true. In particular, addition and multiplication are
commutative. Examples are Q (the rationals), R (the reals), C (the complexes),
F, := Z/pZ (the integers modulo p, where p is prime). A further very important
class of examples is given as follows. Start with a PID R and an irreducible element
f of R. Then the quotient ring R/(f) is a field. For example, if K is a field, then
K[X] is a PID.

If K is a subfield of the field L, then L is an extension of K. We also say that
“L/K is a (field) extension”.

Assume that L is an extension of K and that a € L. Then K («) is the subfield
of L generated by K and o; concretely, this is the set of elements of L that can
be written (not necessarily uniquely) as quotients of polynomials in a with coeffi-
cients in K. K|a] is the set of elements of L that can be written (not necessarily
uniquely) as polynomials in @ with coefficients in K. So there is a surjective ring
homomorphism p : K[X] — K[c] such that p(} a,X™) = 3 ana™. (N.B.: X will
always denote an indeterminate.)

Definition/Proposition 1.1. (1.1.1) a is algebraic if it is a root of a nonzero
polynomial f in K[X)], that is, if ker p is non-zero. In this case kerp is the ideal
generated by a unique monic irreducible polynomial f (recall that K (X] is a PID,
so that every ideal in K[X] is generated by a single element). In this case f is the
minimal polynomial of o. Moreover, K[a] is then isomorphic to K[X]/(f), and
so is a field. It is then equal to K(a). Note that f(a) = 0, so that although f is
irreducible over K, it picks up a Toot (= zero, by abuse of language) in the bigger
field K(a).

Conversely, given an irreducible polynomial f € K[X]|, we can construct a bigger
field L in which f has a root a, by taking L = K[X]/(f) and a to be the residue
class of X in L. In fact, this particular L has the following important property
(which is the first step in proving the uniqueness of splitting fields): if M/ K is any
extension in which f has a root B, then the given inclusion K — M extends to
an inclusion L — M, and this extension is unique subject to the requirement that
a— f.

(1.1.2) a is transcendental if it is not algebraic. In this case p s an isomorphism.
(1.1.8) a is separable (over K ) if either it is transcendental or if it is algebraic and
is a root of a polynomial with coefficients in K having no multiple roots.

Typeset by ApS-TEX
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(1.1.4) A field extension K C L is called finite if L is finite-dimensional as a vector
space over K. (N.B. The use of the word “finite” here does NOT imply that K or
L is a finite set.) This dimension is denoted [L : K| and is called the degree of the
extension.

Lemma 1.2. Suppose that a is algebraic over K and that its minimal polynomial
f € K[X] has degree n. Then [K(): K] =n, and {1,a,...,a" '} is a K-basis
of K(a).

Proof. Exercise. U

Theorem 1.3. (“The tower law for field extensions.”) If L/K and M/L are finite
eztensions, then so is M/K, and [M : K] = [M : L].[L : K|. Conversely, if M/K
is finite, then so are M/L and L/K, and again [M : K] = [M : L].[L : K].

Proof. If {a1,...,an} is a K-basis of L and {bj,...,bs} is an L-basis of M, then
{a:b;} is a K-basis of M. O

§2 Splitting fields

Given f € K[X], a splitting field for f over K is a field extension L /K such that
f splits completely (that is, factors as a product of linear terms in L[X],) and if
M/K is any extension in which f splits completely, then we can embed L in M.
Concretely, L is the field extension of K generated by the roots of f. One obvious
but important remark is that if K — L < M are fields and M/K is a splitting
field for f € K[X], then M/L is a splitting field for f € L[X].

Theorem 2.1. (1) Splitting fields exist.

(2) Splitting fields are unique. More precisely, if ¢ : K — K1 is an homomorphism,
if 6(f) = f1, if L is a splitting field for f over K and L is a splitting field for f,
over K1, then ¢ can be estended to a homomorphism ® : L — Ly. Moreover, if ¢
is an isomorphism, then so s ®.

This was proved in the Rings and Modules course last year.

§3 Separable extensions

Remember that if K is a field, then K[X] is-a PID, so a UFD. Hence any two
elements of K[X] have an HCF. Moreover, if H is the HCF of F' and G, then
H = AF + BG for some A, B € K[X]. That is, in terms of ideals, (F,G) = (H).

Lemma 3.1. Assume that L/K is a field extension and that F,G € K[X]. Then
the HCF of F and G in K[X] is equal to their HCF in L[X].

Proof. Suppose that H is the HCF of F,G in K[X]. Then £, £ € K[X] and there
are A, B € K[X] such that 1 = A.£ + B.£. Suppose now that P € L[X] divides
% and %; then P divides 1, and so is in L. This means that H is the HCF of F,G
in L[X], as stated. O

A finite extension L/K is separable if every element of L is separable over K.
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Theorem 3.2. (“The theorem of the primitive element”.) (3.2.1) If L/ K is finite
and L = K(a,pB,...,0r), where each B; is separable over K, then there is an
element 0 of L such that L = K(6).

(3.2.2) If L/K 1s finite and separable, then there is an element 6 of L such that
L= K(0).

Proof. We shall assume that K is infinite. The finite case will be covered later in
the course.

It is clearly enough to prove (3.2.1). Induction on the number of generators of
L easily reduces us to the case where L = K(c, 8) and 3 is separable over K. Let
f,g € K[X] be the minimal polynomials of a, 8. Take a splitting field M/K of fg
such that M contains L. Say o = ay, ... ,a, are the zeroes of f and 8 = f1,..., s
are those of g Then choose ¢ € K such that the elements «; + c3; are all distinct.
Put 8 = a + ¢f.

Define F by F(X) = f(8 —cX). Note that F € K(0)[X]. We have g(§) = 0 and
F(B) = f(a) =0. So B is a zero of F and g. In fact, B is their only common zero.
For the other zeroes of g are Ba,...,83s and for i # 1, F(8;) = f(a+ c(8 - B)),
while by construction « + ¢(8 — 3;) is never equal to an ;.

Now consider the HCF H of F,g in the ring K(0)[X]. By Lemma 3.1, H is
also their HCF in M[X]. Since 3 is the only common zero of F, g, § is the only
zero of H in M. Since g is a product of linear terms in M[X], so is H. Now
g has no repeated factors, since it is separable, so the same holds for H. Hence
H =X —-pf. But H € K()[X], and so 8 € K(f). Hence a € K(f), so that
K(a,B8) C K(0) C K(a,8). O

Note that if f € K[X], then the derivative of f with respect to X exists, although
in a purely formal fashion. We denote it by df /dX or f'.

Proposition 3.3. If char K = 0 then any algebraic extension is separable.

Proof. Suppose that o € L with minimal polynomial f € K[X]. Suppose that f
has a repeated root 3 in a splitting field M, say. Then f and f’ have a common
zero, namely (3, so that in M[X] they are not coprime. Hence they are not coprime
in K[X], by Lemma 3.1. But f is irreducible in K[X], so that f’ = 0 identically.
Then f =3, an XP™ where a, € K and p =char K. U

Definition. Suppose that L/K and M/K are extensions. Then a K -homomorphism
L — M is a homomorphism ¢ : L — M of fields such that ¢(z) =z for all z € K.

Lemma 3.4. Suppose that L/K is algebraic, that o € L with minimal polynomial
f and that M/L contains a splitting field of f. Say deg f = n. Then there are at
most n distinct K -homomorphisms K(a) — M, and « is separable over K if and
only if there are ezactly n such homomorphisms.

Proof. The K-homomorphisms K (a) — M correspond precisely to the elements of
M whose minimal polynomial is f. The result is now immediate. [

Proposition 3.5. Suppose that a is algebraic and separable over K and that B €
K(a). Then ( is separable over K.

Proof. Suppose that f is the minimal polynomial of & and g that of 3. Let M /K
be a splitting field of fg. Say [K(B) : K] = m and [K(a) : K(f)] = n, so that
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[K(a) : K] = mn. By 3.4, there are mn distinct K-homomorphisms K (a) — M.
On the other hand, given a K-homomorphism ¢ : K(§) — M, there are exactly n
extensions of ¢ to K (), again by 3.4. Since there are at most m such ¢, by 3.4,
there must be exactly m such, and we are done.

Proposition 3.6. If a is algebraic and separable over K and (3 is algebraic and
separable over K(c), then L = K(a, 3) is separable over K.

Proof. By (3.2.1) we have L = K(f). Say [K(a) : K] = m and [L : K(a)] = n.
Then there are m distinct K-homomorphisms ¢ : K(a) — M, where M is some
fixed sufficiently large splitting field, and for each such ¢ there are n extensions of
é to a homomorphism L — M. Hence there are mn distinct K-homomorphisms
L — M, so that @ is separable over K. Now 3.5 shows that every element of L is
separable over K. 0O

Corollary 3.7. If L/K and M/L are finite and separable, then so is M/K.
Proof. Immediate from 3.6. 0

§4 Galois extensions: first properties

Suppose that G is a finite group of automorphisms of a field L. Define the field
of invariants K = L¢ = {z € L | g(z) = zV g € G}. (It really is a field; this is easy
to check.)

Definition 4.1. An extension L/K is Galoss if there is a finite group G of automor-
phisms of L such that K = LC.

Lemma 4.2. Every element of L is algebraic over K, of degree at most #G.

Proof. Suppose @ € L. Then « is a zero of the polynomial ngG(X—g(a)) = J(X),
say. Note that f is G-invariant, so that f € K[X]. Since « is a zero of f, we are
done. O

Lemma 4.3. L/K ts separable.

Proof. Suppose that a € L. We must show that its minimal polynomial f is
separable. Consider the set {s(a) | s € G}. Suppose that its distinct elements are
{a=ay,..., o} and put g = [];(X — ;). Then'g is separable, and since its linear
factors are permuted by G, it is G-invariant. Hence g € K[X]. Also, g(a) =0, so
that f | g. Then f is separable. O

Lemma 4.4. L/K is finite.

Proof. By Lemma 4.2, we can find a € L such that [K () : K] is maximal. Assume
that 8 € L — K(a) (for else we are done). Since [K(a, ) : K(a)] < [K(B) : K],
it is finite, as is [K(c) : K]. Hence, by the tower law, K(a, §)/K is finite. Since
K(a,B) C L, K(a,B)/K is separable. So by the theorem of the primitive element,
we can write K (a,8) = K(v). Then K(a) C K(v), and [K(v) : K] < [K(a) : K]
by maximality. Hence K(v) = K(a), so that 3 € K(a), which is absurd. [
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Theorem 4.5. [L: K] = #G.

Proof. By Lemmas 4.3. and 4.4 and the theorem of the primitive element, we
have L = K(a). As before, put f(X) = [[,cq(X — s(a)); then f € K[X]. Let
g € K[X] be the minimal polynomial of a over K. Then g divides f, since « is a
zero of f. So degg < deg f = #G, while [L : K] = degg. So it is enough to show
that f is irreducible. Then suppose that f = fifs, fi € K[X]. Since L[X] is a
UFD, there is a decomposition G = G; U G2 of G into disjoint subsets such that
fi = [lseq, (X — s(@)). Without loss of generality, 1 € G1; choose ¢ € G2. Since
f; € K[X), t(fi) = fi. However, X — t(a) is a factor of ¢(f1) but not of f;. O

Note that so far in this § we have regarded the field L and the group G as
fundamental, and then constructed the subfield K afterwards. However, we shall
in fact spend most of this course going in the other direction; that is, we start with
an extension L/K and then consider the group Aut(L/K) = {s € Aut(L) | s(z) =
r V z€K}.

Lemma 4.6. If s1,...,5, € Aut(L) are distinct, then they are linearly indepen-
dent over L. That is, if l1,... ,ln € L such that 3 l;s; =0 (that is, > Lisi(z) =0
for allz € L), then l; =0 for all v.

Proof. Without loss of generality we can assume that ) /;s; = 0 is a shortest linear
relation. Then all [; # 0 and n > 2.

Since s; # sg, there exists y € L with s1(y) # s2(y). Now > lisi(yz) = 0
for all z, so that 3 l;s;(y).si(z) = 0 for all z. On the other hand, multiply the
equation 3 I;s;(z) = 0 by s1(y) and subtract from the previous equation; the result
is Yiso li(si(y) — s1(y))si(z) = 0, which is a shorter relation. [

Proposition 4.7. Suppose that L/K is a finite extension. Then Aut(L/K) is
finite.

Proof. Note that the earlier results of this § show that every finite subgroup of
Aut(L/K) has order at most [L : K]. However, this is not enough to prove 4.7.
Instead, we shall use Lemma 4.6.

Say [L : K] = n, and pick a K-basis {x;} of L. If the result is false, then we can
find distinct elements s, ..., Sny1 of Aut(L/K). Consider the n x n matrix A =
(sj(z)). If det A = 0, then its columns are linearly dependent, so that there exist
my,...,Mn € L such that } . m;s;(z;) = 0. However, this contradicts Lemma 4.6.
So det A # 0, so that there exist Iy, ... ,l, € L such that > l;s;(z:) = Sn+1(z;) for
all 5. Then s,4+1 — Y. [;s; = 0, contradicting Lemma 4.6. U

Lemma 4.8. If G is a finite group of automorphisms of a field L, then G =
EutlLIL=):

Proof. Put K = LY and H = Aut(L/K). Note that G C H. By 4.6 H is finite.
Then by Theorem 4.5 #G = [L: K| = #H,sothat G =H. O

§5 Galois extensions and separable splitting fields

The aim here is to show that these two classes of extensions are the same.
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Theorem 5.1. (5.1.1) A finite extension L/K is Galois if and only if it is separable
and is the splitting field of some polynomial in K[X].
(5.1.2) L/ K 1is Galois if it is the splitting field of a separable polynomial in K([X].

Proof. (5.1.1) Assume that L/K is separable and is the splitting field of f =
fi.....fr, where f; € K[X] is irreducible. Then the f; are separable, and we
can assume that they are distinct. We shall argue by induction on deg f.

Suppose that a, 3 are roots in L of fi. There is an isomorphism % : K(a) —
K (B) such that o — B and A — A for all A € K. Then L/K(«) is a splitting field
for g = '(YJ;-'E)‘? say, and L/K () is a splitting field for h = (7{{7) Since %(g) = h,
we can extend 9 to an isomorphism ¥ : L — L, by Theorem 2.1(2). Note that
L/K(a) is a splitting field for the separable polynomial fff_?), so is Galois by the
induction hypothesis. Put H = Aut(L/K(a)) and Aut(L/K) = G; by Proposition
4.7 both groups are finite, while clearly H C G. Put K; = LC. Since K(a) = L7,
K; C K(«). Similarly, K; C K(B).

Assume that K; # K. Then [K(c) : K1] < [K(a) : K], so that f; factors over
K,. Say fi = p.q.r, where p,q are irreducible. Since f; is separable, p,q,r are
paiwise coprime. So we can choose « to be a root of p and 3 to be a root of g.

Note that Ki(a) = K(a) and K1(8) = K(8). Then ¥ induces an isomorphism
Ki(a) — Ki(B) such that a — @, while ¥(z) = z for all z € K}, since ¥ €
Aut(L/K). Hence o and 3 have the same minimal polynomial over K, which is
absurd. Hence K; = K.

Conversely, suppose that L/K is Galois. Then by Lemma 4.3 it is separable, so

that by Theorem 3.2 L = K(a), say. Put f(X) = [[,cg(X — s()). Then L is a
splitting field for f over K.
(5.1.2) Suppose that L/K is a splitting field for the separable polynomial f € K [(X].
If the roots of f are {ay,...,ar}, then L = K(ay,...,a;), so that L is generated
over K by elements whose minimal polynomials are separable (because they are
factors of f). Then L is obtained from K by successively adjoining separable
elements, and so is separable over K. 0O

§6 The fundamental theorem of Galois theory

Theorem 6.1. (6.1.1) If L/K is a finite Galois extension with Aut(L/K) = G,
then there is a one-to-one correspondence between the subgroups of G and the fields
between K and L given as follows:
(i) Given a subgroup H of G, the corresponding field is H' = LA ={pe L) slzx)=
TV s€H}.
(ii) Given a field M between L and K, the corresponding subgroup is M' = {s €
G|s(z)=zVze M}

We have H" = H and M" = M.
(6.1.2) This correspondence reverses inclusions. That is, if Hy C Hy are subgroups
of G, then H| D H}, while if My C My are intermediate fields, then M D Mj.
(6.1.3) If Hy C Hy are subgroups of G and M; = H!, then [My : M) = [H; : Hy).
(6.1.4) L/H' is Galois, and Gal(L/H') = H.
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(6.1.5) H is normal in G if and only if H' /K is Galois. In this case Gal(H'/K) =
G/H. More generally, if M is the Galois closure in L of H' /K, then Gal(M/K) =
G/H,, where Hy = Nyegs 'Hs.

Proof. (6.1.1) Suppose first that K ¢ M C L. Put H = M'. Note that H =
Aut(L/M). By 5.1 L/K is a separable splitting field, say for f € K[X]. Then
L/M is a splitting field for f, where f is regarded as an element of M[X]. Since
f is separable, L/M is Galois, by 5.1. So, by the definition of “Galois”, H' = M.
That is, M" = M.

Now suppose that H C G. Put M = H'. Then L/M is Galois, with group H,
by 4.7. So M' = H, so that H" = H.

Thus the maps H — H’' and M +— M’ are inverse to each other. This proves
(6.1.1).

(6.1.2) This is obvious.

(6.1.3) Since L/M; is Galois with group H;, we have [L : M;] = #H;. Then
[Ha : Hy] = #Hy/#Hy = [L : Mp)/[L : My] = [M; : M>], where we have used 4.4
and the tower law.

(6.1.4) This is obvious.

(6.1.5) Suppose that H C G and M = H'. Let s € G, z € M and h € H.
Then s~ 1hs(s~(z)) = s (h(z)) = s~(z). Hence s~'Hs acts trivially on the
subfield s~1(M) of L, so that s~ *Hs C (s~}(M))’. Since [(s™*(M)): K] = [M :
K], it follows that s~'Hs = (s™'(M))’. Now assume that H is normal; then
s~1Hs = H, by definition, so that s7'(M) = M, by (6.1.1). So there is a map
¢ : G — Aut(M/K) given by ¢(s)(z) = s(z). It is easy to check that ¢ is a
homomorphism and that ker ¢ = H. Since # Aut(M/K) < [M : K| =[L: K]/[L:
M) = #G/#H = #(G/H), it follows that ¢ is an isomorphism.

Conversely, suppose that M/K is Galois. Then M/K is the splitting field of
some separable f € K[X]. Suppose that « is a root of f and that s € G. Then
0 = 5(0) = s(f(a)) = f(s(a)), so that G permutes the roots of f. But M is
generated over K by the roots of f, so that G preserves M. That is, there is
a homomorphism ¢ : G — Aut(M/K) given by ¢(s)(z) = s(z). By definition,
ker ¢ = M’ = H, say, so that #G/#H = [L : M] = # Aut(M/K). Hence ¢ is an
isomorphism. 0

Theorem 6.2. Suppose that M/K is a finite separable extension, that M = K(6),
that f € K[X] is the minimal polynomial of 6 and that L/K is a splitting field for f.
Then L/K is the minimal Galois extension containing M. That is, L/K 1is Galois
and if L1/K is any Galois estension containing M, then there is a homomorphism
¢ : L — Ly such that ¢(z) =z for allz € M.

Proof. By the uniqueness of splitting fields, it is enough to show that f splits
completely in L;.

Suppose that G = Gal(L1/K), and put g(X) = [[,ce(X — s(6)). Then g is
invariant under G, and so lies in K[X]. Also, g(f) = 0, so that f | g. Since g splits
completely over L1, so does f. O

Definition. This extension L/K is a (or the, by abuse of notation) Galois closure
of M/K.
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Theorem 6.3. Suppose that L/K is a Galois extension and that f € K[X] is
irreducible. Then f splits completely in L if it has a root in L.

Proof. Suppose that a € L is a root of f. Note that f(s(a)) = 0 for all s €
G. Suppose that £q,..., 5, are the distinct elements s(a), where s runs over the
elements of G. Put g = [[,(X — ;). Then g is G-invariant, and so lies in K[X].
Moreover, g divides f in L[X], since every root of g is a root of f and g has no
repeated roots. Hence, by Lemma 3.1, g divides f in K[X]. Since f is irreducible,
f = g and we are done. [

(To be continued.)



Some facts about finite groups.

This is a list of some definitions and theorems concerning finite groups that we
need for the Galois theory course, but whose proof requires more time than we
have.

(1) Symmetric groups Sp.

S, is generated by the set of transpositions, and by {(12), (23), (34),...,
(n—1,n)}. Sn is also generated by any pair consisting of a transposition and an
n—cycle. |

A subgroup H of S, is transitive if H permutes {1, ... ,n} transitively. The only -
transitive subgroup of S3 is A3. The transitive subgroups of S4 are A4, Dg, Cy, V. ;.
Here V is the group whose non-identity elements are the things whose cycle-type
is (2)(2) and is isomorphic to Cy x C3, Cy is a cyclic group generated by a 4-
cycle, Dg is of order 8 and is the symmetry group of the square. S4 permutes the
elements of V — {1} transitively, so that there is a homomorphism 7 : S4 — S3
with kerm = V defined by this permutation action. Counting orders shows that
7 is surjective (so that, in the language of normal subgroups and quotient groups
that is described below, S;/V = S3). The transitive subgroups of Sy listed above
(that is, those subgroups that permute 4 objects transitively) map to the subgroups
Sa, As, Ca, Ca, 1 respectively, so that except for ambiguity between Dg and C4 they
are distinguished by their images in S3.

(2) Groups of order < 8. :

The Abelian groups of order < 7 are either cyclic or C2 X C2. The only non-
Abelian group of order < 7 is S3. There are five groups of order 8: the Abelian
groups Cg, Cy4 x Cy and Cy x Cz x Cy and the non-abelian groups Dg and Qg. Qs
is the subset {1, %i, £j, +k} of the quaternions. Recall that ¢* = j? = k2= -1
and ij = k = —ji,jk = i = —kj, ki = j = —ik. They can be distinguished e.g. by
counting elements of order 2; Dg has five and Qg has one. Also, Dg is a subgroup
of 54 while Qg is not.

(3) Orbits and stabilizers.

If a group G acts on a set X, then the length of any orbit is the index of
the stabilizer of any element of that orbit. Two elements of the same orbit have
conjugate stabilizers.

(4) If H is a subgroup of G, then the order of H divides that of G, and the ratio
is the index of H in G (the number of left cosets, or equivalently the number of
right cosets). If p" is a prime power dividing the order of G, then G has a subgroup
of order p™.

(5) Abelian groups.
An abelian group G is uniquely a direct product Cy x -+ x Cr of cyclic groups
such that the order of C; divides that of Ci;i, and G is also uniquely a direct
product C§ x --- x C} of cyclic groups of prime power order. There is an integer n
such that every element has dividing n, and some element has order n.




(6) Normal subgroups and factor groups (= quotient groups).

If H is a subgroup of a group G,then H is normal if sH = Hs for all s € G,
or equivalently s™*Hs = H for all s. If H is normal, then the set of left cosets
{Hs | s € G} of H in G naturally forms a group, the guotient group G/H, with
multiplication given by (Hs)(Ht) = Hst. There is a surjective homomorphism
7:G — G/H with m(s) = Hs, and kerm = H. Note that (assuming G to be finite)
#(G/H) = #(G)/#(H).

For example, suppose that G acts on an object (geometric or algebraic), say
X. By definition, this means that we are given a group homomorphism p : G —
Aut(X). Suppose that H acts trivially on X, i.e. that p(h) = 1forall h € H. Then
the action of G on X naturally induces an action of G/H on X. That is, there is
a homomorphism ¢ : G/H — Aut(X) such that p=c o .

Crudely, the idea is that, given that H acts trivially, we can throw it away by
passing to the smaller, and so less complicated, group G/H.

(7) Simple and soluble groups and composition series.

A group G is simple if every normal subgroup is either 1 or G. So an Abelian
group is simple if and only if it is of prime order. See (7) below for other examples.

A composition series for G isachain 1 = Gog C G; C -+ C Gy = G of subgroups
of G such that each G; is a normal subgroup of Gi;; (but not necessarily of G)
and each composition factor G;41/G; is simple. The Jordan-Holder theorem states
that if 1 = Hy C H; C -+ H, = G is another composition series for G, then m =n
and the quotients G;41/G; are equal to the quotients H;4,/H; in some order, but
not necessarily the given one. That is, the group G determines its composition
factors. Note that the composition factors do not determine the group; consider,
for example, Cy x C; and C4 or Cg and S3.

G is soluble or solvable if it has a composition series in which every factor is
Abelian. Important examples are:

S3. This has a composition series 1 C Az C S3.

S4. This has a chain of normal subgroups 1 C V' C A4 C S4. The qotients are

respectively V, C3 and Cl. .

The subgroup B of upper triangular matrices in the group GL2(R), where R is

any finite ring (e.g. R = Z/nZ or a finite field). The subgroup U consisting of

those matrices with 1’s on the diagonal is normal in B, U 2 R (where R is the

additive group) and B/U = (R*)?, where R* is the group of multiplicative units

‘units in R.

Any subgroup or quotient group of a soluble group. Conversely, if IV is normal

in G and N and G/N are both soluble, then so is G.

(8) Alternating groups.

The alternating group A, is generated for example by the 3—cycles (123), (124),

.,(12n), and is simple. In consequence, Ss is not soluble if n > 5.

Here is a proof of simplicity for n = 5 (for the general case see van der Waerden):

Recall from the IA Algebra and Geometry course that As is the group of rotations
of a regular icosahedron. Suppose that g € As with g # 1. Then g is determined
by its axis A and its angle 6, where 0 < § < w. If § < 7 then we must also specify
the direction of A. There are four possibilities:
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(i) A passes through the midpoint of an edge. Then @ = 7 and g has order 2. There
are 30 edges, so 15 such g and they are conjugate.
(ii) A passes through the midpoint of a face. Then # = 27/3 and g has order 3.
There are 20 faces, so 20 such g and they are conjugate.
(iii) A passes through two opposite vertices. Then § = 27/5 or 47 /5 and g has
order 5. There are 12 vertices, so there is one conjugacy class consisting of the
12 such g for which # = 27 /5 and another conjugacy class consisting of the 12 for
which 8 = 4x/5.
So As has 5 conjugacy classes, with respectively 1,15, 20,12 and 12 members.
Now suppose that H is a normal subgroup of As of order n. Then by definition
H is a union of conjugacy classes in As, so that n =1+ a.15 4 .20 4+ ¢.12 + d.12,
where a, ... ,d are 0 or 1. Also, n divides 60, by Lagrange’s theorem. It is easy to
see that the only solutions are a = ---=d =0and a =--- = d = 1, corresponding
to H=1and H = As.



