Example Sheet I

(from Question 4 onwards, take $k = \mathbb{C}$)

- 1. Given points P_0, \dots, P_{n+1} in $\mathbb{P}^n = \mathbb{P}(W)$, no (n+1) of which are contained in a hyperplane, show that homogeneous coordinates may be chosen on $\mathbb{P}(W)$ so that $P_0 = (1:0:\ldots:0), \cdots, P_n = (0:\ldots:0:1)$ and $P_{n+1} = (1:1:\ldots:1).$
- 2. Given hyperplanes H_0, \dots, H_n of $\mathbb{P}^n = \mathbb{P}(W)$ such that $H_0 \cap \dots \cap H_n = \emptyset$, show that homogeneous coordinates x_0, \dots, x_n can be chosen on $\mathbb{P}(W)$ such that each H_i is defined be $x_i = 0$.
- 3. Show that the set of hyperplanes in $\mathbb{P}(W)$ is parametrized by $\mathbb{P}(W^*)$, where W^* is the dual vector space to W. If P_1, \dots, P_N are points of $\mathbb{P}(W)$, describe the set in $\mathbb{P}(W^*)$ corresponding to hyperplanes not containing any of the P_i . Deduce (assuming k infinite) that there are infinitely many such hyperplanes.
- 4. Let V be a hypersurface in \mathbb{P}^n defined by a non-constant homogeneous polynomial F, and L a (projective) line in \mathbb{P}^n ; show that V and L must meet.
- 5. Decompose that projective variety V in \mathbb{P}^3 defined by equations $X_2^2 = X_1 X_3$, $X_0 X_3^2 = X_2^3$ into irreducible components.
- 6. Show that the general equation for a projective conic $V \subset \mathbb{P}^2$ can be written in the form $\mathbf{x}' A \mathbf{x} = 0$, where A is a 3 × 3 symmetric matrix with entries in \mathbb{C} and $\mathbf{x}' = (x_0: x_1: x_2)$; show that this equation is irreducible if and only if $\det(A) \neq 0$. If V is irreducible, show that V is isomorphic to \mathbb{P}^1 .
- 7. Consider the projective plane curves corresponding to the following affine curves in A^2 .

 - $\begin{array}{ll} (a)\ y=x^3 & (b)\ xy=x^6+y^6 \\ (c)\ x^3=y^2+x^4+y^4 & (d)\ x^2y+xy^2=x^4+y^4 \\ (e)\ 2x^2y^2=y^2+x^2 & (f)\ y^2=f(x) \ {\rm with}\ f\ {\rm a\ polynomial\ of\ degree}\ n. \end{array}$

In each case, calculate the points at infinity of these curves, and find the singular points of the projective curve.

- 8. If $V \subset \mathbb{P}^2$ is a projective plane curve defined by an irreducible homogeneous polynomial $F(X_0, X_1, X_2)$ of positive degree, show that the singular locus of V consists precisely of the points P in \mathbb{P}^2 with $\partial f/\partial X_i(P)=0$ for i=0,1,2.
- 9. Let $\phi: V \longrightarrow \mathbb{P}^m$ be a morphism from an irreducible projective variety V and assume that $W = \phi(V)$ is a subvariety of \mathbb{P}^m . Prove that W is irreducible.
- 10. Show that the projective plane curve with equation $X_0X_2^2 = X_1^3 + aX_0^2X_1 + bX_0^3$ is isomorphic to $V \subset \mathbb{P}^3$ defined by equations $X_0X_3 = X_1^2$, $X_2^2 = X_1X_3 + aX_0X_1 + bX_0^2$ via the map $\phi = X_1^2$ $(X_0^2: X_0X_1: X_0X_2: X_1^2)$
- 11. (Tripos Style Question) Explain briefly why a rational map $\phi: V \longrightarrow \mathbb{P}^m$ on a smooth projective curve is a morphism.

Let V be the projective variety in \mathbb{P}^3 defined by $X_0X_3 = X_1X_2$ and L be the plane given by $X_0 = 0$. Let P be the point (1:0:0:0). Show that the following recipe defines a rational map $\phi = (0: X_1: X_2: X_3)$ from V to L: For a point Q of V, the line through P and Q meets L in $\phi(Q)$. Show that ϕ is not a morphism.

If V^* and L^* denote the intersections of V and L respectively with the plane $X_1 = X_2$, verify explicitly (i.e. not appealing to the above result) that ϕ induces an isomorphism between V^* and L^* .

Example Sheet II (Throughout you may take $k = \mathbb{C}$. For n = 3, 4, 5, Question n uses Question (n-1).)

- 1. If P is a smooth point of an irreducible curve V and t a local parameter at P, show that $\dim_k \mathcal{O}_{V,P}/(t^n)=n$.
- 2. Suppose that $\phi: V \longrightarrow V$ is a surjective morphism of irreducible projective varieties for which the induced map on function fields $\phi^* = id_{k(V)}$; show that $\phi = id_V$.
- 3. Let $\phi: V \longrightarrow \mathbb{P}^1$ be a surjective morphism from an irreducible smooth projective curve V, and suppose that the induced map $\phi^*: k(\mathbb{P}^1) \to k(V)$ is an isomorphism. Demonstrate the existence of a morphism $\psi: \mathbb{P}^1 \to V$ with ψ^* the inverse of ϕ^* , and deduce that ϕ is an isomorphism.
- 4. Suppose that V is an irreducible smooth projective curve and P a point on V with l(P) > 1; show that V is isomorphic to \mathbb{P}^1 .
- 5. For D any effective divisor on \mathbb{P}^1 , show that $l(D) = \deg D + 1$. For D any non-zero effective divisor on V not isomorphic to \mathbb{P}^1 , show that $l(D) \leq \deg D$.
- 6. Let P be the point at infinity on \mathbb{P}^1 and D=3P; investigate the morphism ϕ_D . By choosing suitable subspaces of $\mathcal{L}(3P)$, obtain morphisms from \mathbb{P}^1 to \mathbb{P}^2 whose images are respectively the cuspidal cubic and the nodal cubic.
- 7. With notation as in Question 6, by considering a suitable subspace of $\mathcal{L}(4P)$, demonstrate the existence of a smooth curve $V \subset \mathbb{P}^3$ of degree 4 which is isomorphic to \mathbb{P}^1 . (cf. Example Sheet I, Question 10 where we saw a smooth curve of degree 4 in \mathbb{P}^3 which is not isomorphic to \mathbb{P}^1 .)
- 8. Assuming the fact that every smooth plane cubic in \mathbb{P}^2 has an inflexion point (i.e. a point $P \in V$ for which some line meets $P \in V$ at $P \in V$ for which some line meets $P \in V$ at $P \in V$ for which some first principles that homogeneous coordinates may be chosen on $P \in V$ with respect to which $V \in V$ has equation $X_0X_2^2 = X_1(X_1 X_0)(X_1 \lambda X_0)$ for some complex number $V \in V$.
- 9. Let P be the point at infinity of the plane curve with equation as in Question 8. Show that x/y is a local parameter at P, where $x = X_1/X_0$ and $y = X_2/X_0$. [Hint: Consider the affine piece $X_2 \neq 0$.] Hence calculate the numbers $v_P(x)$ and $v_P(y)$. Find a general form for a function in $\mathcal{L}(mP)$, and show that l(mP) = m for m > 0.
- 10. An irreducible smooth projective curve V is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^2 = f(x)$ and $v^2 = g(u)$ respectively, where f is a square free polynomial of degree 2n, and where u = 1/x and $v = y/x^n$ in k(V). Describe the polynomial g(u) and show that the canonical divisor class of V has degree 2n-4.

11. (Tripos Style Question).

If $f, g \in k[x, y]$ are coprime polynomials over a field k, show that there exist polynomials α , $\beta \in k[x, y]$ such that $\alpha f + \beta g$ is a polynomial in x only.

If V and W are the affine plane curves defined by f and g respectively, and $P \in V \cap W$, we define the *intersection multiplicity* of the two curves of P to be $\dim_k \mathcal{O}_{\mathbb{R}^2,P}/(f,g)$. Show that this number is always finite, and calculate it in the case $f = y - x^2$, $g = y^2 - x^3$ and P = (0,0).

12. (Tripos Style Question).

Let $y^{N-1} = f(x)$ be the equation of an affine plane curve $U \subset A^2$, when f is a polynomial of degree N with distinct roots, and $V \subset \mathbb{P}^2$ be the corresponding projective plane curve (with equation $X_0X_2^{N-1} = F(X_0, X_1)$). Prove that V is a smooth curve.

Let P = (0:0:1); calculate $v_p(x)$ and $v_p(y)$. Deduce (without using Riemann-Roch) that $\mathcal{L}((n+1)P) = \mathcal{L}(nP) + 1$ for all n > N(N+3).

13. (Paper IV Tripos Style Question).

Explain what is meant by the genus g(V) and a canonical divisor K_V of a smooth projective curve V. Explain why $\deg(K_V)$ is a well-defined number and state the relation of this number to the genus.

If V is a smooth projective plane curve defined by an irreducible polynomial F of degree d, calculate both g(V) and $\deg(K_V)$ from first principles and hence check that your stated relation holds in this case. [You may assume the fact that if U is an irreducible affine variety, any rational function which is everywhere regular on U will be an element of the coordinate ring k[U]].

Example Sheet III

(Throughout you may assume the Riemann-Roch Theorem)

- 1. Let V be a smooth projective curve and P any point of V. Show there exists a non-constant rational function $f \in k(V)$ which is regular everywhere except at P. Show furthermore that there is a projective embedding of V for which the image of P is the only point at infinity.
- 2. Let V be a smooth projective curve of genus g; show that there is a non-constant morphism $\phi: V \to \mathbb{P}^1$ of degree $\leq g+1$.
- 3. Suppose that P_0 is a point on an elliptic curve V and $\phi_{3P_0}: V \to W \subset \mathbb{P}^2$ the corresponding embedding of V with image W. Show that $P \in W$ is an inflexion point if and only if $P \oplus P \oplus P$ is the identity under the group law on V determined by P_0 . Deduce that if P, Q are inflexion points of W, so too is the 3rd point of intersection R of the line PQ with W
- 4. Let V be the plane cubic curve $zy^2 + z^2y = x^3 xz^2$, and take the identity dement P_0 of the group law on V to be the point (0:1:0) at infinity. If P = (0:0:1), calculate the points $nP = P \oplus \cdots \oplus P$ of V for $n \leq 4$.
- 5. Let $\pi: V \to \mathbb{P}^1$ be a smooth hyperelliptic curve and $P \neq Q$ ramification points for π . Show that as elements of Cl(V), $P Q \neq 0$ but 2(P Q) = 0.
 - 6. Let $\pi: V \to \mathbb{P}^1$ be a smooth hyperelliptic curve of genus g > 1 and Q any point of \mathbb{P}^1 .

 We let ϕ^*Q denote the divisor of degree 2 on V corresponding to $Q \in \mathbb{P}^1$ i.e. $\phi^*Q = \sum_{\phi(P)=Q} v_p(\phi^*(t))P$, where t is a local parameter at Q. Show that $\mathcal{L}((g-1)\phi^*Q) \geqslant g$ on V, and hence deduce that $\mathcal{L}(K_V (g-1)\phi^*Q) > 0$, i.e. that $K_V \sim (g-1)\phi^*Q$ on V. Use this to identify the space $\mathcal{L}(K_V)$, and also the image of the canonical map $\phi_{K_V}: V \to \mathbb{P}^{g-1}$.
- 7. Calculate the j-invariant of the Fermat cubic $x^3 + y^3 + z^3 = 0$. [HINT: Find linear combinations Y, Z of y, z such that $y^3 + z^3 = \frac{3}{4}ZY^2 + \frac{1}{4}Z^3$.]
 - 8. Show that the plane cubic

$$x^3 + y^3 + z^3 - 3\lambda xyz = 0$$

fails to be smooth and irreducible if and only if $\lambda^3 = 1$. Adapt your argument from Question 7 to show that any elliptic curve may be embedded in \mathbb{P}^2 with an equation of the above form with $\lambda^3 \neq 1$.

- 9. If V is a smooth curve of genus 2 and D a divisor on V, show that ϕ_D is an embedding if and only if $\deg(D) \ge 5$.
- 10. If V is a smooth plane quartic, show that V is not hyperelliptic.
- 11. Let V be a smooth non-hyperelliptic curve of genus $g \ge 3$, and $\phi = \phi_{K_V} : V \to \mathbb{P}^{g-1}$ is canonical embedding.

Let H be a divisor on V corresponding to a hyperplane of \mathbb{P}^{g-1} ; show that $\mathcal{L}(H) \geqslant g$ and hence that $\mathcal{L}(K_V - H) > 0$. Deduce that $H \sim K_V$, and also that any effective divisor $D \sim K_V$ corresponds to some hyperplane.

- 12. With the notation as in Question 11, suppose that $D = P_1 + \cdots + P_n$ is an effective divisor on V with the P_i distinct, and let Q_i denote the point $\phi(P_i)$ in \mathbb{P}^{g-1} and $\operatorname{Span} < Q_1, \ldots, Q_n > \operatorname{denote}$ the linear subspace of \mathbb{P}^{g-1} spanned by the points Q_i . Show that the Riemann-Roch Theorem for D can be interpretted geometrically as saying that $\mathcal{L}(D) = \operatorname{deg} D \operatorname{dim} \operatorname{Span} < Q_1, \ldots, Q_n > \operatorname{denote}$
- 13. (Tripos Style Question)

Are the following statements concerning complex projective curves true or false? Give a brief proof or a countexample as appropriate

- (a) Any plane curve of degree d > 3 is non-rational
- (b) Any smooth curve admits a morphism to \mathbb{P}^1
- (c) Any smooth curve which admits a morphism from \mathbb{P}^1 will be isomorphic to \mathbb{P}^1
- (d) Any morphism between a smooth curve of genus 4 and a smooth curve of genus 3 must be constant.
- 14**. Let $V \subset \mathbb{P}^2$ be a smooth cubic curve whose defining equation has real coefficients. Show that V has either 1 or 3 real inflexion points.

[HINT: Look up Sylvester's problem in an appropriate book.]