Part IIB Algebraic Curves Course 1995 PMHW

Abbreviated Lecture Notes

§1. If W is a vector space over a field k, define the associated projective space
P(W) = {1-dimensional subspaces of W}.

A linear subspace is a subset of the form P(U) for U a subspace of W. If dim(W) = n+1, we
say that P(W) is an n-dimensional projective space and denote it by P™. The complement

of a hyperplane in P™ has the natural structure of an affine n-space A™ over k.

By choosing a basis ey, ..., e, for W, a point of P(W) corresponds to a equivalence
class of vectors ., z;e; under the relation given by non-zero scalar multiplication. Thus
a point of P(W) is given by homogeneous coordinates (xo : 1 : ... : =), where x and y

represent the same point <= y = Ax for some A € k*.

A projective variety V' C P™ is defined to be the zero locus of a (finite) set of homoge-
neous polynomials in X, ..., X,. Let I*(V) denote the ideal in k[Xy, ..., X,] generated
by homogeneous polynomials vanishing on V. We say that V is irreducible if it cannot be
written as the union V' = V3 UV; of two proprér subvarieties. Can show that V' is irreducible

iff I*(V) is a prime ideal.

If V C P™ irreducible, d rational function on V' is given by a quotient F/G of homo-
“geneous polynomials of the same degree, G ¢ I"(V), subject to the equivalence relation
R/S ~ F/G += RG - SF € I"(V). Note that F/G represents the zero function iff
F e I"(V). A rational function f on V is said to be regular at P € V if there is a repre-
sentation F'/G for f with G(P) # 0. If f is regular at P, we can define f(P) in a unique
way, and in this way f induces an actual function on the subset of regular points. The set

of rational functions on V' forms (in an obvious way) a field k(V'), the function field of V.

In this course we shall take £ = C. The dimension dim(V') of an irreducible projective
variety V is the smallest integer n for which there exist functions t1,...,t, € k(V) with
k(V) finite over k. We say that V is a complex projective curve if dim(V) =1, i.e. C(V)

is a finite extension of the field C(¢) of rational functions in one variable.

Suppose we have chosen homogeneous coordinates Xo, ..., X, on P?; the complement
of the hyperplane { X = 0} is an affine n-space Aj, which has affine coordinates y1,...,¥n

given by y; = X;/Xo. Similarly the complements of the other coordinate hyperplanes are

1



affine n-spaces and have corresponding affine coordinates. These n+ 1 affine n-spaces form
an affine cover of P™. If now V C P" is a projective variety, then Vo = V' N Af is the
subset of Af defined by the polynomials f(y1,... ) = F(Lyt, -, Yn) € Efy1, ... ,ynj
obtained from the homogeneous polynomials defining V. Such a subset of A™ is called
an affine variety, and so in this way we obtain an affine covering of V' by affine varieties.
Easily seen that for V irreducible, the function field k(') can be defined purely in terms
of a (non-empty) affine piece. As an example, consider V C P? defined by a homogeneous
polynomial F(Xg, X1, X3) of positive degree; we have an affine piece U of V' given by a
polynomial f(z,y) where z = X1/Xo and y = X3/Xo. Assuming F' is not divisible by Xo,
we have that F' is irreducible iff f is irreducible.

Lemma 1.2. Given f,g € k[z,y] coprime polynomials, there exist polynomials o, 3 €
klz,y] such that af + Bg = h, where 0 # h € k[z] is a polynomial in = only.

This lemma follows easily (essentially just eliminate inductively the variable y). From
this lemma, it follows that if F is irreducible, then the only proper subvarieties of V' are
finite sets of points , and so V must be irreducible. The function field £(V') is then naturally
isomorphic to the field of fractions of the integral domain k[z,y]/(f), and it is also then

clear that dim(V') = 1; such a variety V is called a plane projective curve.

Given a point P of an irreducible projective variety V, the local ring of the variety at
P is defined as Oy p = {h € k(V) : hregular at P}. This is clearly a subring of k(V)
and has a maximal ideal myp = {h € Oyp : h(P) = 0}. Clearly the units (invertible
elements) U(Ov p) of the ring are precisely the elements not in the maximal ideal, i.e.
my p = non-units of Oy,p. Since any proper ideal consists of non-units, this shows that
my, p is the unique maximal ideal of Oy p ; in general, a ring with this property is called
a local ring. The local properties of V at P are encoded in this ring. Note that Ov,p is
an integral domain with k(V) as its field of fractions, and that if V5 is an affine piece of V

containing P, then Oy p is determined by V5.

A local ring A with maximal ideal m is called a discrete valuation ring (DVR) if there
exists t € m such that every non-zero element a € A can be written in the form a = ut™
for some n > 0 and unit uw € U(A). If V is a complex curve and P € V, we say that P is a
smooth or non-singular point of V if Oy p is a DVR; an element ¢ € mv,p as above is called
a local parameter or local coordinate at P. Otherwise we say that P is a singularity of V.

For plane curves, these definitions are easily seen to be equivalent to the usual definitions
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in terms of vanishing of partial derivatives of an irreducible defining polynomial.

Lemma 1.4. An affine plane curve U C A? given by an irreducible polynomial f € k[z,]
is singular at P € U if 8f/0x (P) =0=0f/0y (P).

Proof. Easily checked that the vanishing of partial derivatives (which can be defined
purely formally) is independent of the affine coordinate system chosen, and so in particular
we may assume that P is the origin (0,0). Further, if we write f = f1 + fo + ..., where
deg(f;) = i, then the partial derivatives vanish at the origin iff the linear part f; is zero.

Thus the Lemma is asserting that f; = 0 iff P is a singularity.

To see this, suppose first that P is non-singular; then there exists a local parameter
t € kU] such that £ = uqt” and y = ugt®, where u;,uy are units, and ore of 7 and s, wlog
s = 1 (because my p = (z,y) C Ov,p). Therefore z = uy” for some unit u in Oy p, say
u = vy /vy with v; € k[z,y] with v;(P) # 0. Therefore voz = v1y” as elements of k[U], or
as polynomials that vox — v1y” € I(U) = (f). Thus f divides the polynomial voz — v1y",

and hence f; # 0, contrary to assumption.

Conversely, suppose that f; # 0 and that affine coordinates have been chosen with
P =(0,0) and f = z — y + higher order terms. Thus f = zp(z) —y q(z,y), with p(0) # 0
and ¢(0,0) # 0. In particular we note that z = vy in Oy, p, with v a unit.

Claim. Oy p is a DVR with local parameter y.

Given non-zero a € Oy p, write a = wg with w a unit and g = g(x,y) a polynomial. If
g(P) # 0, we are done since it is a unit in Oy, p; if not then we can use the relation z = vy
to substitute for r in g, and obtain the fact that g is a multiple of y in Oy, p. Provided we
can show that g € (y(M*1) for some M > 0, we shall then be home by induction, since
the process then has to terminate. The required fact however follows from (1.2), since f, g
are coprime polynomials, and hence there exist o, 3 € k[z,y] with af + 89 = yMh(y) for
some M > 0 and some polynomial h with hA(0) # 0. Thus h represents a unit in Oy p,
and so y™ € (g) in Oy p; i.e. yM is divisible by g, which rules out the possibility that g
is divisible by y(M+1), QED

Given the DVR Oy p, we have a well-defined function vp : k(V)* — Z, where
vp(ut™) = n (notation as above), called the valuation at P; this gives the order of a
zero or pole at P of a rational function. Note that vp(fg) = vp(f) +ve(g) (so that vp is
a homomorphism of abelian groups) and vp(f + ¢) > min{vp(f),vp(9)}-
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For V an irreducible projective variety, a rational map ¢ : V— — P™ is given by
an (m + 1)-tuple (fo : ... : fm) of elements of k(V) modulo that (fo : ... : fm) and
(ho : ... : hm) define the same rational map iff for some h € k(V)*, we have h; = hf;
for all i. Interpretting rational functions in terms of homogeneous polynomials, we see

that the rational map ¢ is given by an equivalence class of (m + 1)-tuples of homogeneous

polynomials of the same degree (Fp : ... : Fin), not all in I"(V), modulo the relation ~,
where (Fp @ ... : Fpp) ~ (Go : ... : Gp) &= FG;— F;G; € IMV) for all i,5. We
say that ¢ is reqular at P € V if it can be written in the form ¢ = (fo : ... : fm) with

f; € Oy p for all i and at least one non-vanishing at P; we then have a well-defined image
point ¢(P). If W C P™ a projective variety, a rational map ¢ : V— — W is just a
rational map ¢ : V— — P™ such that ¢(P) € W for all points P at which ¢ is regular.
A morphism ¢ : V - W is a rational map which is everywhere regular. An isomorphism
¢ : V — W is a morphism with an inverse morphism ¢ : W — V. An isomorphism induces
isomorphisms of the local rings (given by composition with ¢), and intrinsic properties of
the variety are not affected. Example of twisted cubic in P3 being isomorphic to P1. It
follows immediately from the defining property of a DVR that for V' a smooth projective
curve, every rational map ¢ : V— — P™ is a morphism (clear denominators and cancel

out any common factors of ¢ in the f;).

Given a surjective (or in fact a morphism whose image is not contained in a subvariety
of W) morphism ¢ : V' — W between projective curves, composition with ¢ induces an
injective homomorphism of function fields ¢* : k(W) < k(V). The degree deg(¢) of ¢ is by
definition the degree of the field extension [k(V) : ¢*k(W)]. Morphisms between smooth
projective curves have the additional property of finiteness : if ¢ : V — W is a morphism
of smooth (irreducible) projective curves, then ¢ is surjective, and for any point QeW
and local parameter t at Q, we have 3 pey-1(0) vp(¢*(t)) = deg(¢) (proof omitted). This
says that, counting multiplicities, the number of points in each fibre is a constant finite

number, equal to the degree of the morphism.

§2. We now introduce some tools for the study of smooth complex projective curves. The
first of these is the concept of divisors, the terminology taken from Algebraic Number
Theory. Let V be a smooth projective curve; a divisor D on V is a formal finite sum

D =Y n;P;, with P, € V and n; € Z. The degree of D is just deg(D) = > ni.

For V a smooth projective curve and f € k(V)*, it is clear that vp(f) =0 for all but
finitely many points P € V - consider the morphism ¢ defined below from f and apply
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the finiteness property. We define the divisor of f to be (f) = > pcy vp(f)P. Such a
divisor is called a principal divisor. Two divisors Dy, Dy are called linearly equivalent if
the difference D; — D5 is a principal divisor. The linear equivalence classes of divisors forn;;
a group under addition, called the divisor class group C1(V'). For example, when V = P!,
a divisor D has degree 0 iff it is principal, and so Cl(P!) = Z.

More generally, for any smooth projective curve V' and non-constant rational function
f, we have a rational map (and hence a morphism) ¢ = (1 : f) : V — P! Let Al be
the affine piece of P! given by Xy # 0, affine coordinate z = X1/Xo. Then z is a local
parameter at 0 = (1 : 0) and 1/z a local parameter at oo = (0 : 1). Observe that ¢*(z) = f.
But then

deg (f)= Y. wp(d*@)— D, wp(¢"(l/z)) = deg(¢)— deg(¢)=0

Peg=1(0) Pep—1(c0)
i.e. any principal divisor has degree 0.

For a smooth projective curve V' C P™, any hyperplane not containing V' cuts out
a divisor on V in an obvious way, and any two such divisors are linearly equivalent and
so have the same degree; we call this the degree of V in P™. If V C P? is defined by an
irreducible homogeneous polynomial of degree d, then easily seen that deg(V)) = d. The
twisted cubic V' C P? has degree 3.

We say that a divisor D = ) n; P is effective , written D > 0, if n; > 0 for all 2.

Given any divisor D on V, the vector space
L(D) ={f €k(V)* : (f)+ D 20}U{0}

ie. if D=3.n;P;, then 0 # f € L(D) < vp,(f) > —n; for all i and vp(f) > 0 for all
P # P;. For example, if V = P! with affine coordinate z = X1/X¢ and point Poo = (0: 1)
at infinity, and if D = nP., then £(D) consists precisely of polynomials in z of degree at

most n.

We note that if Dy ~ Da, then £(D) = L(Ds) (if D1 — Dy = (g), then isomorphism
given by multiplication by g). We let I(D) denote the dimension of £(D); note that
(D) >0 <= 3D’ > 0s.t. D' ~ D. Using the fact that Ov,p is a DVR, it is an easy check
that [(D—P) > I(D)—1 (define an obvious injective homomorphism £(D)/L(D—P) — k).

Given a divisor D with [(D) > 0, we can choose a basis fo, ..., fm for £(D) and define
a rational map (and hence a morphism) ¢p: V — P™ by ¢p = (fo:...: fm); we can in
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fact define ¢p without choosing a basis as a map ¢p : V — P(L(D)*) to the projective
space associated to the dual of £(D), but don’t worry about this unless you wish to. We
note however that ¢p depends only on the divisor class of D, since if D’ = D — (g), then
gfo,.-.,9fm is a basis of £(D’). In particular, suppose that V' C P™ is not contained
in any hyperplane and D is a fixed hyperplane section of V', wlog given by Xo = 0. We
may take a basis 1, X1/Xo,. .., Xn/Xo, h1,...,hy of £L(D) and then ¢p : V — P™+" is
an embedding of V' ( since composing with projection 7 : P™*"— — P™, we just get the
original inclusion given by (Xo : ... : X,)). The hyperplane section D of V' given by
X, = 0 is therefore also a hyperplane section of V embedded by ¢p into P™*", and so the
degree of V' under either embedding is just deg(D). For D a hyperplane section as above,
it is clear that for any P,Q € V (not necessarily distinct), /(P — P — Q) < [(D) — 2, and
hence from above calculation we have equality. In the case P = Q, we are saying here that
the general hyperplane through P determines a local parameter on V' at P (exercise for

reader).

Theorem. (stated only). If (D — P — Q) = (D) — 2 for all P,Q € V (not necessarily
distinct), then ¢p : V — PUD)-1 is an embedding whose image has degree deg(D).

As an example, we note that if P # Q € V with P ~ Q, then [(P) > 1. It follows
that [(P) = 2 and ¢p : V — P! is an isomorphism. This however can be proved without

recourse to the Theorem - see Example Sheet II.

§3. The second tool we introduce is that of Kahler differentials. For V' an irreducible
smooth projective curve, we define the vector space Q}C(V) /i OVer k(V) of rational differ-
entials on V to consist of finite sums Y f;dg; (with f;, g; € k(V)) subject to the relations
that

(i) da=0forallack.

(i) d(f+g) =df +dg for all f,g € k(V).

(iii) d(fg) = fdg + gdf for all f,g € k(V).

As an easy exercise, it follows that d(f/g) = (gdf — fdg)/g* for f € k(V), g € k(V)*.

For V a curve, we know that for some s € k(V) non-constant, k(V) is a finite extension
of k(s). Given any other non-constant element ¢t € k(V'), we have that ¢ satisfies an equation
over k(s

ant™ + an_lt”‘l +...+a1t+ag=0
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with a; € k[s], not all the a; being in ¥ = C. This may also be regarded as an equation for s
over k[t], and so k(s,t) is finite over k(t). It follows then that Q}c(v)/k is 1-dimensional over
k(V) with generator dt for any non-constant t € k(V) (any g € k(V) satisfies a separable

equation over k(t); taking d of this equation gives dg in terms of dt).

Given a non-zero rational differential w on V and P € V, choose a local parameter

t € my p. Writing w = fdt, we define vp(w) = vp(f).

Lemma 3.1. (i) The numbers vp(dh) for h € Oy p are bounded below.
(ii) wvp(dh) >0 for all h € Oy, p.
(iii) wvp(dt') =0 for any local parameter t' at P.

In particular, we deduce that vp(w) does not depend on the choice of ¢, for if t' = ut

with u € U(Oy p), we have
dt' = udt + tdu = (u + th)dt
for some h € Oy p. We say that w is reqular at P if vp(w) > 0.

Lemma 3.2. IfV a smooth irreducible projective-curve and w a non-zero rational differ-

ential, then vp(w) = 0 for all but finitely many points P on V.

For the proof, reduce to the affine case and consider the differential dz; for z; an
affine coordinate function on the curve. Sufficient then to prove the result for dz;. Clearly
dz; has only finitely many poles (using (3.1)), and we show that it has only finitely many
zeros by considering the finite extension of fields k(V)/k(z1).

We can now define the divisor (w) of w in the obvious way: (w) =) pey vp(w)P; such
a divisor is called a canonical divisor, usually denoted Ky. Any other non-zero rational
differential w’ is of the form w’ = hw for some h € k(V)*, and so (w') = (h) + (w), i.e. we

have a uniquely defined divisor class on V, also denoted Kv, the canonical class on V.

For V a smooth projective curve, we can consider the vector space over k = C of
rational differentials which are regular everywhere, i.e. (w) > 0. If wo is a fixed non-zero
rational differential with (wo) = Ky, then an arbitrary rational differential w = hwo is
regular everywhere iff (hwo) = (k) + Ky > 0, i.e. h € L(Kv). The space of global regular
differentials on V is therefore isomorphic to £L(Kv) and has dimension [(Kv); by definition
this is the genus g(V) of V, the basic invariant of the curve (invariant under isomorphism).

A closely related basic invariant is the degree of the canonical class (well defined since
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principal divisors have degree zero, and clearly also invariant under isomorphisms); we

shall see from the Riemann-Roch Theorem below that this number is just 2¢g(V) — 2.

We now consider various examples. An easy argument shows that g(P!) = 0. An
irreducible curve V is said to be rational if its function field k(V) = k(). In the case
of smooth projective curves, this translates into the condition that V' is isomorphic to
P! (since rational maps between smooth projective curves are morphisms). Thus any
smooth projective rational curve V has g(V') = 0. In §4 we shall see that the converse
holds. A smooth plane conic is clearly rational. The smooth plane curve V' with equation
XoX3 = X1(X1 — Xo)(X1 — AXo) (A #0,1) is seen to have (up to constant multiples)
only one global regular differential, namely dz/y, where z = X; /X and y = X5/ Xo; hence
g(V) = 1. A curve of genus 1 will be called elliptic, and we'll see in §4 that any elliptic
curve can be embedded in P? with equation of the above type. Note that the above curve
admits a degree 2 morphism 7 : V — P (viz. m(zg : 21 : 2) = (%o : 1)) ‘branched’ over

the four points 0,1, A, co.

More generally, a smooth curve V' is called hyperelliptic if there is a degree 2 morphism
71V — Pl equivalently, k(V) is a degree 2 extension of k(P1) = k(t) or that V has an
-affine piece with equation y? = f(z) with f a square free polynomial. It will follow from
the Riemann-Hurwitz formula in §4 that 7 is ‘branched’ over 2n points of P! (aliter f has

degree 2n or 2n — 1) and that g(V) =n — 1.

Finally, we consider the case of an arbitrary smooth projective plane curve V' C P2
defined by an irreducible homogeneous polynomial of degree d. A calculation we’ll perform
in lectures shows that deg(Ky) = d(d — 3). In particular, we note that any smooth plane
cubic is elliptic, and that a smooth projective plane curve is rational iff its degree is 1 or
2. Of course singular plane curves of degree > 2 may be rational (for instance the nodal
cubic XoX2 = X?(X; + Xo) and the cuspidal cubic XoXZ = X3}). The above formula
translates into the statement that the genus g(V) = %(d - 1)(d - 2).

§4. The central result in the theory of algebraic curves is the Riemann-Roch Theorem.
Unlike other results which have been stated only (whose proofs have been omitted only
through lack of time), the proof of this theorem is rather too hard for a Part II course, but

this should not prevent us understanding its statement and being able to use it.

Riemann—Roch Theorem. Given a smooth projective curve V' of genus g and a divisor

DonV, I(D)=1-g+deg(D)+(Ky — D).
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If we set D = Ky in R-R, we obtain deg(Kyv) = 29 — 2, a highly useful alternative

characterization of the genus.

As an immediate consequence of R-R, we note that if g =0and P € V, then [(P) = 2

and V is rational (see comment at the end of §2 ).

Given a non-constant morphism ¢ : V' — W of smooth projective curves, the inclu-
sion of function fields ¢* : k(W) — k(V) induced by composition with ¢ yields obvious
homomorphisms on the spaces of rational differentials and of global regular differentials
(ie. ifw =3 fidg:, then ¢*w = > ¢*(fi)d(¢*g:)), which are clearly injective; this latter
statement stops being true in characteristic p. The existence of a non-constant morphism
therefore implies that g(W) < g(V) - for a stronger statement, see Riemann-Hurwitz be-
low. We can now deduce the geometric form of Liiroth’s Theorem, that if ¢ : V. — W
is a non-constant morphism of smooth projective curves with V rational, then W is also
rational (since V' rational implies that g(V) = 0 and hence g(W) = 0 and therefore W
rational). Once one knows the existence of smooth projective models for any curve, this
implies the algebraic version of Liiroth over C; both forms of Liiroth are however proved

more easily by a direct argument.

We now look at the case of elliptic curves. Let V be a smooth projective curve of
genus 1 and Py € V some fixed point. By R-R we deduce that for D a divisor of degree
0 on V, there is a unique point P.with D ~ P — P;. Thus the map V' — CI°(V) (divisor
classes of degree 0) given by P +— class(P — P) is a bijection between the points of V' and
the divisor classes of degree 0. The abelian group structure on C1°(V) therefore induces an
abelian group structure on the points of V, with identity element the point Fy. By R-R
and the embedding criterion stated in §2, we observe that ¢3p, : V — P? embeds V as a
smooth plane cubic, with Py an inflexion point (i.e. 3P, is cut out by a line). We note that
three points P, Q, R add to zero in the group law on V' iff (P—Py)+(Q—FPo)+(R—F) =0
in CI°(V), i.e. if P4+ Q+ R ~ 3P, as divisors on V. Since [(3P) = 3, the hyperplane
sections of V' C P? are precisely the effective divisors linearly equivalent to 3P, and thus
we see that three points P, Q, R add to zero in the group law on V iff the divisor P+ Q+ R

is cut out by a line, i.e. the three points are ‘collinear’.

We note moreover by R-R that [(2F) = 2 and I(3F,) = 3; thus we can choose a basis
{1, z} for L(2P) and extend to a basis {1, z, y} for L(3P), and take the embedding ¢3p, =
(1:z:%):V < P2 Since L(6F) is six dimensional and contains the seven rational

functions {1,z,y, %, zy, >, y?}, they are linearly dependent over k, and this relation must



involve both z2 and 42, these being the only ones with a 6-fold pole at Py. This relation then
says that the image of V under ¢3p, = (1 : x : y) satisfies a cubic equation which involves
both X} and XoX3. By making an obvious linear change of variables (corresponding to
different choices of z and y), we may take this cubic equation to be in Legendre normal
form XoXZ? = X1(X1— Xo)(X1—AXo) (A#0,1) (cf. §3). In particular, this exhibits
V as a double cover of P! branched over the four points 0, 1, A, oo, where the double cover

map is just ™ = ¢op, = (1: 7).

It follows easily from the above description of the group law on V' that the map from
V to itself given by adding a fixed point Q is a rational map, and hence a morphism. It
clearly has an inverse and is therefore an isomorphism. Hence the group of automorphisms
of V is transitive. From this it follows that given two double covers m : V — P! and
19 : V — P! determined by bases of £(2P;) and £(2P,), we have an automorphism o of V
with o(P,) = P,, and then that both 71 and my00 are given by (possibly different) choices of
bases for £L(2P)); in other words, there is an automorphism 7 of P! such that 00 = Tom).
From this, we show that the complex number A appearing in the Legendre normal form for
V is determined up to the well-known action of S3 on k \ {0, 1}; namely, if « € S3 and A €
k\{0,1}, permute 0, 1, A according to e and then apply the unique linear transformation of
k = C sending the first number to 0 and the second to 1, and define a(}) to be the image
of the third number. The orbit of A is then {),1/X,1 =X, 1/(1 = A),A/(A=1),(A=1)/A}.

If we define -
_ 2B(x2 - 2+1)3

we observe that j()\) is invariant under the above action of S3, and hence defines an
invariant j(V) of the elliptic curve V, called the j-invariant. It is now a simple application
of Galois Theory to show that two elliptic curves Vi and V; are isomorphic iff j(V1) =
§(V2). Moreover, any complex number is the j-invariant of some elliptic curve, and so the

isomorphism classes of elliptic curves are parametrized by C.

If now V is a smooth projective curve of genus g > 2, we can consider the morphism
dKy, : V — P971 called the canonical map on V. Using the embedding criterion from
§2, we see that the canonical map is an embedding of V' iff [(Kv — P — Q) =g-—2for
all P,Q € V. But R-R tells us that [(P+ Q) =3 —-g+I(Kv — P — Q), and hence the
canonical map is an embedding iff [(P + Q) =1 for all P,@Q € V. This latter condition is
however precisely the condition that V' is non-hyperelliptic. Thus for g = 2, we see that

any curve V is hypelliptic with the canonical map being a double cover of Pl. For g =3
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however, we see that a curve V is either hyperelliptic or it is embedded by the canonical
map as a smooth plane quartic (which by our genus formula from §3 does have genus 3).
Moreover, examination of the proof of the genu's formula shows that for a smooth plane
quartic in P?, the canonical class is the class of a hyperplane section and so the canonical
map is an embedding, i.e. V cannot be hyperelliptic. This bifurcation into distinct cases,
the hyperelliptic and non-hyperelliptic cases, occurs for all genera g > 3. For g = 4 for
instance, we have that either V is hyperelliptic, or it is isomorphic to the intersection of

an irreducible quadric and an irreducible cubic in P3.

As promised, we now return to the case of a non-constant morphism ¢ : V- — W of
smooth complex projective curves, and the precise relation between g(V') and g(W). For
P € V, we define the ramification indez ep as follows: Let Q@ = #(P) and ¢ be a local
parameter on W at @, and define ep to be vp(¢*(t)), clearly independent of the choice
of t. If ep > 1, we say that ¢ is ramified at P and that Q is a branch point. If ep = 1,
we say that ¢ is unramified at P. In §3 we saw that ¢ induces an injection ¢* on rational
differentials, and that w regular at Q = ¢(P) implies that ¢*w is regular at P. If s is now
a local parameter at P and ¢ a local parameter at @, then ¢*(t) = us®? with u a unit in
Oy p. Thus

¢*dt = d(¢*t) = epus®® ~'ds + 5P du

and hence that vp(¢*dt) = ep — 1, a fact not true in characteristic p. Thus ¢ is unramified
at P iff vp_(qS*dt) = 0 for any local parameter ¢ at Q. Since ¢*dt is a non-zero rational
differential on V (cf. §3), we deduce that ¢ has only finitely many ramification points. By
analysing the order of poles and zeros of ¢*w for a rational differential w on W, and using
the fact that the degree of the divisor (w) is 2g(W) — 2 and that of (¢*w) is 2g(V) — 2, it

is straightforward to deduce the following precise relation.

Riemann—-Hurwitz Formula. If ¢ : V — W is a non-constant morphism of degree n

between smooth projective curves, then

29(V) —2=n(2g(W)-2)+ > (ep—1) .
PeV

Finally, we interpret the genus topologically (non-examinable). A smooth complex
projective curve is also a compact Riemann surface, which in turn is a compact orientable
2-manifold (see Differentiable Manifolds). Topologically, these are spheres with a certain
number of handles (see Algebraic Topology course), and the topological genus is just the

11



number of such handles. Note the complex projective line corresponds to the Riemann
sphere and so has topological genus zero. One can however prove the Riemann-Hurwitz
Formula in the same form but with the topological genus (this is essentially done in Kir-
wan’s book - see Remark 4.23 there). Given any smooth complex projective curve V, we
can choose a non-constant rational function on V', which therefore exhibits V" as a branched
cover of PL. From the two forms of Riemann-Hurwitz, we deduce that the genus that we

have been using in this course is precisely the same as the topological genus.
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Part IIB Algebraic Curves Course 1996 £ | , PMHW
Exampie 2 from §3
Let‘V_ be the smooth plane cubic With equation XoX? = X;(X1 — Xo)(X1 — AXq),
A #0,1. Let Vo denote the affine piece with affine equation y? = z(z — 1)(z — A) = f(z).
Observe that 2ydy = f(z)dz in Q. /x- _ -- RIE ¥
IFy &0, then vp(d:c) = 0 (since if vp(dz) > 0, then also vp(dy) >0, a contradlctlon)
When y = 0, we have a ‘point P = (a,0), where f(a) = 0 and hence f’( ) #0. The above"‘-

equation implies that vp (dz) > 0, and so we must have vp(dy) = 0.

Claim. vp(dz/y) =0 for all P e V.

Proof. For y # 0, Up(d:n/y) = vp(dz) = 0. For P with y-coordinate zero, vp(d:z:/y)
vp(2dy/f'(x)) = vp(dy) = 0. Thus the Claim is true.

The point at inﬁnity on V is the point P - (0:0:1). We need to calculate
vm(da:/y) Consider the affine piece given by X 79 0 with affine coordinates z = 1 /y'
and w = z/y. The affine curve V5 then. has equatlon T = w(w; z)(w — Az). Since both
Voo (2) and veo(w) > 0,.we see from the equatlon that voo(z) > 3, and hence that w is a
local parameter at Py (since one of z,w must be), i.e. Voo(w) = 1. We therefore have
Uoo(2) = 3, and 50 Vo (y) = —3 and v (z) = —2. F}‘om__ this it follows that ve,(dz) = —3,
and veo (dZ/Y) = Voo (dT) — Veo(y) = =3+ 3 = 0. P - | \

-3‘ ¥ -

The canonical divisor Ky = (dz/y) is theref_o#é thie zero divisor. The genus of V is

just g(V) =1(0) =1 by (2.1).

It will follow from the Rlemann Hurw1tz formula 1n%§4 that 71' 1s ‘branched’ over 2n pomts

and that g(V) =n — 7.




