Lent 1996 YMS
COMMUNICATION THEORY: Example Sheet 1
Information sources and coding

Decipherability, prefix-free coding, the Kraft inequality, Shannon’s NC

theorem

In this part of the course, a code (also coding or encoding) is a map
fruelem fu) € J" =UppJ7,

where I( = Im) = {1, ..., m} is a source alphabet, J( = J.) ={0,...,a—1} isan
encoder alphabet and J* the set of finite words, or strings, from J (J™ is the set of
strings 2™ = z;...z, of length n). The strings = € J* that are images, under f,
of symbols u € I are called codewords (in code f). A source message (of length n)isa
sequence uj ... un of symbols u; € I; it is encoded as a concatenation of the codewords
f('f.tl) ‘e f(un).

A code f is called deciphereble if any string z € J* may be written as a concatena-
tion of at most one collection of codewords. A code f is called prefiz-free if no codeword
T € J* may occur as a prefix in another codeword y (i.e., the representation y = za'
is impossible for any pair of codewords z,y). Any prefix-free code is decipherable, but
not vice versa. The Kraft inequality

Xm:a—’-' <

=1

is sufficient for the existence of a prefix-free and necessary for the existence of a deci-
pherable code, with codeword-lengths s1, ..., Sm.

Dealing with random symbols u € I appearing with probabilities (or frequencies)
p(u), one is interested in optimal (decipherable) codes f for which ES, the expected
value of the random codeword-length, is minimal. An optimal code that is prefix-free
was constructed by Huffman; in the case of binary coding (¢ = 2 and J = {0,1})
Huffman’s codes are related to binary trees. Another class of codes is formed by the so-
called Shannon-Fano codes; the Shannon-Fano codes are simple in implementation and
‘close’ to optimal. Their construction is based on Shannon’s noiseless coding theorem.

/1. Determine Huffman’s binary coding when the distribution over the original alphabet
i, . .
(a) (0.3, 0.2, 0.2, 0.2, 0.1), (b) (1/4, 1/4, 1/4, 1/8, 1/8),
(c) (1/3, 1/5, 1/5, 2/15, 2/15), (d) (0.1, 0.1, 0.1, 0.15, 0.26, 0.29).

2. A drawback of Huffman’s encoding is that the codeword-lengths are complicated
functions of the symbol probabilities py, ..., pm. However, some bounds are available.
Suppose that p; > p2 > ... 2 pm. Prove that in any binary Huffman ecoding

(a) if p1 > 2/5 then letter 1 must be encoded by a codeword of length 1,

(b) if p1 < 1/3 then letter 1 must be encoded by a codeword of length > 2.
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3. A Shannon—Fano code is in general not optimal. However, it is ‘not much’ longer
than Huffman’s. Prove that if Ssp is the Shannon-Fano codeword-length then for any
r = 1,2,... and any decipherable code f* with the codeword-length S,

P(S* < Ssp—r) < @@ .d Y

Entropy, conditional entropy, mutual entropy

Given an event A with probability P(A), the information gained from the fact that A
has occurred is defined as i(A) = —log,P(4). Let X be a random variable (r.v.)
taking values {1,...,m}, with probabilities p,...,pm. The entropy h(X) is defined as
the expected amount of information gained from observing X:

h(X) == pilog, pi.

Here and below we set 0 - log, 0 = 0. It is clear that the entropy h(X) depends in fact
on the probability distribution: hA(X) = h(p1,...,Pm)-

The conditional entropy, A(X|Y), of a r.v. X, given r.v. Y, is defined as the expected
amount of information gained from observing X given that a value of ¥ is known:

RX|Y) == px,v(i,5)log px|v(ils)-
4

Here, px,y(i,j) is the joint probability P(X =4,Y = j) and Py y(il7) the conditional
probability P(X = i|Y’ = j). It is easy to check that h(X[Y) = h(X,¥) — h(Y), which
yields

0 < A(X]Y) < R(X),

with the LH equality iff X = ¢(¥) and the RH equality iff X and Y are independent,
and

h(X,Y|Z) < h(X|2) + h(Y|2),

with the equality iff X and Y are conditionally independent given Z: P(X = z,Y =
y|Z2 =2)=P(X =2|Z =z)P(Y =y|Z ==z).

The mutual entropy (or mutual information), i(X,Y’), between r.v.’s X and Y is defined
by

y i Vg PX¥(:d)
i(X,Y) = ‘Z'j:px.v( ,7)log px()py ()’

In other words, i(X,Y) = h(X) + A(Y) — h(X,Y). You see that

i(X,Y) 20,

with the equality iff X and Y are independent.

4. Show that the quantity
p(X,Y) = h(XIY) + h(Y|X)

2



obeys
p(X,Y) = h(X) + h(Y) = 2(X,Y) = h(X,Y) - i(X,¥) = 2h(X,Y) — h(X) - h(Y).

Prove that p has the following properties: a) p(X,Y) = p(Y,X) = 0, b) p(X,Y) +
p(Y,Z) > p(X,Z). Show that c) p(X,Y) =0 iff X and Y are functions of each other.
Also show that if X' and X are functions of each other then p(X,Y) = p(X',Y).
Hence, p may be considered as a meiric on the set of the random variables X,
considered modulo the equivalence: X ~ X' iff X and X' are functions of each
other. [Property a) guarantees the symmetry and b) is the triangle inequality.]

[Hint (to bound b)): Prove a stronger inequality h(X’,Z) < WX,Y) + h(Y,Z) -
h(Y).]
5. Write h(p) := — 3.7 p;log p; for a probability ‘vector’ p = (p1 ... N .
a) Show that h(Pp) > h(p) if P is a doubly stochastic matrix (i.e. a square matrix
of non-negative elements for which all row and column sums are unity).
[Hint: Use the fact that, for any non-negative Ai,¢; such that 37" Ai =1, log(Aer +
v d AmCm) = E;" Ailoge;l]
Show that the two are equal if and only if P is a permutation matrix.
b) Show that h(p) = —E;’;i Y1 piPixlog Py if Pis a stc')cha,stic ma_trics
(a square matrix of non-negative elements where all row sums are unity) and p is an
invariant vector of P: pP = p.
[Hint: Use Gibbs’ inequality.]

6. The sequence of random variables {X;:j = 1,2,...} forms a Markov chain with a
finite state space.
a) Quoting standard properties of conditional entropy, show that

h(X;1Xj-1) < B(Xj|Xj-2) < 2h(X;|X;1).

b) Show that the mutual information i(Xm,Xn) is non-decreasing in m and non-
increasing inn, 1 <m < n.

Shannon’s FC theorem. Information rates of Bernoulli and

Markov sources

Here, one deals with random sources emitting a sequence of random symbols Uy, ...,
Up, ... from alphabet I. The random string (Ui, ..., Un) of length n is denoted
by U™, it takes values of u(®) with probabilities p(u(™) := P(UM™ = u(™). The
two examples are (i) a Bernoulli source, where Uy, Us, ... is a sequence of independent,
identically distributed random symbols, and (ii) a Markov source, where Uy, Ua, ..
a Markov chain.

A source is said to be reliably encodable at rate R > 0 if there exists a sequence of
sets A, CI" suchthat § 4, <2"% and lim P(U™ € An) = 1. The information

rate of a source is defined as

L

H =inf [R: R is reliable ].
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A way of calculating H is provided by Shannon’s First coding theorem. Namely, define
arv. £ by

M = p(u™), if UM =40,

If there exists a nonrandom limit lim = £(™), then this limit equals H. The exis-
(= =]

n— n
tence of the limit is usually derived from the Law of large numbers and is guaranteed
for a Bernoulli source and for a Markov source if, e.g., it is irreducible and aperiodic.
Correspondingly, for a Bernoulli source

m
H=- Zp,- log pi, where p; = P(U, =1),

i=1

and for an irreducible and aperiodic Markov source

m m
H=-) wy P(i,j)log P(i3j),
i=1  j=1
where {w;} is the (unique) invariant distribution of the Markov chain and P(,j)
is the transition probability. In other words, for a Bernoulli source, H = h(U,) and
for an irreducible and aperiodic Markov source H = lim h(Upn41|Ur) (if the source is

stationary, then H = h(Up41|Ux)). The condition that the Markov source is irreducible
and aperiodic is not necessary and in some cases may be weakened.

7. Consider a source with letters chosen from an alphabet of size a + b, for which the
message strings are constrained by the condition that no two letters of A should ever
occur consecutively, where A is a subset of the alphabet of size a.

a) Suppose the message follows a Markov chain, all characters which are permitted at a
given place being equally likely. Show that this source has information rate

__alogb+ (a+b)log(a +b)

- 2a+b ’

H

b) By solving a recurrence relation, or otherwise, find how many strings of length n
satisfy the constraint that no two letters of A occur consecutively. Suppose these strings
are equally likely and let n — oco. Show that the limiting information rate becomes

b+ /8% + dab
H =log | ———— |.

8. Let {U; : j =1,2,...} be an irreducible and aperiodic Markov chain with a finite
state space. Given n > 1 and a € (0,1), order the strings u{®) according to their
probabilities (P(U(") =u{) > PU™ = u{) > . ) and select them in the order
until the probability of the remainig set becomes < 1—a. Let Mn(a) denote the number
1
of the selected strings. Prove that lim = log Mn,(a) = H, the information rate of the
source, et
a) in the case where the rows of the transition probability matrix P are all equal
(i.e., {U;} is a Bernoulli sequence),

b) in the case where the rows of P are permutations of each other,
c*) in a general case.
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Channel capacity

A channel is defined by specifying a conditional probability distribution P(y(™)|z(M),

where z(M) is a (binary) word (or string) of length N sent to the input and y(™)

a word received on the output. [The reason for changing from n to N is duscussed
below.] More precisely, one should specify these distributions for each N; in the case of
a memoryless channel,

N
P(y™M|e™) = [] Pyjlz;)-
i=1

A memoryless channel is described by a channel matriz P whose z,y-entry is P(y|z),
z=0,1, y € J (the output alphabet). If J = {0,1} the channel is called binary; in this
case the channel matrix is 2 x 2. A memoryless binary channel is called symmetric if
P(1]0) = P(0|1) (and hence P(1]|1) = P(0|0)).

If yN) # z(N)| there is an error occurred while string z(¥) was sent through the
channel, and the corresponding probability equals

p({y(N) 4 I(!\f)}h:(f\n) e Z P(yMz(M),
y(M) oL 2

The channel capecity C is defined as the supremum sup R of the reliable
transmission rates R € (0,1). The definition of a reliable transmission rate (for a given
channel) is that for each n you can find a code f: {0,1}" — {0,1}" and a decoding

rule F: {0,1}" — {0,1}", with N =[R 'n] such that

im 2 Y P({y™: ™)

n—oo
ulr)g{o,1}n

Au} | F(u)) =o0.

The key moment in this definition is that you are allowed to increase the length n
of the source string by factor R s 1; by introducing a redundancy in your encoding
you might be able to cope with the errors in the channel. A reliable transmission rate is
the one for which such a construction is possible. Another feature is the factor 27" in
front of the sum 3 : it means that you consider equidistributed source strings U™,

uln)

A way of calculating the channel capacity (together with optimal coding and decod-
ing) is provided by Shannon’s Second coding theorem. In particular, for a memoryless
channel,

C =sup i(X,Y).
pPx
Here, #(X,Y) is the mutual entropy between the random symbol X on the input and
the corresponding symbol Y on the output of the cahnnel; the supremum is over all

1

probability di+  vations px of the input symbol. For the memoryless binary symmetric
channel this yields
C=1—h{p,1—p)

where p = P(1|0) = P(0|1) is the symbol error probability and h(p,1—p) = —plogp—
(1 = p)log(l — p) is the binary entropy. Here, the channel capacity is achieved while
using the equidistributed input symbols 0 and 1 (px(0) = px(1) =1/2).

Y"1, One is given a memoryless channel with transition probabilities p(y|z) and channel

capacity C = maxp(z) (X, Y’). A helpful statistician preprocesses the output by forming
Y' = g(Y): he claims that this will strictly improve the capacity.

(a) Show that he is wrong.

(b) Under what condition does he not strictly decrease the capacity?

/2. Find the capacity of the following memoryless channel:

Z

X — (¥)~ >y

where an additive noise Z takes values 0 and a with probability 1/2, a is a given
real number. The input alphabet is {0,1} and Z isindependent of X. Why does the
capacity depend on a?

/3. A channel has binary input and output alphabets and transition probabilities p(y|z)
given by the following matrix
1 0
1/2 1/2 )"

Find the capacity of the channel and the maximizing input probability distribution.

J 4, Bits are transmitted along a communication channel. With probability A a bit may be
inverted and with probability g it may be rendered illegible. The fates of successive bits
are independent. Determine the optimal coding for, and the capacity of, the cahnnel.

5. Let X,Y be jointly distributed discrete random variables. Define the conditional
entropy A(X|Y). A message X is transmitted through a first channel, and the output
Y of this channel is then transmitted through a second channel to give a final output
Z. Thus the discrete random variables X, Y, Z are such that X and Z are independent,
conditional on the value of Y. Show that

h(X|Y) < h(X|Z),
and determine conditions under which there is equality in this relation.

b



¢ 6. The input and output of a discrete-time channel are both expressed in an alphabet
whose letters are the residue classes of integers modulo r, where 7 is fixed. The trans-
mitted letter [z] is received as [j + x| with probability pj, where z and j are integers and
[c] denotes the residue class of ¢ mod r. Calculate the capacity of the channel.

-4 . Find the error probability of a cascade of n identical independent binary symmetric
channels (BSC)

X,—— O X — «+ — X —[—X,,
n-y

BSC, BseC,

each with the error probability p. Show that the capacity of the casacade tends to zero
as n — oo.

8. A spy sends messages to his contact as follows. Each hour either he does not telephone,
or he telephones and allows the telephone to ring a certain number of times — not
more than N, for fear of detection. His contact does not answer, but merely notes
whether or not the telephone rings, and, if so, how many times. Because of deficiencies
in the telephone system, calls may fail to be properly connected; correct connection has
probability p, where 0 < p < 1, and is independent for distinct calls, but the spy has no
means of knowing which calls reach his contact. If connection is made, then the number
of rings is transmitted correctly. The probability of a false conection when no call is
made may be neglected. Write down the channel matrix for this channel and calculate
the capacity explicitly. Determine a condition on N in terms of p which will imply, with
optimal coding, that the spy will always telephone.

9. Suppose one has two independent memoryless discrete channels, with capacities Cy, C»
bits/sec. Prove, or provide a counterexample to, each of the following claims about the
capacity C of a compound channel formed as stated.

(a) If the channels are in series, with the output from one being fed into the other
with no further coding, then C = min(C, C3).

(b) If the channels are used in parallel in the sense that at every second a symbol is
transmitted through channel 1 (from its input alphabet) and a symbol through
chanel 2 (from its input alphabet); each channel thus emits one symbol each
second. Then C = C, + Cs.

(c) If the channels have the same input alphabet and at each second a symbol is
chosen and sent simultaneously down both channels, then C = max({Cy, C3).

(d) If channel i has matrix II; and the compound channel has

(m 0
= ( 0 Hz)
then C is given by 2¢ = 2% 4+ 2%, To what mode of operation does this
correspond?
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The Hamming space is the set {0,1}" of all binary words of lenght NV, endowed with
the Hamming distance

d(zt™,y™)) = the number of digits ¢ with z; # y:.

A ball of radius R about a word z(V) in the Hamming distance is the set {y(™¥) :
(=, ) < R,

The Hamming space is closed under an operation of addition modulo 2:
g™ 4y = (z; +y)mod 2 ... zx +yymod 2

[Here, 1 + 1 = 0 mod 2.] More precisely, the Hamming space is a commutative group
with the componentwise addition and with the zero codeword 0 = 0. .. 0 playing the role

of the zero of the group. Each element of this group is opposite to itself: z(N) +2'(¥) = o
iff 2(N) = (N},

Henceforth, all operations over the binary words are understood mod 2.

A code of length N is a subset Xn C {0,1}¥"; the words z!) € Xy are called the
codewords. The number of words in a code, 7 X, is called the size of the code. and a

code of lenght N and size r is called an [N, r] code. The information rate of an [V, r]

1 . . .
code is defined as p = 8 " Two codes are called equivalent iff they are obtained from

n
each other by a permutation of digits in the binary words.

Another important parameter of a code is the minimum distance (or briefly, the distance).
A code has distance § if

6 = min [d(z™,y ™) : 2,y € Ky, oM £y M)

A code Xy is called linear if Xy contains, with each pair of codewords z(™) and y(V),
their sum z(™) + y¥), The maximal number of linearly independent words from a linear
code is called the rank of the code. [A collection of words is called linearly independent
if the sum of any subset of words from the collection gives a non-zero word.] A linear
code of length NV and rank k is called a (linear) (N, k) code. An (N, k) code of minimum
distance ¢ is called an (N, k,§) code.

Let X'n be a linear (IV, k) code. Any collection of k linearly independent codewords from
Xy is called a basis in Xy. All codewords are obtained as linear combinations of words
from a basis. A kX n matrix G whose rows are basis vectors is called a generating matrix
of code Xy. A parity check matrix of code Xy is an n x (n — k) matrix with linearly
independent columns such that X = {z(™): z(M H = 0},

A linear code is called cyclic if, together with each codeword (™) = z; ... zn, it

contains its cyclic shift Iz™) = znzy ... zy-1.

1. (a) A code is said to be D-error detecting if making up to D changes in a codeword
does not lead to another codeword. What is the minimum distance of a D-detecting
code? Prove that if the distance § of an [V,r] code X is an odd number then the code
may be extended to an [N + 1,r] code Xt with distance § + 1.

(b) A code X is said to be E-error correcting if making up to F changes in any codeword
z € X leads to a word y such that z is still closer to y than any other codeword. Prove
that X is an E-error correcting code iff the balls of radius E about the codewords are
disjoint. Hence show that X can be extended to a code X* that detects 2F 4 1 errors.

(c) An E-errror correcting code X'y is called perfect if the balls of radius E about
codewords T € Xy cover the whole Hamming space {0,1}". Show that the distance of
a perfect code is an odd number.

2. (a) The parity-check code Xy is defined as the set of binary words z{(Y) = z; ... zx
with 2;1 z; = 0. Prove that this code is linear and find its rank and minimal distance.
Write its generating and parity-check matrix. What is the information rate of this code?

(b) Let X be a linear (IV,k,6) code. Let G and H be, respectively, the generating

and parity-check matrices of X'. The parity-check extention of X is a code X'+ of length
i

N +1 obtained by adding, to each codeword z € X, the symbol z54; = Z z; so that

i=1
N+1

the sum Z z; is zero. Prove that X" is a linear code and find its rank and minimal
i=1

distance. How are the information rates and generating and paritv-check matrices of &'

and X' related? ‘

(c) The truncation X~ of an (V. k, §) code X, with the generating and parity-check
matrices G and H. 1s defined as a linear code of length N — 1 obtained by omitting
the last symbol of each codeword z € X. Supose that code X has § > 2. Prove that
A~ is linear and find its rank and generating and parity-check matrices. Show that the
minimal distance is > § — 1.

(d) Let & be a linear (IV,k,d) code with the generating and parity-check matrices
G and H. The m-repetition extention of &' is a code A[S, of length Nm obtained
by repeating each codeword z € X m times. Prove that X[y is a linear code and
find its rank and minimal distance. How are the information rates and generating and
parity-check matrices of X and X7, related?

m

3. What is the number of codewords in a linear (N, k)-code? What is the number of
different bases in it? Calculate the last number for k = 4. List all bases for £k =2 and
k=3

Show that the subset of a linear code consisting of all words of even weight is a linear
code.

Prove that if there exists a linear (V, k, d)-code then there exists a linear (N, k, d)—code
with codewords of even weight.

4. A dual code of z linear (N, k) code X is defined as the set of the words y =y, ... ywn

a9



such that the dot-product
N
(y-z) ::Zy,-xi =0 foreach z=1z,... zn5 € &n.
1=1
Prove that an N x (N — k) matrix H is a parity-check matrix of code X iff HT is a
generator for the dual code. Hence, derive that G and H are generating and parity-check
matrices, respectively, for a linear code iff
(1) the rows of G are linearly independent,
(i1) the columns of H are linearly independent,
(ii1) the number of rows of G plus the number of columns of H equals the number
of columns of G which equals the number of rows of H,

and
(iv) GH =0.

5. Show that there is no perfect 2-error correcting code of length 90 and size 27® over
{0,1}.

[Hint: Assume that the zero vector is a codeword. Consider the 88 words of weight 3
with 1 in the first two places, and show that each must be distant at most 2 from a
codeword.]

6. Fora word z = z;...2y € {0,1}" define the weight w(z) as the number of
non-zero digits : w(z) = #{i : z; # 0}. For a linear (N, k) code X let A; be the
number of words in X of weight ¢ (0 < i < V). Define the weight enumerator polynomaial
A(X,z) = T8 Aizt

Show that if you use X on a binary symmetric channel with error probability p, the
probability of failing to detect an incorrect word is (1 — p)¥ (A (X, 1—;"—})) - 1).

Show that the weight enumerator polynomials A(X,z) and A(X T, z) of linear code &
and its parity-check extention X (see Q. 2(b)) are related by A(X*,z) = 1/2 [(1 +

Z)A(X,z) + (1-2)A(X, —-z)] :
Can you identify a code Xoy with A(Xey,z) = 1/2 [A(X,z) +A(X, —z)] ?

7. Prove that a 2-error correcting code of length 10 can have at most 12 codewords.

[Hint: The distance of the code must be > 5. Suppose that it contains r codewords and
extend it to an [11, 7] code of distance 6. List all codewords of the extended code as rows
of an r x 11 matrix. If column 7 in this matrix contains s; zero's and r — s; one’s then

11
6r—1)r< >, D dz,a') <2 si(r—s;). The RHS is < (1/2)- 1172 if r is even
TeXt 'EXT i=1
and < (1/2)-11(r? — 1) if 7 is odd.]

8. Prove that there are 129 non-equivalent cyclic codes of length 128 (including the
trivial codes, {0...0} and {0,1}!28). [Hint: Prove that 1+ X2* = (1 + X)2"]
Find all cyclic codes of length 7.

If X is a cyclic code prove that the dual code is also cyclic and find its  1erator.

3
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The Example sheets 1(0), 2(0) and 3(O) contain further examples to the course. They
are intended to help deepening the knowledge of the course and provide a base for
intensive revisions. Students may also try to prepare some of the optional examples for
their supervisions in Lent Term. I intend to give, in due course, model solutions to most
optional examples.

Some of questions are from previous years’ Tripos papers: their style is essentially
preserved, and they may require additional material which is not in the present course
schedules.

Information sources and coding

1. Suppose that in the noiseless coding I,, — J, one of the characters in J, is always
used as a word-space, so that the codewords consist of the m shortest distinct sequences
of characters from J,—; followed by the space character. Such a coding is decipherable.
Verify that it satisfies the Kraft inequality.

2. Suppose the letters of a text with alphabet I = {1,...,m}, which appear with
frequencies py,...,pm, are to be coded into sequences of symbols from another alphabet,
J, consisting of a symbols, a < m.

(a) Deduce upper and lower bounds for the minimal expected length of a decipherable
coding,.

(b) How would you construct a code with performance not worse than this upper bound?
(c) What is the condition on the p; that this lower bound should be attained?
[Hint: Use the Kraft inequality, or Shannon’s NC theorem.)

3. In the previous example, let s;,...,s, be lengths of the words that encode the
corresponding letters.

(a) A subset B of {1,...,m} is given, of 2 < k <m elements. Prove that a decipher-
able coding such that

S$;i=r (iEB),

where r is the least integer with ka™" < 1, minimizes max 5; over all decipherable
13

codings.

(b) Let frequencies py,...,pm be ordered so that p; > ps > ... > p,, > 0, and suppose
that there exists k such that p; + -+ 4+ pr = 1/2. Let S be the random codeword
length of a coding I — J*, and define the median of S to be the least integer s such
that P(S < s) > 1/2. Prove that a coding as in (a), with B = {1,...,k}, minimizes
the median of S over all decipherable codings.

4. In examples 2 and 3, it is desired to find a decipherable code that minimizes the

expected value of a®. Establish the lower bound Ea® > (3 \/;T,)z and characterize
when equality occurs.

[Hint: Employ she Cauchy-Schwartz inequality:

[ Sea < ()" (2) ",

with equality iff z; = cy; for all i.]

2
Prove that an optimal code for the above criterion must satisfy E a® < 0‘-(2;‘ \/;5,") :
5. a) Let Z=X+Y. Show that h(Z|X)=h(Y|X). If X and Y are independent,

prove that max [A(X),h(Y)] < h(Z). [That is, adding an independent random variable
adds uncertainty.] When is h(Z) = h(X) + r(Y)?

b) Let Z be defined as a disjoint mizture of X and Y. That is, X takes valuesin
in set {1, ..., m} with probabilities px(u) and ¥ in {m+1,..., m4+m'} with
probabilities py(u), and

Z = X, with probability «,
=Y, with probability 1 — a.

Find R(Z) in terms of @, h(X) and A(Y). Show that 24(Z) < 9h(X 4 oh(¥)

6. Suppose that a gastric infection is known to originate in exactly one of the m Cam-
bridge restaurants, the probability it originates in the j** being p;. One has samples
from all restaurants; by testing the pooled samples from a set of restaurants A one can
determine with certainty whether the infection originates in A or its complement. Let

F(p1,...,pm) denote the minimal expected number of such tests needed to locate the
infection.

Show that

F>-Y pjlog,p
]

and determine the conditions under which the bound can be obtained.

7. a) Living near a sports ground, a student is able to detect, during a football match,
the total number of goals scored but he (she) is not able to determine the score. The
score will be announced in a television news programme soon after the match. Before
the game starts, the student tries to evaluate the expected amount of information about
the score which he will gain by the end of the match and that provided him by the
television programme afterwards. It is known that both teams are equally able, and the
a priori distribution of the total goal number is geometric, with parameter g. What are
the answers?

[Hint: After a few calculations, the student discovers that the answer to the first question
15 not changed if the teams are not equally able, but the distribution of total goals scored
remains the same.]

b) Give the answers when you have no information about the chances of the teams, but
keep the above assumption about the total goal number distribution.

8. A helicopter commando crew has to install a surveillance unit on a road in enemy
territory to observe vehicle movement during the night before a battle. A unit must be
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installed at 8:00 pm and be taken back at 6:00 the next morning. There are two types
of unit available: one which can register only the number of vehicles that have passed,
and another which in addition records the hour and the minute each vehicle passes. But
the second type of unit may be captured by the enemy with probability 1/2 whereas the
first one is practically invisible. The decision as to which kind of unit should be used
is taken on the basis of the expected amount of information gained next morning. The
probability that a vehicle passes at a given one-minute interval is estimated as 1/4, and
the probability that two or more of them pass at that interval is negligible. Assume that
passing at standard non-overlapping one-minute intervals occurs independently. What
is your suggestion? Explain why. ‘

[Note: It doesn’t help you much to place the two units simultaneously: while capturing
the more sophisticated unit, the enemy will almost certainly destroy the more simple
one too, by bulldozing.]

9. Prove that the entropy is a concave function of the probability-distribution vector: if
p and q are two probability distributions and A € [0,1] then k(Ap + (1 — A)q) > Ah(p)
+ (1 — A)h(q) and specify the cases of equality.

[Hint: Consider a random variable 8 taking values 0 and 1 with probabilities A and
1 — A and connect @ with random variables Xy and X, having distributions p and q,
respectively. Cf. Ex. 5 b). Then use a conditional entropy inequality.]

The definition of the entropy raised a question of what properties one should require
from a function f(pi,...,pm) of a probability distribution in order to have f = h. A
group of examples below address various aspects of this question. Function f is always
asumed to be symmetric in its arguments.

10A*. Prove that if f possesses the following properties:
a) F(m) = f(1/m,...,1/m) is monotone increasing in m,
b) if p1, ..., Pm and qi, ..., gu are two probability distributions then

f(pra1,p1g2, ., P19, P2, B3y - - Pm) = f(P1s -, Pm) + P1f(g15- - 901),
c) f is a continuous function of p; when p; > 0,
d) £(1/2,1/2) =1,
then f = h.
10B*. Prove that if f possesses the following properties:
a) f(p1,p2,P3,---,Pm) = f(P1 +P2,p3,-..,Pm) + (1 +P2)f< 2 p—2>1

p+p2 p1t+pe
b) f(1/2,1/2) =1,
¢) f(p,1 — p) is a continuous function of p € [0,1],

then f = h.

11*. It turns out that ‘more homogeneous’ probability distributions have a greater
entropy. If p = (p1,...,pm) and q = (q1,...,¢m) are two distributions then p is called
more homogeneous than q (p > q) if, after rearranging the values in decreasing order:

PLZP22 ... 2Pmy, Q1222 ... 2 Qm,

k k
one has ZP* < Zq; for each k = 1, ..., m (and q # q). Show that if p > q then
1=1 i=1
h(p) > h(q).

12. A random variable U takes values u from a finite set I with probabilities p(u). Prove
h(U)
log 1/z°

that for any z € (0,1) the probability that p(U) < z is bounded by

13. By using properties of the entropy prove that Inz > 1—1/z, 2z > 0.

Although the entropy was introduced in the course only for random variables taking
finite set of values, the definition is easy to extend to the case of a countably many
values or a random variable with density f:

H==3 p(i)lg p(j), H= —fd“’f(x)log fl=)

the only condition is that the series and integral converge. The value of the integral

is called the differential entropy of the corresponding random variable X and denoted

14A. Show that the geomtertic distribution on Z (the non-negative integers) has max-
imum entropy amongst all distribitions on Z4 with the same mean. [A random variable
v has a geometric distribution if P(v = j) = p(1 — p)’, j € Z4, where 0 < p < 1]

B*. Suppose that two non-negative random variables X and Y are related by ¥
= X + v, where v is independent of X and is geometrically distributed on Z.,. What
distribution maximises the mutual entropy of X and Y under the constraint EX <
K? Show that this distribution can be realised by assigning to X value zero with a
certain probability and letting it follow a geometric distribution (having an appropriate
expectation) with the complimentary probability.

15. Evaluate hgig(X) in the following cases:
a) the exponential density f(z) = Aexp ( — Az)1(z > 0).
)2
b) the normal density f(z) = (2ro2)~1/2 exp (_(39—261)
0
Show that the exponential density maximises hqjg among the probability densities

on [0,00) with a given mean and the normal density among the probability densities on
R with a given variance.

16. An ordinary deck of cards containing 26 red and 26 black is shuffled and dealt out
one card at a time without replacement. Let X; be the colour of the i-th card.

a) Determine h(X).

b) Determine h(X>).

c) Does h(zx|X1,...,Xk—1) increase or decrease?

d) Determine h(X\,..., Xs2).

17. Let Uy, Uy, ... be a Markov chain. Prove that (Un|Uy) and h(Up|U,.) are monotone

in n.

18. Suppose that Uy, t = 0,41, £2, can take values 0 or 1, and that the probability that
U: =1, conditional -~ U;—y,Uty,... is bj, where j is the time which has elapsed since
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U last equalled 1. Assume that 0 < b; < 1 for 0 < j < N, and b, =1for j > N. Show
that the sequence X, where X, is the time which has elapsed since U last equalled 1, is
a Markov chain, and calculate its information rate.

19. A binary source emits digits 0 or 1 according to the rule

P(X; = kIX!—l =7,Xi2 = i) =dqr,
where k, j,7 and r take values O or 1, 7 = k — j — i (mod 2), and gy + ¢; = 1. Determine
the information rate of the source.

Also derive the information rate of a binary Bernoulli source, emitting digits 0 and
1 with probabilities go and g, .

Explain the relationship between your two results.

20. At each time unit a device reads the current version of a string of N characters
each of which may be either 0 or 1. It then transmits the number of characters which
are equal to 1. Between each reading the string is perturbed by changing one of the
characters at random (from 0 or 1 or vice versa, with each character being equally likely
to be changed). Determine an expression for the information rate of this source.

21. Suppose that the sequence X,, ¢t = 0,1, ... is a Markov chain. For any random
variables Y}, ¥, Y3 define
(Y1, Y2|¥3) = h(V1|13) + h(Y3|Y3) — h(Y1,Y3|Y3)
and
i(11,Y2) = h(Y1) 4+ h(Y2) — h(Y3,Y2).
Show that

i(Xt_l,XH.llX:) = 0 and hence i(Xt-ngt+1) S ll(Xt,X1+]).

Show also that i( Xy, X¢4,) is non-increasing in s, for s = 0,1,2, .. ..

22. The sequence {X;:t =...,-2,-1,0,1,2,...} is the output of a Markov chain with
a finite state space and unique invariant distribution. Let A(Z|Y) denote, for random
variables Z and Y, the conditional entropy of Z given Y. Quoting standard properties
of entropy, show that

R(Xe|Xo—1) < R(Xe|X—2) < 2R(X(|X(—1).

The output of the source is modified by malfunction of the recording equipment: every
third symbol is replaced by an unreadable splodge, *. Recording is started at a random
time, so that

P(X]Z*)=P(X2=*)=P(X3=*):

i

Show that the information rate of the modified source is
HAX | Xi—1) + (X X —2)}

5

and deduce that not more than one-third of the information is lost. When is precisely 1
lost?

For the case of a two-state Markov source with transition matrix

=

Il
A
wl= ol
[
N o oyt

find expressions for the information rate of the source, and of the source modified by
illegibility of every third letter.

23. Find the information rate of a source represented by the Markov chain associated
with a random walk of a king on the 3 x 3 chessboard:

77
1 Vl 3
es /4

1////

N

ru A 5 V¢
% 4//4
7777
3 84 9
W/,

Find the information rate for a rook, bishop (both kinds) and queen.

24. A stationary source emits symbols 0,1,..., m (m >4 is an even number), accord-
ing to a Markovian rule, with the following transition probabilities p;x = P ( Upq;y =
Pjj+2 = 1/31 OS] Sm_zv Pjj+2 :1/31 2 S]S m,

pi; =1/3,2<j<m—2, poo = P11 =Pm-1m—1 = Pmm = 2/3.

The distribution of the first symbol is equiprobable. Find the information rate of the
source. Does the result contradict Shannon’s First Coding Theorem?

How does the answer change if m is odd? Can you use, for m odd, Shannon’s First
Coding Theorem to derive the information rate of the above source?
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COMMUNICATION THEORY: Example Sheet 2(0): Optional Extras

The Example sheets 1(0), 2(0) and 3(0) contain further examples to the course. They
are intended to help deepening the knowledge of the course and provide a base for
intensive revisions. Students may also try to prepare some of the optional examples for
their supervisions in Lent Term. I intend to give, in due course, model solutions to most
optional examples.

Some of questions are from previous years’ Tripos papers: their style is essentially
preserved, and they may require additional material which is not in the present course
schedules.

Information sources and coding

Although the lectures concentrate mainly on memoryless binary channels, many
facts remain true for memoryless channels with more than two symbols, and even with
non-equal numbers of symbols at the input and output (an example of which is occurrence
of an intelligible symbol at the output). In particular, formula C = sup 1(X,Y") holds
where the supremum is over all possible input symbol distributiuvons px. In examples
1-5 below you do not need to assume that the channel is binary.

1. Show that the capacity of a memoryless channel is always achieved by some input
symbol distribution py.

[Hint: 1(X,Y) is a continuous function of px.]

2. Show that h(Y') is a convex and h(Y|X) a linear function of the input symbol
probabilities p; = p(X; = z;).

3. A memoryless channel is called lossless if h(Y|X) = 0, deterministic if A(Y|X) =0
and useless, if A(X|Y) = h(X), whatever px. A channel is called noiseless if it is both
lossless and deterministic. Show that the capacity of a lossless channel equals log m
where m is the size of the input alphabet. Show that the capacity of the deterministic
channel equals log s where s the size of the output alphabet. Show that the capacity
of a useless channel eqials zero. Determine the input distributions that achieve capacity
for all types of channels.

4. Prove that 0 < C < min [log m,logs], where m and s are as in Question 3. In the
case where m = s, prove the inverse assertion: C = logm only if the channel is lossless
or deterministic (i.e., the cahnnel matrix is a permutation matrix). Prove that C = 0
only if the cahnnel is useless.

5. For a memoryless channel and the ideal observer decoding rule, show that the average
1
probability of error is < 511(X|Y).

6. Conside. Jhe following binary channel with memory: Y; = X; + Z; (mod 2). Here

X;,Y;, Z; =0,1, and Zy, Zy, ..., is a sequence of random variables with
P(Zl=zz=---=0)=1~p, P(Z]_:Zzi...:l)zp?
where 0 < p < 1. [Le., Zi, Z3, ... is a repetitive Markov chain.] Show that the

capacity of this channel is 1. Compare with the m.b.s.c. where the Z’s are i.i.d. with
P(Z; =0)=1—p, P(Z; = 1) = p. Calculate the capacity of the channel when the Z’s
form an alternating Markov chain:

p(Zl =0, Zj+1 #ZJ'I 32 1) =1-p, P(Zl =1, Zj+1 %zja J 21) =P

Questions 7-9 below are related to a joint source-channel coding theorem that puts
together the assertions of the First and Second SCT'’s.

7. (The direct part) Suppose that a text emitted by a source with the AEP and infor-
mation rate H is to be transmitted through a channel of capacity C. Prove that if H

~

+ C < 1 then there exists a sequence (fn, fx) of codes fn: I™ — Xn C {0,1}" and
decoding rules J?N: {0,1}¥ — I™, with lim P, = 0, where

Perr = Z Fnsclurce(U(nJ = u(n)) Z Pchannel (y(N”fi\'(u(n)))

ulmgrn VNI E{0,1)N
vl | (f]\r(y(hr) # u(n)) .

8*. (The converse part) For the source and channel as in Question 7, prove that if H +
C > 1 then for any sequence (fn, f,\-) of coding and decoding rules, liminf Py > 0.

[Hint: A useful exrecise is to introduce, for an arbitrary stationary source Uy, Us, ...,
the quantitites J, = n~ h(U™) and K, = h(Un4+1|U™) and prove that both J, and
K, are non-increasing with n and have, as n — oo, a common limit value (called tlie
entropy of the source). For a source with the AEP, this value equals H, the information
rate.]

9. A text is produced by a Bernoulli source with alphabet I = {1,2, ..., m} and proba-
bilities p1, pa, ... pm. It is desired to send this text reliably through a memryless binary
symmetric channel with the tow error probability p*. Write an essay explaining why
reliable transmission is possible if

h(Pla.'PZ»---aPm) + h(Ptal 7p‘) < 1)

and is impossible if
h(p1,p2,....pm) + h(p*,1 —p*) > 1.
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10. Consider a memoryless channel with alphabet {0,1,2,3,4,5} and the transition
probabilities
p(ylz) =1/2, if y =1z +1mod 35,

=0, otherwise.

Calculate the capacity of the channel.

The zero-error capacity of a channel is defined as the number of bits per channel
symbol (or per channel use) that can be transmitted with error-probability zero. By
transmitting 0 or 1 with probability 1/2 check that the zero-error capacity of the above
channel is > 1 and by considering codes of length 2 show that it 1s > 1.

. . 1 .
[The precise value of the zero-error capacity here is 5 log 5. This has been proven as

recently as in 1979, after more than 20 years of efforts-?]



