Part IIB Lent 1996/YMS
COMMUNICATION THEORY

This handout does not replace the lectures (and is not even mentioned in the list of the
recommended literature): it is intended to help understand the material and sometimes
to provide additional facts and alternative arguments. Students are strongly advised to
take proper notes during the lectures and not rely entirely on the handout.

The content of a lecture on the blackboard may differ from the one in the handout.

The definitions, statements (theorems, lemmas, corollaries and remarks), formulas end
often ezamples are numbered by pairs of positive integers, the first indicating the lecture
and the second the position of a given item in the text of the lecture. In some cases a

group of formulas is numbered by triples (e.g., (1.6.1) or (3.2a)). The symbol O is used

to indicate the end of the proof.

Chapter 1: Information sources and coding

In this chapter, symbol P refers to the probabilities (unconditional or conditional) of
samples of sequences of random variables characterising sources of information. As a
rule, these are sequences of independent and identically distributed random variables or
Markov chains. Viz., P(Up = uy,...,Un = up) is the joint probability that random
variables Uy, ..., Up take values uy, ..., up and P(V, = v |V} = u, W) = u') is the condi-
tional probability that a random variable V,, takes value v, given that random variables
V7 and W) take values u and u’, respectively. Likewise, E denotes the expectation with
respect to P. On the other hand, in the context of Markov chains, P denotes the
transition probability matrix, with entries P(u,v). The r-step transition probabilities
correspond to P" and are denoted by P(")(u,v).
The symbol p is used to denote various probabilities loosely.

Lecture 1: Basic concepts. The Kraft ineqguality

A typical scheme used in information transmission is as follows:

A message
source — [An encoder| —* [A channel] = [A decoder]| — [A destination]

Example

1. A message source: a Cambridge college choir.
2. An encoder: a BBC recording unit. It translates the sound to a binary array and
writes it to a CD track. The CD is then produced and put on the market.

1

3. A channel: a customer buying a CD in England and mailing it to Australia. The
channel is subject to ‘noise’: possible damage (mechanical, electrical, chemical, etc.)
incurred during transmission.

4. A decoder: a CD player in Australia.

A destination: an audience in Australia.

6. The goal: to ensure high-quality sound despite damage.

o

In fact, a CD can sustain damage done by a needle while making a neat hole in it,
or by a tiny drop of acid (you are not encouraged to make such an experiment!)

In technical terms, typical goals of information transmission are:

(a) fast encoding of information,

(b) easy transmission of encoded messages,

(c) effective use of the channel available (i.e. maximum transfer of information per unit
time),

(d) fast decoding,

(e) correcting errors (as many as possible) introduced by noise in the channel.

As usual, these goals contradict each other, and one has to find an optimal solution.
This is what the course is about. However, do not expect perfect solutions: the theory
aims to provide you with knowledge of the basic principles. A final decision is always up
to the individual (or group) responsible.

A large part of the course will deal with encoding problems. The aims of encoding
are:

(1) compressing data to reduce redundant information contained in a message,
(2) protecting text from unauthorised users,)
(3) enabling errors to be corrected.

We start by studying sources and encoders. A source emits a a sequence of letters,
ty Ug oo B v iy (1.1)

where u; € I, I(= I,) is an m-element set {1,...,m} (a source alphabet). In the case
of literary English, m = 26 4+ 7, 26 letters plus 7 punctuation symbols: ., :; - () .
(Sometimes one adds * ’ and ”. A telegraph English corresponds to m = 27.

A common approach is to consider (1.1) as a sample from a random source, i.e. a
sequence of random variables

Uy, Usy -, Uny -.. (1.2)

and try to develop a theory for a reasonable class of such sequences.

Examples. 1.1. The simplest example of a random source is a sequence of independent,
identically distributed (i.i.d.) random variables:

P(U1 = w1, Uz =, ..., Uk =u) = [] p(uj), (1.3.1)

where p(u) = P(U; = u), u € I, is the marginal distribution of a single variable. A
random source with i.i.d. symbols is often called a Bernoulli source.

A particular case where p(u) does not depend on u € U (and hence equals 1/m)
corresponds to the equiprobable Bernoulli source.

1.2. The next example is a Markov_source where the symbols form a Markov chain
(M.c.):
k-1

P(Uy =u1, Uy = up, ..., Up = ug) = p1(u1) H P(uj,ujv1), (1.3.2)
=1
where pi(u) = P(U; = u), u € I, is the initial distribution and P(u,u') = P(Uj4, =
u'|Uj = u), u,u’ € I, are the transition probabilities.
1.3. A ‘degenerated’ example of a Markov source is where a source emits repeated
symbols. Here,
PUi=Uz= ... Up=u)=gq(u), uel,

1.3.
P(Ur#Up)=0, 1<k <k, (1.3.3)

where 0<g(u) <1land ¥ g(u)=1. g(u) is the probability of string uu ... u
uel
An (initial) piece of sequence (1.1)
ul® = Uy Ug ... Up

is called a (source) sample n-string, or n-word, (with digits from I) and is treated as a
‘message’. Correspondingly, one considers a random n-string

U™ = (U,,Us,...,U,).

An encoder (or coder) uses an alphabet J(= J,) = {0,1,...,a~1}; typically a <m
(or even a < m); in many cases a = 2 (a binary coder). A code (also coding, or encoding)
is a map, f, that takes a symbol u € I into a finite string, f(u) = (z1 ... z,), with
digits from J. In other words, f maps I into the set J* of all possible strings:

foIo =T =J (Jx- (s times) x J).

8§21

Strings f(u) that are images, under f, of symbols u € I are called codewords (in
code f). A code has (constant) length N if value s, the length of a codeword, equals N
for all codewords. A message u(™ = u; ug ... u, is represented as a concatenation of
codewords

F™) = f(uy) f(uz) ... f(ua);

it is again a string from J*.

Definition 1.1. A code is called decipherable if any string from J* is the image of at
most one message. A string z is a prefiz in another string y if y = =z, i.e. y may be

3

represented as a result of a concatenation of z and z. A code is prefiz-free if no codeword
is a prefix in any other codeword (e.g. a code of constant length is prefix-free.)

A prefix-free code is decipherable, but not vice versa;

Example 1.4. A code with three source letters 1,2,3 and the binary encoder alphabet
J ={0,1} given by

f(1)=0, f(2)=01, f(3)=011
is decipherable, but not prefix-free.

Theorem 1.1 (The Kraft inequality). Given positive integers s1,...,3m, there exists a
decipherable code f: I — J*, with codewords of lengths s, ..., sm iff

Y E g1, (1.4)

Furthermore, under condition (1.4) there exists a prefix-free code with codewords of
lengths s1,...,8m. O

Proof of Theorem 1.1. (I) Sufficiency. Let (1.4) hold. Your goal is to construct a

prefix-free code with codewords of lengths s1,...,s,,. Rewrite (1.4) as
Zn;a_l <1 (1.5)
=1

where n; is the number of codewords of length ! and s = max s;. Rewrite (1.4) again:

s—1
na ’<1-— Zn;a",
=1

or, equivalently,

ns<a'—ma* —...—n,_1a. (1.6.1)
Since ny > 0, deduce that
ny—1a < a® —na®™t — L. —nyegd?,
or
Ne-1% a* —nja®f —...—n, 0 (1.6.2)

Repeating this argument yields subsequently

ng—z2 < ' 2 —nya®? — ... —n,_3q, (1.6.3)
ny < a® —na, (1.6.s — 1)
n; < a. (1.6.5)

You can perform the following construction. First choose n; words of length 1,
using distinct symbols from J: it is possible in view of (1.6.s). This leaves (a — ny)
symbols unused; you can form (a — ny)a words of length 2 by appending a symbol to
each. Choose ny codewords from these: you can do so in view of (1.6.5-1). You still have
a? —nya — ny words unused: form n3 codewords. Etc.

In the course of the construction, no new word contains a previous codeword as a
prefix. Hence, the code constructed is prefix-free.

(II) Necessity. Suppose there exists a decipherable code in J* with codeword lengths
S1y-..,5m. Set again s§ = maxs; and observe that for any positive integer r

(u"s‘ o - a_’“‘)r = Z ba~!
=1

where b; 1s the number of ways r codewords can be put together to form a string of
length .

Because of decipherability, these strings must be distinct. Hence, you must have
by < d, as a' is the total number of I-strings. Then

(@™ +...4a™*) <rs,

a4 tatm < rYrst T —exp [l(logr +!ogs)] .
T

Since it is true for any r, you can take r — co. The RHS goes to 1. O

Remarks. 1.1. A given code obeying (1.4) is not necessarily decipherable.
1.2. Prefix-free codes suffice.

One of the principal aims of the theory is to find a ‘best’ decipherable (or even prefix-
free) code. We now take a probabilistic point of view and assume that symbol u € I is
emitted by a source with probability p(u):

P(Us = u) = plu).

[At this point, there is no need to specify a joint probability of more than one subse-
quently emitted symbol.]

Given a code f : I + J* we encode a symbol : € I by a prescribed codeword
f(i) = z1...2, of length s5;. Thus the codeword becomes a random string from J*;
if the code is decipherable the probability of generating a given string, while encoding
a symbol emitted, is precisely p(i) if the string coincides with f(z) and 0 if there is no
© € I with this property. So, the length of a codeword becomes a randem variable, S,
with probability distribution

P(8=a)= Z p(3).

1<:<m
S =

We are looking tor a decipherable code that minimizes the expected word-length:
Effi=y oP(F=s)=3 spli)
521 =1

The following problem therefore arises:

minimize f(s1,...,5m)=ES
subject to Za_‘” <1 (Kraft) (1.7)
i
and s;ely (positive integers).
This is an integer optimization problem. If you drop the condition that s;,...,s,m € Z4,

replacing it with a ‘relaxed’ condition s; > 0, 1 < ¢ < m, you could use the Lagrange
sufficiency theorem. The Lagrangian is

L8y enn 8B N) = Z‘s‘-p(i)"' A = Zausi i)

(here, z > 0 is a slack variable). Minimizing L in s1,...,5m and z yields
A<0, z=0, and §£ =p(i)+a*Alna=0,
Si

whence

p(z) -3 . . :
i .e. §; — — —_ , 1 <1< m.
g =% v les log, p(t) —log,(—Alna), 1<i<m

(here and below, In = log,). Adjusting the constraint 3 ,a7™* =1 (2=0!) gives
> p(i)/(~-Ana)=1 ie. —Alna=1.

Hence,
si=—log, p(i), 1<i<m,

is an optimal solution, and

he = — Zp(i)loga p(i) = (1.8)

log, a

is the optimal value of the relaxed problem. Here
h(= ha) = = > p(i)log, p(i) (1.9)

is the binary entropy of the source. Value h, is a lower bound for the optimal value in
the original problem:

min ES > h,. (1.10)
In future, we use the following convention:

log = log;, andforanyb>1, 0-log,0=0:log,co=0.

Lecture 2: Huffman encoding

Theorem 2.1. (The Gibbs inequality). Let {p(i)} and {p'(i)} be two probability
distributions (on I). Then, for any b > 1,

S riyions B <0, e =T pilonp) < - Yaloss@, (1)

and equality is attained iff p(z) = p'(i), 1 < i < m.

Proof of Theorem 2.1. The bound

z—1
<_
log, z log, &

holds for each = > 0, with equality iff z = 1. Denoting I' = {i : p(¢) > 0}, we have

20 J
Zp@ 1ong > Bl (i) log, £)"logebz P() (—7)'_)

el el

For equality we need: (a) ;. p'(i) = 1, ie. p'(¢) = 0 when p(i) = 0, and (b)
p'(1)/p(i) =1forie I'. 0

Theorem 2.2. (Shannon’s noiseless coding theorem). For a random source emit-
ting symbols with probabilities p(z) > 0, the minimal expected codeword length, for a
decipherable encoding in an alphabet J, = {0,1,...,a — 1}, obeys

h
—— < min ES < . +1, (2.2)
log a log a

where h is the binary entropy of the source (see (1.9)).

Proof of Theorem 2.2. The LH inequality is established in (1.10). For the RH inequality,
let s; be a positive integer such that

@ M L pag grEEE,

7

The non-strict bound here implies };a™* < 5. p; = 1, i.e. the Kraft inequality. Hence,

there exists a decipherable code with codeword lengths s,. .., $,,. From the strict bound
you get
lo i
8 < _g_p(_.)_ +]_,
log a
and thus

ES < - Zip()log p(i) (I)log 26 +Zp(z) =

log a

Example 2.1. Suppose m = 2% and the letters i = 1,...,m from the source alphabet
I, are equiprobable: p(i) = 27%. Then h = k, and hence you need, on average, at least
k binary digits for decipherable encoding. Calling a ‘bit’ a unit of entropy, you can say
that you need, on average, at least k bits to encode.

Shannon’s NC theorem gives a base for a Shannon-Fano encoding procedure: you fix
positive integer word-lengths s1,...,sm such that a™* < p(?) < a=* 1 or, equivalently,

—log, p(i) < s; < ~log, p(¢) +1, ie. s;i= Floga p(i)] .

Then construct a prefix-free code, from the shortest s; upwards, ensuring that the pre-
vious codewords are not prefixes. The Kraft inequality guarantees enough room.

A more elaborated procedure is due to Huffman. Huffman encoding leads to an optimal
(i.e. minimal expected length) code f: I, ~— J:. Here, we discuss it for a = 2 (i.e.
J ={0,1}) only. The algorithm constructs a binary tree, as follows.

(i) You order the letters i € I so that p(1) > p(2) > ... > p(m).
(i1) Assign symbol 0 to letter m —1 and 1 to letter m.
(iii) Construct a reduced alphabet I,—; = {1,...,m —2,(m — 1, m)}, with probabilities

Repeat steps (i) and (ii) with the reduced alphabet. Etc. You obtain a binary tree.

Example 2.2. m=T.

H F.’_ S-Cl'.) [S

1 .5 0 I

2 a5 00O 3

3 .15 1 01 3

4 ol 110 3

5| .05 | 1110 | &

32| .o25| v v v | 5§ 5 1§ .15 . .05 .025 ,025

The number of branches you must pass through in order to reach a root ¢ of the tree

8

equals s;. The tree-structure, together with the identificai. . of the roots as source
letters, guarantees that encoding is prefix-free.

To prove the optimality of Huffman encoding, we need two lemmas.

Lemma 2.3. Any optimal prefix-free code has the codeword lengths reverse-ordered
versus probabilities:

p(i) > p(2") implies s; < spr. (2.3)

Proof of Lemma _2.3. If not, you can form a new code, by swapping the codewords
for ¢ and j. This shortens the expected codeword length and preserves the prefix-free
property. O

Lemma 2.4. In any optimal prefix-free code there exists, among the codewords of
maximum length, at least two agreeing in all but the last digit. &

Proof of Lemma_2.4. If not, then either (i) there exists a single codeword of maximum
length, or (ii) there exist two or more codewords of maximum length, and they all differ
before the last digit. In both cases you can drop the last digit from all words of maximum
length, without affecting the prefix-free property. O

Theorem 2.5. Huffman encoding is optimal among the prefix-free codes. O

Proof of Theorem 2.; Proceed with induction in m. For m = 2, the Huffman code f;
is f2(1) = 0, f2(2) = 1, or vice versa, and is optimal. Assume Huffman code fm_; is
optimal for I,,—;, whatever the probability distribution. Suppose further that Huffman
code f is not optimal for I, for some probability distribution. That is, there exists
another prefix-free code, f, for I, with shorter expected word-length:

ES;, < ESe: (2.4)
The probability distribution under consideration may be assumed, wlog, to obey

p(1) > ... > p(m).

By Lemmas 2.3 and 2.4, in both codes you can shuffle codewords so that the words
corresponding to m — 1 and m have maximum length and differ only in the last digit.
This allows you to reduce both codes to I;,—;. Namely, in the Huffman code f,, you
remove the final digit from fi,(m) and fi(m — 1), ‘glueing’ these codewords. This leads
to Huffman encoding fm—1, In f}, you do the same; this gives you a new prefix-free code

fra-1:

Observe that in Huffman code fn, the contribution to ESy, from fn(m — 1) and
fm(m) is sm(p(m — 1) + p(m)); after reduction it becomes (sm — 1)(p(m — 1) + p(m)).
That is, ES is reduced by p(m — 1) + p(m).

In code f?, the similar contribution is reduced from s}, (p(m — 1) + p(m)) to (s, —
1)(p(m — 1) + p(m)); the difference is again p(m — 1) 4 p{(m). All other contributions to

9

ES,.—1 and ES, , are the same as the corresponding contributions to ES,, and ES},,
respectively.

Therefore, ff _; is better than fm_i: ES;_; < ESn—1, which contradicts the
assumption. 0

In view of Remark 1.2, we obtain

Corollary 2.6. Huffman encoding is optimal among the decipherable codes.

In what follows we consider, unless otherwise stated, the case of the binary codes
(¢ = 2). A common modern practice is not to encode each letter u € I separately, but to
divide a source message into ‘segments’ of a fixed length n and encode these as ‘letters’.
It obviously increases the nominal number of letters in the alphabet: the segments are
from the Cartesian product I® = I x --- (n times) x I. But what matters is the binary
entropy of the probability distribution of the segments in a typical message. Denote this
entropy by h{™):

K™ =~ 3" P(Uy =i1,...,Us =in)log P(U1 =d1,...,Un =1in). (2.5)

Flyeenaln

[Here you obviously need to know the joint distribution of the subsequently emitted
source letters.] Denote by S(™ the random codeword length in a segmented code. The
L1
minimal expected word-length per source letter is defined by e, := min = ES™ and, by
Shannon’s NC theorem, it obeys
(n) (n)
h o h 1

————<ep < + —. ' (2.6)
n log a nloga n

h(n)
You see that, for large n, e, ~

n log a’

Example 2.3. For a Bernoulli source (see Example 1.1), formula (2.5) yields

B == 37 pia)-+plin) log (p(ia)-lin)

: @2.7)

J=1i1,.51n

2
and e, ~ l—hﬂa Thus, for n large, the minimal expected codeword length per source
og a

letter, in a segmented code, eventually attains the lower bound in (2.2), and hence
is not greater than minES, the minimal expected codeword length for letter-by-letter
encodings. This phenomenon is much more striking in the case where the subsequent
source letters are dependent: here we frequently have h(") < n h, that is, e, < log_a'
This is the gist of data-compression.

10

Hence, statistics of long strings is an important property of a source. Nominally, the
strings u(™ = u;...u, of length n ‘All’ the Cartesian product I x -+« (n times) x I;
the total number of such strings is m”, and to encode them all we need m® = 27 log m
distinct codewords. If the codewords have a fixed length (which guarantees the prefix-free
property), this length is between [nlog m] and [nlog m] + 1, and the rate of encoding,
for large n, is ~ log m bits/source letter. But if some strings are rare, we can disregard
them, reducing the number of codewords used (and consequently their length). This
leads to the following definitions.

Definition 2.1. A source is said to be (reliably) encodable at rate R > 0 if, for any n
you can find a set A, € I x ---(n times) x I such that

§An 2% and limp—eo P(UM € 4,) = 1. (2.8)

In other words, you can encode messages at rate R with negligible error for long source
strings.

Definition 2.2. The information rete H of a given source is the infimum of the reliable
encoding rates:

H=inf [R: R isreliable]. (2.9)

Theorem 2.7. For a source with alphabet I,

0 < H <L log m, (2.10)

both bounds being attainable. |

Proof of Theorem 2.7. In fact, the LH inequality trivially follows from the definition.
The LH equality is attained for a degenerate source (see Example 1.3); here A, contains
< m constant strings, which is eventually beaten by 2"# for any R > 0). On the other
hand, § I = m" = 2m1°%¢ ™ hence the RH inequality. The RH equality is attained for
a source with ii.d. letters and p(u) = 1/m: in this case P(A4,) = (1/m") § A,, which
goes to zero when | A, < 2" and R < log m.

Example. The telegraph English. As wasnoted, m = 27 ~ 2476 ie. H < 4.76. In fact,
H << 4.76; this enables: (i) data compression, (ii) error-correcting, (iii) code-breaking,
(iv) crosswords. The precise value of H for the telegraph English (not mentioning the
literary English) is not known: it is a challenging task to assess it accurately. [Those
interested are recommended to read Section 6.3 of T.Cover and J.Thomas, Elements
of Information Theory, Wiley, 1991.] Even more challenging is to compare different
languages: which one is more appropriate for intercommunication? [This is certainly a
task for future generations.]

We will return to the information rate of a source later and calculate the rates
of Bernoulli and Markov sources. Two following lectures are devoted to properties of
information and entropy.

11

Lecture 3: Entropy

Definition 3.1. Given an event A with probability p(A4), the information gained from
the fact that A has occurred is defined as

i(A) = —log p(A). (3.1)

Let X be a random variable taking a finite number of distinct values {z1,...,zn,},

with probabilities p; = p(z;). The entropy h(X) is defined as the expected amount of
information gained from observing X:

h(X) ==} p(z:)log p(z:) == pilog pi. (32)

[Here, and below, we assume that 0-log 0 = 0, so the sum may be reduced to those
x;’s for which p(z;) > 0.] It is clear that the entropy h(X) depends on the probability
distribution

X Y = Al Drssn s Bei)s

but not on the values z1, ..., Tm.

Given a pair of random variables, X, Y, with values z; and y;, the joint entropy A(X,Y)
is defined by

MX,Y) == px,y(zi,u;)log px,v(zi,v5), (3.3)

i,y

where px v(z:,y;) = p(X = z;,Y = y;) is the joint probability distribution. In other
words, h(X,Y) is the entropy of the random variable (or the random vector) (X,Y) with
values (z;,y;).

Definition 3.1. The ¢conditionalentropy, h(X|Y), of a random variable X, given random

variable Y, is defined as the expected amount of information gained from observing X
given that a value of ¥ is known:

WX[Y) ==Y pxy(ziuj)log pxjv(zily;)- (3.4)

ZiyYj

Here, px,v(i,j) is the joint probability p(X = z;,Y = y;) and pxy(zily;) the condi-
tional probability p(X = z;|¥ = y;). As follows from definitions (3.3) and (3.4),

R(X[Y) = h(X,Y) - h(Y). (3.5)
Note that in general h(X|Y) # h(Y|X).
Sometimes an alternative view is useful: i(4) is an amount of information needed to
specify event A, h(X) is the expected amount of information needed to specify random

variable X (i.r the probabilities with which X takes its values), etc.

12

It is obvious from Definition 3.1 that for independent evern. ., A; and As,
(A1 N Ag) = i(A;1) +i(4,), (3.6)
‘#@nd for event A with p(A4) = 1/2,
i(A) =1 (3.7)

A justification of definition (3.1) comes from the fact that any function ¢*(A), which (i)
depend on probability p(4) (i.e., obeys i*(A4) = i*(A") if p(A) = p(4'})), (i1) is continuous
in p(A), and (iii) satisfies (3.6) and (3.7), coincides with i(A).

Straightforward properties of the entropy are given in Theorem 3.1 below:

Theorem 3.1. (a) If random variable X takes < m values, then
0 < h(X) < log m; (3.8)

the LH equality occurs iff X takes a single value, and the RH equality iff X takes m
values with equal probabilities.

(b) R(X,Y) < h(X) + h(Y), (3.9)

with equality iff X and Y are independent.

Proof of Theorem 3.1. Use the Gibbs inequality (Theorem 2.1): (a) with {p(2)} l?eing
the distribution of X and p'(i) = 1/m, 1 < i < m; (b) with ¢ being a pair (21,12) of
values of X and Y, p(i) = px,v(i1,i2) being the joint distribution of X and ¥ and
P'(i) = px(i1)py(iz), the product of their marginal distributions. Then: a) h(X) =
— ¥ip(i)log p(i) < 35, p(i)log m = log m,

b) h(X,Y) =~ > px,y(i1,i2)log px,y(i1,i2) € — Y px,v(in,iz)

(i1,12) (i1,i2)
xlog (px(i1)py(iz)) = — pr(il)log px(i1) — Zpy{iz)log py(iz) = h(X) + h(Y);

we used here the fact that 3. px,v(i1,i2) = px(i1), 35, px y(i1,12) = py(iz). O

Lemma 3.2. (The pooling inequality) For any q1, g2 = 0, with ¢; + g2 > 0,

@ +q
—(q1+ g2)1og (q1 + @2) £ —q1 log @1 — q21og g2 < —(q1 + ¢2)log ’Tz; (3.10)

the LH equality occurs iff g1g2 = 0 (i.e., one of the values q1, g2 vanishes), and the RH
equality iff g1 = g3.

Praof of Lemma 3.2. (3.10) is equivalent to 0 < h (CHL-:QD-, :1:%%-(;2_) <log 2(=1).0

Lemma 3.2 means that when you ‘glue’ together values of a random variable you
diminish the corresponding contribution to the entropy. On the other hand, if you ‘re-
distribute’ the probabilities making them equal you increase the contribution.

13

An immec..te corollary of Lemma 3.2 is the following

Theorem 3.3. Suppose that a random variable X is a function of random variable ¥ :
X =¢(Y). Then

R(X) < h(Y), (3.11)
with equality iff ¢ is invertible.
Proof of Theorem_3.3. Indeed, if ¢ is invertible then the probability distributions of X

and Y differ only in the order of probabilities, which does not change the entropy. If ¢
‘glues’ some values y; then you can repeatedly use the LH pooling inequality. O

Theorem 3.4. (The Fano inequality) Suppose a random variable X takesm > 1 values,
and one of them has probability (1 — ¢). Then

h(X) < G(e) + elog (m — 1), (3.12)

where
Ge) G(e) = —elog e — (1 —¢€)log (1 — ¢). (3.13)
=1 i > Proof of Theorem 3.4. Suppose that p; = p(z;1) = 1—e. Then

t
4

h(X) = h(p1,...,pm) = — Y pilog pi = —p1log p1 — (1 — p1)log (1 — p1)
=1

+(1=p1)log (1= p1) = Y pilog pi = h(p1,1 — p1) + (1 = p1)h (1 .);
=2 — D1 1—171

in the RHS the first term is G(¢) and the second does not exceed elog (m — 1).]

The Fano inequality shows how the entropy h(X) grows when X is ‘near’ a constant
randorm variable.

Definition 3.2. Given a triple of random variables, X, ¥ and Z, we say that X and ¥
are conditionally independent, given Z, if

PX=z,Y=ylZ=2)=pX =z|Z =2)p(Y =y|Z =2) (3.14)
for any z with p(Z = z) > 0 and all z and y.
For the conditional entropy you immediately obtain
Theorem 3.5. (a) 0 < A(X|Y) < A(X); (3.15)

the LH equality occurs iff X is a function of Y and the RH equality iff X and Y are
independent,

(b) KXY, Z) < h(X]Y) < h(X]4(Y)); (3.16)
the LH equality occurs iff X and Z are conditionally independent given Y and the RH
equality iff X and Y are conditionally independent given ¢(Y).

14

Proof of Theorem 3.5. (a) The LH bound in (3.15) follows from the definition (see (3.4)).
The RH bound follows from (3.5.) and (3.9). The LH equality in (3.15) is equivalent to
R(X,Y) = h(Y'); the last equality occurs iff, with probability one, the map (X,Y) — ¥
is invertible which means that X is a function of ¥. The RH equality in (3.15) occurs
iff A(X,Y) = h(X)+ h(Y), i.e. X and Y are independent.

(b) For the LH bound, use a formula analogous to (3.5):

hX|Y,Z)=h(X,Z|Y) - h(Z|Y) (3.17)
and an inequality analogous to (3.9):
WX, Z|Y) < M(X|Y) + R(Z]Y), (3.18)

with equality iff X and Z are conditionally independent given ¥. For the RH bound,
use (i) a formula that is a particular case of (3.17): A(X|Y,4(Y)) = h(X,Y|6(Y)) —
h(Y|4(Y')), together with the remark that h(X|Y,¢(Y)) = A(X|Y), and (ii) an in-
equality which is a particular case of (3.18): A(X,Y|[¢(Y)) < A(X|¢(Y)) + R(Y|4(Y)),
with equality iff X and Y are conditionally independent given ¢(Y"). O

Theorem 3.6 below shows how the conditional entropy h(X|Y) grows when X is ‘nearly’
a function of Y.

Theorem 3.6. (The generalized Fano inequality) For a pair of random variables, X

and Y, with values 1, ..., m and yi, ..., Ym if
ZP(X =$i!Y=yj)=1_Es (3'19)
Jj=1

then
h(X|Y) < G(e) + elog (m — 1), (3.20)

where G(€) is defined in (3.13).

Proof of Theorem 3.6. Denoting €; = p(X # z;|Y = y;), you can write

ZPY(U:‘)E;‘ =3 X £z, =y)=e.
3 j

By definition of the conditional entropy, the Fano inequality, and concavity of function
G(e),

AXIY) < Zpy(yj)(c(e» +¢;log (m — 1))

‘é‘Zpy(yJ (ej) + elog (m — 1) € G(e) + elog (m — 1).

The most part of the properties listed are extended to the case of random vectors.

15

Theorem 3.7. For a pair of random vectors, X(®) = (Xi, .., X») and Y™ = (1, ...,
Ya),

(a) R(X™) = Zh(X |x G- 1))<Zh(X (3.21)

with equality iff X,, ..., X, are independent, and
(b) AXM™Y™) <Y AXIY™) < Y AV, (3.22)
i=1 =

with the LH equality iff X1, ..., X, are conditionally independent, given Y™ and the
RH equality iff, for eachi =1, ..., n, X; and {Y; : 1 <r < n, r # i} are conditionally
independent, given Y;.

The proof repeats the previously used arguments.

Definition 3.3. The mutual entropy between X and Y is defined as

- . pxy(XY) ox PXXY(@Y)
‘E(X,Y) = E]O pX(X)PY{Y) ZPXY :y)l g ()PY(y) h(X) +h‘(Y)

—h(X,Y) = (= i(Y,X)) =h(X) = h(X]Y)=h(Y) - A(Y|X). (3.23)
In other words, i(X,Y") measures the amount of information about X conveyed by ¥
(and vice versa). An immediate corollary of Theorems 3.1(b) and 3.5(b) is the following
Theorem 3.8. 0 < i(X,¢(Y)) <i(X,Y); (3.24)

the LH equality occurs iff X and ¢(Y) are independent, and the RH equality iff X and
Y are conditionally independent, given ¢(Y").

Note that X and Y in Definition 3.3 and Theorem 3.8 may be random vectors. In
addition, for a pair of random vectors, X (™ and Y ("), you obtain, from Theorem 3.8,

Theorem3.9.(a) #(X™,Y(™) > a(Xx(™) =3 " h(X;|y(™™)

- (3.25)
> W(X™M) =3 A(Xi|Y),
i=1
(b) if X3, ..., Xn are independent,
XM ym) > i i(X:, Y(™), (3.26)
i=1

Observe that the RHS of (3.26) is always
> Y i). (327)

i=1

16

Lecture 4: Shannon’s First coding theorem

Definition 4.1.
D,(R):= max PU™ ¢ A). 4.1
A5 () (4.1)
ﬂ A< 2nR
Here and below we set: I™ ;=1 x -+ (n times) xI.

Lemma 4.1. For any ¢ > 0,
nli—.IEcD"(H +e)=1, and, if H >0, Dy(H —¢) £ 1. (4.2)
Proof of Lemma 4.1. R := H + € is, by definition, a reliable encoding rate. Hence,

there exists a sequence of sets A, C I", with § A, < 2"% and P(U™ € A,) — 1, as
n — oco. Since D, (R) = P(U™ € 4,,), then D,(R) — 1.

Now let be H > 0. R:= H — € is > 0 for ¢ small enough, but it is not a reliable rate.
That is, there is no sequence A, with the above properties. Take a set C,, where the
maximum in (4.1) is attained. Then § C, < 2"%, but P(C,) £ 1. O

Given a string ul™ = u; ... un, consider its ‘log-likelihood’ value per source letter:
(my - 1 ()
En(u'™) = ——logy pa(u™), (4.3a)

where p,(u(™) is the probability assigned to string u{™). Here, and below, log, = =logz,
if z >0, and = 0, if z = 0. For a random string, U™,

En(U™) = —1/n log, pa(U™) (4.30)
is a random variable.
Lemma 4.2. For any R, € > 0,
P(én S R) < Dn(R) SP(fn S R4€)+27 (4.4)
O

Proof of Lemma_4.2. For brevity, omit upper index (n) in the notation u(™ and U,
Set

Brni={u€l":pa(u) 227 "R} = {ueI": —log pn(u) £ nR} = {u € I": £,(u) < R}.

Then 1>P(U € By)= Y _ p(u) =2 "®§B,, whence B, < 2"%. Thus,
uwE€B,

Dn(R)= sup P(Ue€A,) 2P(U € B,)=P(£, < R),

17

which proves the LH in (4.4).
On the other hand, there exists C,, C I™ where the maximum in (4.1) is attained. For

such a C,,

Do(R) =P(U € Co) =P(U € Cny € < R+€)+P(U € Cn, én > R+¢)

SPn<R+e+ 3, Pa(u)
u€Chp:
Pn(ﬂ) < 2—n(R+()
<P, <R+e)+2 B+ £P(E, <R+e)
+2 B+ gnR _p(g, < R4e)+ 27N, O

Definition 4.2. A sequence of random variables {n,} converges in probability to a
constant r if for any € > 0,

lim P(|nn - rl > E) =0 (4.5)

n—oo

Replacing, in this definition, r by a random variable 7, you obtain a more general
definition of convergence in probability to a random variable.

Convergence in probability is denoted in the sequel as n, iy (respectively, nn . 7).

Remark. It is precisely the convergence in probability (to an expectation value) that
figures in the so-called law of large numbers (see below).

Theorem 4.3. (Shannon’s First Coding Theorem) If £, converges in probability to a
constant v then v = H, the information rate of a source.

Proof of Theorem 4.3. Let &, oy 7. Since £, 2 0, v 2 0. By Lemma 4.2, for any € > 0,

Du(v+€)2PénSy+e)2P(v—e<€n <v+¢)
=P(ltn-7]<€e)=1-P(lta=1]>¢) = 1 (n > o).

Hence, H < 5. In particular, if v = 0 then H = 0. If ¥ > 0, you have, again by Lemma
4.2,

Da(y =€) SP(En < 7= ¢/2) + 272 < P([ea | 2 ¢/2) +277/2 5 0,

By Lemma 4.1, H > +. Hence, H = 1. O

Remarks. 1. Convergence £, ki 4 is equivalent to the following asymptotic equipar-

tition property (AEP): for any € > 0,

lim P27 +€) < p, () <on(H = f)) = 1. (4.6)

n—oo

18

In fact,
P(z—n(H-i-f) Spn(U(n)) < 2—n(H - E))
=PH-e< —%log pa(UM) < H+e)
P(lén —H| <€) = 1-P(|¢. - H| >€).

In other words, for any € > 0 there exists no = no(e) such that, for any n > ny, the
set I"™ decomposes into disjoint subsets, I, and T,, with a) P(U(") € Hn) <€ b)

27 +€) < p(Um =y < 9-n(H =€) fo any u(® € T,.

Pictorially speaking, T, is a set of ‘typical’ strings and II,, the residual set. You may
conclude that, for a source with AEP, it is worthwhile to encode the typical strings with
codewords of the same length, and the rest anyhow. You will then have the effective
encoding rate H + o(1) bits/source-letter, though the source emits logm bits/source-
letter.

2. Observe that

Bk L

n

1
> pa(w)log pa(u) = 5h("), (4.7)
uefn

(see (2.5)).

Consider now the simplest examples of sources. As before, start with a Bernoulli source.

Theorem 4.4. For a Bernoulli source H = h. O
Proof of Theorem 4.4. For an iid. sequence Uy, Uy,..., p.(ul®) = Hp(ui),
=1

ul™ = uy L ou,. Hence, —logp,(u) = Zhlogp(u;). For a random string (™) =

(U1,...,Un), —log pa(UM) = —Zlogp(U,'), where random variables —log p(U;),
i=1

---» —log p(Un) are mutually independent and have the same distribution.

Denoting o; = —logp(U;), i=1,2,..., you can say that o1, 03, ... form a sequence of

n
Li.d. random variables, and write £, = %ZO’,‘. Observe that Eo; = — >, P(7)1og p(3)

=1

n n n
=h and E, = El E i = L E Eo; = = E h = k; the last equality is in agreement
n n n
i=1 i=1 i=1

with (4.7), since, for the Bernoulli source, (") = nh (see (2.7)), and hence EE, = h.

You immediately see that £, 2, his a direct corollary of Theorem 4.5.

Theorem 4.5. (The Law of large number for i.i.d. random variables) For any sequence
of i.i.d. random variables (;, G2, - with E¢; = b, and for any e > 0,

n—oo

lim P(i%ig} - b‘ > e) =1, (4.9)

19

The proof of Theorem 4.5 is based on a famous inequality:

Lemma 4.6. (The Chebyshov inequality) For any random variable 7 and any € > 0,

1
P(n2 &) < SEn”,

Proof of Lemma 4.6. P(n 2 ¢) = El(n > €) < E(n/e)?1(n > €) < (1/€)2En?. O
Proof of Theorem 4.5. The Chebyshov inequality, applied to the LHS of (4.9), gives

n

P(]%zﬂ:ci—b[ze)séE(%ia;—b):EQLQE(Z(Cf—b))- (4.10)

=1

n n n
Now, the sum i — b) has the expectation value zero: E Y} ((; —b) = E(¢i—b)=
; ¢
=1

=1 =1

n L] 2
Z E(b—b) = 0. Hence, the quantity E(Z(Ci - b)) in the RHS of (4.10) is nothing

i=1 i=1
n

but the variance Var Z(Ci —b). [Recall, the variance Var n = E(n — En)? = En? —

=1
(En)?, which gives Var n = En? when Ep = 0.] But random variables ¢, — k, ¢ — A,
. are 1i.d. (they are obtained from i.i.d. random variables (;, (s, ... by extracting a

n n
constant), hence Var Z((, =-b) = Z Var (¢; — b) = nVar ((; —b) = n Var (;; the last

=1 i=1 . .
equality is due to the fact that adding a constant does not change the variance.

1 o ;
Thus, the RHS of (4.10) equals n?ez Var (; = — Var ¢, which goes to 0 when
n — o0. Theorem 4.5 is proved, and so is Theorem 4.4. |

20

Lectures 5 and 6: The entropy rate of a Ma...ov source

We now consider a Markov source Uy, Us, ... with letters from alphabet I = {1}
and assume that the transition probability matrix (P(u,u')) (or rather its power)
obeys

min P((u,u') = p> 0 for some r > 1. (5.1)

u,u’

This condition means that the M.c. is irreducible and aperiodic. As one knows from
the part IB Markov Chains course, the chain then has a unique invariant (equilibrium)
distribution w(1), ..., w(m):

m

0 <w(u) £ Z =1, wv)= i w(u)P(u,v) (5.2)
u=1

and the n-step transition probabilities P(")(u,v) converge to w(v) as well as as well as
the probabilities (p; P"~!)(v) = P(U, = v):

n—oo

lim P (u,v) = lemP(Un =v)= nlim Zpl(u)P(“){u, v) = w(v). (5.3)

the last relation holds for any initial distribution {p;(u), u € I'}. Moreover, the conver-
gence in (5.3) is exponentially fast (see Theorem 5.1 below).

Pictorially speaking, the chain ‘forgets’ its initial state and ‘rapidly’ reaches a stationary
regime described by (w(1), ..., w(m)).

Theorem 5.1. Assume that condition (5.1) holds with r = 1. Then the M.c. Uy, Us,
- possesses a unique invariant distribution (5.2), and for any u,v € I and any initial
distribution p; on I,

[P (w,v) — w(v)] < (1-p)" and [P(UM =) —w(v)| < (1 - p)*~1. (5.4)

In the case of a general r > 1, one should replace, in the RHS of (5.4), (1—p)* by
(1= p)n/ and (1 - p)r=! by (1= p)ltn-D/1]

The proof of Theorem 5.1 is not a part of the examinable material for the present
course. However, for the sake of completeness it is given in the appendix.

The information rate H of a Markov source is given in the following Theorem 5.2.

Theorem 5.2. For a Markov source, under condition (5.1),

H=- Y w(u)P(uv)log P(u,v)= Jim h(Un41Un). (5.5)

Proof of Theorem 5.2. We again use the Shannon FCT, aiming to check that En Ly H
where H is given by (5.5) and the random variable £, is given by

&n = —%log Pn(U{n))s

21

cf. (4.3b). In ov..r words, we are going to prove the AEP for a Markov source under
condition (5.1).

The Markov property means that, for any string u(® = u; ... up,
Pa(ut™) = p(u1)P(ur,uz) - - P(tn—1,tn), (5.6a)
and
—log pa(u™) = —log w(u;) - log P(uj,ug) — ... —log P(un—1,un). (5.60)

For a random string, U™,

~log pa(U™) = —log w(U) —log P(Us,Uz) — ... —log P(Un-1,Us), (5.7)
As in the case of Bernoulli source, we denote

01(U1) := =log pi(Uh), oi(Ui—1,U;) := —=log P(Ui1,Us), i=2,3,..., (5.8)

and write

€n = %(Ul +T§Ui+1); (5.9)

i=1

Observe that the o’s have the expectation values
Eoy = - ZPJ(“)iOg p1(u) (5.10a)

and

Eois1 —ZP(U; =u,Uip1 = u')log P(u,u’)

u,u’

(5.100)

=2 (PP) (w)P(u,u')log P(u,u’), i>1;

u,u’

as follows from Theorem 5.1, lim Eo; = H. Hence, hm E(, = lim — Z Eo; = H;

1—00 n—oon

s g o P i :
this is a clear indication that convergence £, — H is again a Law of 1arge numbers, for

the sequence o, o9, ...:
. IR
lim P (~ —H|> e) =0. (5.11)
1=1

%

However, the situation here is not as simple as in the case of a Bernoulli source. There
are two difficulties to overcome: (i) Eo; equals H only in the limit i — oo, (ii) oy, o3,

. are no longer independent. Even worse, they do not form a M.c., or even a Markov
chain of a higher order. [A sequence (j, (3, ... is said to form a M.c. of order k, if, for
any n > 1,

P(Un+k+l = u*IUrH-k = Uky -y Un+1 = Ul)

22

=PUntit1 = ' |Ungi = up,. .., Unpr = u1).

An obvious remark is that, in a M.c. of order k, the vectors U, = (Un, Upy1, ...,
Untk-1), n = 1, form an ordinary M.c.] In a sense, the ‘memory’ in sequence o, o,

- Is infinitely long. However, it decays exponentially: the precise meaning of this is
provided in Theorem 5.1.

Anyway, if you use again the Chebyshov inequality, you obtain

2
1 o2 1 =
P(;;ag—ﬂ’ 2&) Lo (Z(a,-_H)) . (5.12)

i=1
Theorem 5.2 immediately follows from Lemma 5.3 below:

Lemma 5.3. The expectation value in the RHS of (5.8) satisfies the bound

2
n
E (Z(a,- - H)) < Chn, (5.13)
=1
where C' > 0 is a constant that does not depend on n.
In fact, the RHS of (5.12) becomes < % and goes to zero as n — co.

n

The proof of Lemma 5.3 is again given in the appendix.

Appendix: The proof of Theorem 5.1 and Lemma 5.3

Proof of Theorem 5.1 First note that the first bound |P(")(u,v) — w(v)| < (1= p)*
in (5.3) implies all other assertions of the theorem. In fact, assume that this bound holds.
Then the second one also holds, and 0 < w(u) < 1 and Y., w(u) = 1. Furthermore,

w(v) = lim P"(u,0) = ’}i_{réozp(““l)(u,ﬁ)P(ﬁ,v) =Y w(@P(@,v), (A1)

u u

which yields (5.2). If w'(1), w'(2), ..., w'(m) is another invariant probability vector, i.e.,

0<w'(u) <1, Zw'(u) =1, w'(v) = Z w'(u)P(u,v),

then w'(v) = 3, w'(u)P™(u,v) for any n > 1. The limit n — oo gives then
w'(v) =Y w'(u) lim P™(u,v) =) w'(u)w(v) = w(v),

which means that the invariant probability vector is unique.

Hence, our task is to prove the first bound in (5.3). Denote
ma(v) = min P™(u,v), Ma(v) = max P (u. (A.2)

23

Then
Mat1(v) = min PO (u,v) = min Y P(u,)P (T, v)
> min P (u,v) Y " P(u, @) = ma(v).
Similarly,
My41(v) = max PO (u,v) = max Y P(u,)P (i, v)

< max P™(y,v) ZP(u,ﬁ) = M,(v).

Since 0 € mp(v) < Mu(v) <1, both mu(v) and M,(v) have the limits

m(v) = nlit};lo ma(v) < nan;QMn(v) = M(v).

Furthermore,

M(v) —m(v) = "li_'rréo(Mn(v) —mp(v)) = lim max(P™(u,v) — P (u',).

n—oo u,u’

So, if we manage to prove that
max(P()(u,v) - P!, 0) < (1= 8)", (4.3)
we will have M(v) = m(v) for each v. Furthermore, denoting the common value M(v) =
m(v) by w(v), we will have ‘
[P (u,v) — w(v)] < Ma(v) = ma(v) < (1= 6)",
i.e. the first bound in (5.3).

To prove (A.3), consider a Markov chain on I x I, with states (u;,usz), and transition
probabilities

P((‘Uhuz),(vhvz)) = P(u1,v1)P(us,v2), if uy # ua,
=P(u,v), ui=uz=u and v; = vy = v, (A.4)

=0, if Uy = Uz and U1 =/-"U2,

It is easy to check that P(ul,ug), (vl,vg)) is indeed a transition probability matrix (of
size m? x m?): if u; = up = u then :

Z P((ulau‘Z)a(”hUZ)) — ZP(u,u) =1
whereas if u; # usp then

> P((wr), (01,02)) = 3 Plun, o) 3 Plus,va) = 1

v1,¥2

24

(the inequalities 0 < P((ul,ug),(m ,vz)) < 1 follow directly from the definition (A.4)).

We call the chain on I x I a coupled M.c. and denote it by (V,,W,), n > 1. Its
fundamental property is that both components V,, and W,, are M.c.’s with transition
probabilities { P(u, v)}. More precisely, the components V,, and W,, move independently,
with transition probabilities {P(u,v)}, until the first moment when they coincide. This
moment is of course random: it is called the coupling time and denoted by 7. After
time 7 the components V,, and W, ‘stick’ together and move synchronously, again with
transition probabilities {P(u,v)}.

Suppose we start the coupled chain from a state (u,u'). Then
[P (u,v) = PM (', 0)| = |P(Vy = v|Vy = u, W) = ') = P(Wy, = 0|V} = u, W =u')]|
{because each component of (V,,, W,) moves with transition probabilities P(-, -))
=P(Va=v,Wh#o|Vi =u, W) =u) =PV, £ 0o, W, =v|V) =u, W, =u')| (4.5)
<PV #WolVi =u, W =u')=P(r > n|V] = u, W) =u').
Now
P(r=1Vi=u,Wi =u)2 Y P(u,v)P(«',v) = p > P(u',v) = p,
le,
Pr>1Vi=u W, =u)<1-p
From the strong Markov property (of the coupled chain),
Pl(r>nVi=u, W, =u') <(1-p)". (A.6)

Bounds (A.6) and (A.5) together give (A.3). O

Proof of Lemma 5.3. Expand the square and use the additivity of the expectation:

E(Z(a._ﬂ)) = Y E(ei-H)?+2 Y E(oi-H)(o; - H). (A.6)

i=1 1<i<n 1<i<j<n

The first sum in (A.6) is OK: it contains n terms E(g; — H)? each of which does not
exceed a constant. Thus this sum is < C'n where C’ is a constant. [From an argument

that follows you will be able to deduce that C' may be taken to be (H + |log pi)z.] It

is the second sum that causes problems: it contains w terms. We bound it as
follows:
n =]
Y. E(oi—H)(o;-H)| <Y (Z lE(oi — H)(oigx — H)l) : (A7)
1<i<j<n =1 \k=1

and reduce our problem to proving that

> [Etos = Bfouss - 1) < L2 Lol (48)
k=1

25

In turn, bound (A.8) follows from Lemma A.1:

Lemma A.1l. The following bound holds true:

|E(o; — H)(oi4x — H)| < (H + |log p|)*(1 — p)* 1.

Proof of Lemma A.1. For definiteness, we assume that ¢ > 1; the case i = 1 requires
minor changes. Returning to the definition of random variables o;, ¢ > 1, write

E(oi — H)(0irk — H) =Y > P(Ui = u,Uits = u'; Uik = v,Uippr = ')
u,u’ v,v’ (AQ)
x (—log P(u,u') — H)(—log P(v,v') — H).

We want to compare this expression with

3 (plpf-’)(u)P(u,u')(log P(u,u') — H)w(v)P(v,v')(log P(v,v') — H). (A.10)

u,u' v,v’

Observe that (A.10) in fact vanishes because the sum Z vanishes, by virtue of the

v,v’

definition of H (see (5.5)).

The difference between sums (A.9) and (A.10) comes from the fact that the probabilities
P(Ui = w, Uiy = us Ui = 0,Uigpq1 =)

= (nP"") (P,)PED (', 0) P(o, o)

and

(plpf*l)(u)P(u, uYw(v)P(v,v')

do not coincide. However, the difference of these probabilities in absolute value is
< [P, v) - w(w)] < (1 - p)* .

As | —logP(-,)- H| < H + |log p|, we obtain the result. O

This completes the proof of Lemma 5.3 and consequently of Theorem 5.2. 0O

Chapter 2: Channels of information transmission

As in Chapter 1, symbols P and E refer to various probabilities of samples of
sequences of random variables and the corresponding expectations. A typical example is
a joint distribution of two sequences representing the input and output of an information
channel. Likewise, P(v|u) denotes a symbol-to-symbol channel transition probability
(e.g., a probability of having a symbol v on the output of a channel, given that symbol
u has been sent).

The symbol p is again used to denote various probabilities.

Lecture 7: Basic concepts.

This chapter of the course is related to channels of information transmission. Recall our
main scheme:

A message

source — [An encoder| — [A channel] — [A decoder] — [A destination)

So, a source emits a random text Uy, Us,.... Following the idea of segmentation (see
the notes for Lecture 2), you encode a message u{™ by a binary codeword (™), by using
acode fn : I™ — JV, J = {0,1} (a relation between n and the codeword-length N is
discussed below). Of course, the code f, used is supposed to be known to the receiver.
A typical feature of a channel is that it is subject to ‘noise’ which distorts the messages
transmitted: a message at the output differs in general from the message at the input.
Formally, a channel is characterized by a conditional distribution

Pchannel (TECEiVB word y(N)

codeword z(N) sent) : (7.1)
we again suppose that it is known to both sender and receiver. Speaking below of
a channel, I shall refer to a conditional probability (or rather a family of conditional
probabilities, depending on N), of form (7.1).

Nearly all concrete examples we will deal with are about the so-called memoryless binary

channels (m.b.c.’s) where

N
Pchanne] (y(N)ll'(N)) = HP(y.lx.), if y(N) =Y .-. YN, I(N) = ... IN. (72)

i=1

Here, P(y|z), z,y = 0,1, is a symbol-to-symbol channel probability (i.e. the conditional
probability to have symbol y at the output of the channel given that symbol = has been
sent). It is clear that {P(y|z)} is 2 2x2 transition probability matrix (often called the
cannel matrix). In particular, if P(1|0) = P(0|1) = p, the channel is called symmetric
(m.b.s.c.). The channel matrix then has the form

(1;” 1fp) (7.3)

27

and p is called the row error probability (or the symbol-error probability).

You want to introduce a decoding rule fN : JN¥ — I™ so that the overall probability of

error _
e = Y P(fly™) # u, u emitted)

uln)

= Z Psource(U(n) = u("))Pchannel(fN(y(N)) 7'“é u(ﬂ)lfn(u(n}) sent)

uln)

(7.4)

is small. We will try (and in some cases succeed) to have quantity (7.4) tending to zero
as n — oo.
The idea which is behind the construction is based on:

1) The fact that for a source with the AEP the number of distinct n-strings emitted
is 2n(H+0(1)) where H < logm is the information rate of the source. Therefore, you have
to encode not m™ = 2"'°8 ™ messages, but only 27(#+°(1)) which may be considerably
less. That is, your code f, may be defined on a subset of I™ only, and you can choose
the codeword-length N = [nH] + 1.

2) The fact that you may try even a bigger N: N = [E_lnH] + 1, where R € (0,1)
is a constant. In other words, you want to increase the length of the codewords used
from [nH] + 1 to [E_lnH] + 1. That will allow you to introduce a redundancy in your
code f,, and you may hope to be able to use this fact for diminishing the overall error
probability (7.4) (provided that you in addition have a ‘good’ decoding rule). It is of
course desirable to minimize B ' , i.e. maximize i it will give you codes with optimal
parameters. The question how big R is allowed to be depends of course on your channel.

A notational convention: As the codeword-length is a crucial parameter, I will write N
instead of R ' Hn and RN instead of Hn: the number of distinct strings emitted by

= N "
the source becomes 2V(F+o(1)) In future, the index n ~ FR will be omitted wherever

possible (and replaced by N otherwise). It is convenient to consider a ‘typical’ set Uy

of distinct strings emitted by the source, with § Uy = 2N(R+o(1)), Formally, Uy can
include strings of different length; it is only the log-asymptotics of § iy that matters.

Definition 7.1. A value R € (0,1) is called a reliable transmission rate (for a given
channel) if, given that the source strings take equiprobable values from a set Ly with
f Un = 2N(ﬁ+°(1)], there exist an encoding rule fy : Uy — Xn C {0,1}" and a
decoding rule fy : {0,1}¥ — Uy with the error probability

1 -)
>~ gz Peamnat (Fv(™) # u| i) sent) (7.5)
uEUN N

tending to zero as N — oo. A

; . = ;
That is, for each sequence Uy with A:'_llm Wlog f Uy = R, there exists a sequence of
—oo

encoding rules fy : Uy — Xn, Xy C {0,1}", and a sequence of the decoding rules
NE {0,1}" — Uy such that

I\ll—lonooﬁ%;v- Z Z F'channel (y(N)>fN(TL)) =0. (76)

WEUN (V) Ty (yO¥))£ fiv (u)

28

Definition 7.2. The channel capacity is defined as the supreiium

C=sup[Re€(0,1): R is a reliable transmission rate] (7.7)

Remarks. 7.1. The reason for the equiprobable distribution on Uy is that it is the
worst case. See Theorem 7.4 below.

7.2. If encoding rule fy used is a one-to-one function then it suffices to treat the
decoding rules as maps {0,1}" — Xy rather than {0,1}¥ — Uy: if you guess correctly
what codeword z(M) has been sent, you simply set u = FR¥ (i),

7.3. To enable you to do Example Sheet 2, I give you an answer for an m.b.c.: the
channel capacity is given by
C =sup X,,Y,) (7.8)

PXn

Here, i(X,,Y,) is the mutual information between a single input and output letters X,
and Y, (index n may be omitted wlog), with the joint distribution

P(X =z,Y =y) = px(z)P(ylz), z,y=0,1, (7.9)

where px(z) = P(X = z). The supremum in (7.8) is over all possible distributions
px = (px(0),px(1)). A useful formulais i(X,Y) = A(Y)— h(Y'|X) (see (6.12)). In fact,
in the m.b.c.

h(Y1X) == 3" px(z) 3 Plylz)log P(ylc). (7.10)
r=0,1 y=0,1
For an m.b.s.c.,
Y P(yle) log P(ylz) = ~plog p— (1 — p)log (1 — p) = h(p, 1 — p) (7.11)

y=0,1

and hence h(Y|X) = h(p,1— p) does not depend on input distribution px. Thus, in this
case

C =suph(Y) - h(p,1 - p). (7.12)

But sup h(Y') is equal to log 2 = 1: it is attained at px(0) = px(1) = 1/2, because then

py(0)=py(1)=1/2(p+1-p)=1/2.

Therefore, for an m.b.s.c., with the row error probability p, C=1-h(p,1-p).

7.4. Suppose you have a source Uy, Us, ... with the AEP and information rate .
If you try to send a text emitted by the source through a channel of capacity C then

n(H +¢€)

you need to encode messages of length n by codewords of length in order to

€
have the overall error probability tending to zero as n — oo. Values € >2 Oand e >0
may be chosen arbitrary small. Hence, if H/C < 1, you are able to encode a text with
a higher speed than it is produced: in this case you can use reliably your channel for
transmitting information from your source. On the contrary, if H/C > 1, the text will

29

be produced with a higher speed than you can encode it and send reliably through a
channel. In this case it is said that reliable transmission is impossible. For a Bernoulli or
Markov source and an m.b.s.c., condition H/C < 1 is equivalent to A(U)+h(p,1—p) < 1
or h(Uz|Uy) + h(p,1 — p) < 1, respectively.

Now a theorem about equidistribution over U{:

Theorem 7.5. Fix a channel (i.e. a conditional probability Pchanner in (7.1)). Fix a
set U of the source strings and denote by e(P) the overall error probability (7.4) for U(")

having a probability distribution P (= Psomce) over U, minimized over all encoding

and decoding rules. Then
e(P) < «(P?), (7.13)

where P° is the equidistribution over I{.

Proof of Theorem 17.5. Fix an encoding and a decoding rules, f and f and let a string
u € U have probability P(u). Set:

B(u) = E Pchannel(y|f(u))'

wifln#f(w)

That is, B(u) is the error-probability when u is emitted. The overall error probability
equals

(=P, f,f)) =) P(u)B(u).

uEU

If you permute the allocation of codewords (i.e. encode u by f(u') where u' = A(u) and
A is a permutation of degree § i), you get the overall error probability

e(d) =) P)B(A(u))

ueld

In the case P(u) = (} U)_] (equidistribution), e(A) does not depend on A and equals

i= ﬁiuz,ﬁ(u)(= 5(P03f1f))‘

ueU

It is claimed that for each probability distribution {P(u), u € U} there exists II such
that e(A) < e. In fact, take a random permutation, A, equidistributed among all (§/)!
permutations of degree f /. Then

n‘;inﬁ()\) <Ee¢A)=E Z P(u)B(Au)

uwEU
= S PwES(AY) = ¥ P(u)ﬂiu S B =e.
ugld ueld weu

Hence, given any f and f, you can find new encoding and decoding rules with overall
error probability < ¢(P?, f, f). Minimizing over f and f leads to (7.13). O

30

Lecture 8: Decoding rules

It is now time to discuss possible decoding rules. As was noted before, a decoding rule
(or a decoder) is a map fy: {0,1}Y — Uy ({0,1}¥ — Xy in the case of a one-to-one
encoding rule fy, with a set of codewords Xy). Equivalently, a decoding rule is given
by fixing, for each codeword (M), a set A(z(™) € {0,1}", so that A(z!™) and Az
are disjoint for distinct codewords IEN) and zgm, and the union U (v)c x,, A(z'™™)) gives

the whole {0,1}". Given that y(¥) € A(z(M), you set: fiy(y(M)) = z(M),
Although in the definition of the channel capacity we assume that the source messages
are equidistributed (which gives the worst case in the sense of Theorem 7.5), in reality

of course the source does not always follow this assumption. We need to distinguish
between two situations: (i) the receiver knows the probability distribution

p(“(N)} = Psource(U(N) = “(N}) (8-1)

of the source strings (and hence the probability distribution py(z(™)) of the codewords
™ € Xy), and (ii) he does not know py(z(™). Two natural decoding rules are,
respectively,

(i) an ideal observer (i.0.) rule: you decode a received word y(N) by a codeword z(™"
that maximizes the posterior probability

PN(x(N))Pchannel(y(N) |m(N))

P (z™ sent ’ (¥) received) = . 8.2
(% sent s v) ©2)
where — s
@™ = Y pn(E™)Perama(y ™),
J’.'(—;-"EXN
and

(ii) a mazimum likelihood (m.l.) rule: you decode a received word y(™ by a codeword
(N)

that maximizes the prior probability

Pchannel(y(N)l-I(N))- (83)

In Theorem 8.1 below we suppose that an encoding rule f is defined for all messages that
occur with positive probability and is one-to-one. [The decoding rule is always assumed
to be one-to-one.]

Theorem 8.1.
(a) For any encoding rule, the i.o. decoder minimizes the overall error probability
among all decoders.

(b) If the source message U is equiprobable on a set U, and an encoding rule f : U — X
then codeword X = f(U) is equiprobable on X, and the i.o. and m.. decoders
coincide.

31

Proof of Theorem 8.1. (a) Note that, given a received word y, the i.o. obviously
maximizes the joint probability

P(I)Pchannei(ylz)

(the denominator in (8.2) is fixed when word y is fixed). Suppose you use an encoding
rule f and decoding rule f. You can write

The overall error probability (see (7.4)) =

Z Peonree (U = 4)Pchannel ((y) # | sent)
=ZP(I) Z Pchannel (ylz)
A v:fly)sz
=Z Z p(:’v)PChannel(‘-T)
Y za#fly)
=Z Z P(z)Pchannel (|) - Z (A(y)) Pchannel (y| A(y))
v all z

—I—Zp(y)) channel(y|f y))

It remains to note that each term in the sum Z (y)) el (’f(y) is maximized
y

when f coincides with the i.o. rule. Hence, the whole sum is maximized, and the overall

error probability minimized.

(b) The first statement is obvious, as, indeed is the second.

As we suppose, in the definition of the channel capacity, that the source messages are

equidistributed, it is natural to use the m.l. decoder. We are going to do so in the rest
of the course.

While using the m.l. decoder, an error can occur because either the decoder chooses a
wrong codeword z or an encoding rule f used is non-injective. The probability of this is
assessed in Lemma 8.2. For the sake of simplicity, we write P instead of Pchanner; symbol
P is used mainly for the joint input/output distribution.

Lemma 8.2. If the source messages are equidistributed over a set i then, while using
the m.l. decoder and an encoding rule f, the overall error probability satisfies

«(f) < W > Y p(Prliw)zrlfw)|v=y). 69
uEU u'EU: u'F#u

el

Proof of Lemma_8 7f the source emits u and you use the m.l. decoder, you get

32

(a) an error when P(Y|f(u")) > P(Y|f(w)) for some u' # u, Theorem 8.4.

(b) possibly an error when P (V| f(u')) = P(Y|f(u)) for some u' # u (this includes the (i) There exists a deterministic encoding rule f with e(f) < E.
case when f(u) = f(u'), . E
(11) P (E(F) < ——) > p for any p € (0,1). O

(c) no error when P(Y|f(u')) < P(Y|f(u)) for any u' # u. 1-p
Thus, Proof of Theorem 8.4. (i) is obvious. For (i), use the Chebyshov inequality:

e |92 £ (P (1) 2 () s ol =) (215 s aemrs o

-p
< > P(PIf) 2P (V]fw) |U=4).
uw €U u'#u

Multiplying by ﬂiu and summing up over u yields the result. O

Remark 8.3. Bound (8.4) of course holds for any probability distribution p(u) = Pgource
(U = u), provided you replace ﬁ_la by p(u).

As was noted, we will use, together with deterministic encoding rules, random coding.
A determistic encoding rule is a map f: & — {0,1}";if § & = r then f is given as a
collection of codewords

(f(ul),...,f(u.,)) € {0,1}" x (r times) x {0,1}" = ({0,1}")" = {0,1}¥".

Here, uy, ..., u, are the source strings (not letters!) constituting set I{. If f is one-to-one,
fui) # f(u;) wheni # j. A random encoding rule is a random element F of ({0, 1}N)'
(i.e. a probability distribution on ({0, l}N)r);

P(F=f)1 fe ({le}N)r'

Equivalently, F' may be regarded as a collection of random codewords F(u;), i = 1, ...,
u,. A typical example is where codewords F((u;), F(us), ..., F(u,) are independent and
(random) symbols Wi, ..., Wiy constituting word F(u;) are independent.

The reasons for considering random encoding rules are:

19 the existence of a ‘good’ deterministic code frequently follows from the existence
of a good random code,

2° the calculations for random codes are usually more simple than for optimal
deterministic codes, because a discrete optimization is replaced by an optimization over
probability distributions.

A drawback of random coding is that it is not always one-to-one (F(u) may coincide
with F(u') for u # u'). However, this occurs, for large N, with negligible probability.
Continuing with random coding, write the expected error-probability for a random
encoding rule F:
E:=Ee(F)=) «(f)P(F = f). (8.6)
f

33 34

Lecture 9: Shannon’s Second coding theorem

Definition 9.1. For random words XM = X, ..., Xy and Y(M) =V}, ..., Yy define

Cn = sup }:-:T—

i (X(N),Y(N)) . (9.1)
Py

[Recall that 2 (X(N), Y(N)) is the mutual entropy

i(x(NJ,Y(N)) - (X(N)) i (X(N)|y(N)) s K (y(N)) =i (Y(N)|X(N)))]

Theorem 9.2. (Shannon’s Second Coding Theorem: converse part) The channel ca-
pacity C' obeys

C <lim sup Cy. (9.2)

N—oo

Proof of Tﬁeorem 9.2. Consider a code f(= fn) : Un = Xy C {0,1}¥, where
fUn = 2N(B+o(1) R € (0,1). We want to prove that for any decoding rule,

Cn +0(1)

N2l-5m

(9.3)

The assertion of the theorem immediately follows from (9.3) and the definition of the
channel capacity because

’ . 1
lim inf &(f) >1— =lim sup Cyn
=<0 R N—co
which is > 0 when R > limsup Cy.

Wiog, assume that f is one-to-one (otherwise €(f) is even bigger). Then a codeword
XW) = f(U) is equidistributed when string U is, and, if a decoding ruleis d : {0,1}" —
&, you have, for N large enough,

NCn > (X(N),Y(N)) >4 (X(N),d(Y(N))) (see Theorems 6.5)
= (x“")) —h (X(N)|d(Y(N))) =log r—h (X(N)|d(Y(N)))
(by equidistribution)

=logr — e(f)log(r — 1)
(by the generalized Fano inequality (see Theorems 6.3).

In fact, to prove the last bound, observe that the (random) codeword X (V) = f(U) takes

r values ng), — ,z(,N) from the codeword set X (= XN), and the error probability is

() = 3 POX) = o, a(r®) £ 5

i=1

35

So, you get from the generalized Fano inequality:
h (X(N’ld(Y(N))) < g(€) + elog(r — 1) < 1+ &(f) log(r — 1).
Now, from the inequality NCn > logr — ¢ f)log(r — 1) you have
NCy > N(R + o(1)) — (f) log (2N<ﬁ+v(m -1),

S N(R+0(1)) - NCxn Cn +0o(1)
log (2N(R+o(1)) _1) R+o0(1)

a

In Theorem 9.3 below, p(X (M ¥ (M) denotes the random variable that assigns, to ran-
dom words X (V) and Y(¥) the joint probability of having these words at the input and
output of a channel, respectively. Similarly, px(X ™)) and py (V™)) denote the random
variables that give the marginal probabilities of words X (V) and Y (™), respectively.

Theorem 9.3. (The Shannon second coding theorem: direct part) Suppose you can
find a constant ¢ € (0,1) such that for any R € (0,c) and N > 1 there exists a random
coding F(u,),...,F(u,), where r = 2N(R+o()) with ii.d. codewords F(u;) € {0,1}",
such that the (random) input/output mutual information

_ 1 p(XM, ¥y
NN = Wlog pX(X(N))py(Y(N)) — ¢, as N — . (94)

Then the channel capacity C > c.

In other words, channel capacity C is no less than the supremum of the values ¢ for
which the convergence in probability in (9.4) holds for an appropriate random coding,.

Corollary 9.4.

Isup ¢ < C <limsupy_. C'N.| (9.5)

So, if the LH and RH sides of (9.5) coincide then their common value gives the channel
capacity.

The proof of Theorem 9.3 is rather long, and we perform it in the next lecture. We will
now show how Shannon’s SCT is used for calculating the capacity of a m.b.c.

36

Recall, for a m.b.c.,
N
P (y™[) =] Plgilz:), (9.6)
i=1
cf. (7.2).

Theorem 9.5. For an m.b.c.,

N

i (X0, y0) < 3 i(x;,7;), (9.7)
=1
with equality if the input symbols X;,..., Xy are independent. O

N
Proof of Theorem 9.5. Since P (y(Nllx{N)) = H P(yjlz;), the conditional entropy
=

Xik

N
h (Y(N)IX(N)) = ; (Y

and the mutual information

i (X(N},Y(N)) = (ytNJ) il (y(N)|X(N))

= (v®) - ShEx) < S (n(v:) - (¥;1%5))

j=1 y=1
E i(X;,Y;).
1=1

The equality holds iff ¥7,...,Yy are independent. But Y),...,Yy are independent if
X1,..., XN are. E:d

Remark 9.6. Cf. inequalities (6.15) and (6.16). Note the opposite inequalities in the
bounds.

Theorem 9.7. The capacity of an m.b.c. is

C =sup (X1, Y1). (9.8)
Px,

The supremum is over all possible distributions px, of symbol X;.

Remarks. 9.8. The pair (X;,Y1) may be replaced by any (X;,Y;), 7 = 1.

9.9. Recall, the joint distribution of X; and Y; is defined by P(X; = 2,¥] = y) =
px,(z)P(y|z) where P(y|z) is the channel matrix.

37

Proof of Theorem ... By the definition of Cy (see the notes for Lecture 9),

NCn < sup i(XV) y(N)
PXx

N
SZ = N sup (X1, Y1)
=1 pPx,

So, by Shannon’s SCT (converse part),

C <lim sup Cy <sup 1(X;,17).
N—oo PXx,

On the other hand, take a random coding F, with codewords
Fu)=Va ... Vin, =T o

containing 1.i.d. symbols Vj; that are distributed according to pmax, a probability dis-
tribution that maximizes {(X1,¥1). [Such random coding is defined for any r, i.e. for
any R (even R > 1!).] For this random coding, the (random) mutual information

= L _(X)
M=% o (X)) py (Y))
] p(X;,Y;) e
oo, S Hﬁf’—
N ; & pmax(X;)py g
where (X Y)
P\A;, Ej
i=log ——L 17
G=log o oy (7))

The random variables (; are i.i.d., with
p(X;, Y5)
pmax(X;)py (Y;)

By the Law of large numbers for i.i.d variables (see Theorem 3.5), for the random coding
as suggested,

EC] = ElOg = ipmax(Xlryl)-

IN — ipmax (X1, Y1) = sup (X1, Y1),
PX,

By Shannon’s SCT (direct part),
C = sup (X1, 11).
PX,
Thus,

C =sup i(X;,17).
Px,

O

Remark 9.10. Although, as was noted, the construction holds for each r, that is, for
each R > 0, only R < C are reliable.

38

Lecture 10: Shannon’s Second coding theorem (cont.)

Formula (9.8) admits further simplification when the channel is symmetric, i.e.

P(1/0) = P(0[1) = p. (10.1)

The channel matrix in this case is of the form

(57 12)
p 1-p)’
of (7.3); value p is the row error probability.

Theorem 10.1. For a m.b.s.c., with the row error probability p,

C=1-h(p,1-p) (10.2)
(cf (7.12). The channel capacity is realized by a random coding with the i.i.d. symbols
W; taking values 0 and 1 with probability 1/2.

Proof of Theorem 10.1. Formula (10.2) and the form of the maximizing probability
distribution were established in Remark 7.3. O

We are now going to prove the direct part of Shannon’s SCT (Theorem 9.3).

Proof of Theorem_9.3. The proof is based on two lemmas.

Lemma 10.2. Let F be a random coding, independent on the message string U, such
that the codewords F(uy),. .., F(u,) are i.i.d., with a probability distribution pp:

pr(v) = P(F(u) =v), u(=v™)e{0,1}". (10.3)

Here, u;, j =1, ..., v are source strings, and r = 2¥(B+0(1)) | Define random codewords
1'1:' o eIfr bY

if U =uj then V;:= F(u;) fori < j (if any),
= F(uiq) for i > j (if any), (10.4)
J = e 4= Liney —1.

Then U (the message string), X = F(U) (the random codeword) and V4,...,V._, are
independent words, and each of X, Vi,...,V,_, has distribution PF.]

Proof of Lemma 10.2. You write, for a joint probability,
P(U = Uy, X = T, 1/] = Ul)-"1VT-—] = Ur*l)

F(U]) v
Fuj-y) Vi1
=P|U=uj;, | Flu) |= z (10.5)
F(uj41) vj
F(ur} Ur—1

= Psource(U =Uj)PF(I}PF(U1)---PF(' l)-

39

Now if random variable ny is as in (9.4) then

1
_ i (X N) y (V) 10.6
Eny = —: (_X Y) (10.6)

Lemma 10.3. For random coding as in Lemma 10.1, for any t > 0,

E=EeF) <P(yn < t)+r27 N0 (10.7)

Proof of Lemma 10.4. For given words z(= z(M),y(= y™) € {0,1}¥, denote

Syfa) = {a' & {0,1}V : P(y|z") = P(y|x)} .

[P stands for Pchannet -] That is, Sy(z) includes all words the m.l. decoder may produce
in the situation where = was sent and y received. Denote, for a given non-random
encoding rule f and a source string u,

if f(u' u)) for some u' # u,
=i, L) 500 e
Clearly,
S =1- 1 Ly g sy
o IL (- 1) € sym)

It is plain that, for any non-random encoding f,
«(f) SE(f.UY),
and for an3} random encoding F,
E =Ee(F) < ES(F,U,Y).
Furthermore, for the random encoding as in Lemma 10.2,

ES(F,U,Y)<E (1 =1 (1 ~lvie Sy(X)}))

=

=Y px(@) Y Plyl)
z Y

g E(l—ﬁ(l—lmesy(xv}) \X”’Yzy)’

i=1

which, owi* - to the independence in Lemma 10.2, is

40

= gpx(w)gp(yix) (1 = I=IE 2~ Lvie sy(x)})> -

Furthermore, due to the 1.i.d. property (see again Lemma 10.1),

=1

ITE (11w e) = (0= @)™

i=1

where

Q)= Y pxla),

z'€S,(z)
and hence
E<1-E(1-Qy(X).
Denote by T = T(y) the set of pairs of words z,y for which

L P&y

N " px(z)py(y)

and write two bounds:

- (1-QE) ™ = Y (1~ @) l2)

n—1
(because of 1 — B" = Z Bi(1-B))
j=1

S (T‘ - 1)Qy(1)7 When (I'ly) g T,

and
1-(1-Qy(z))"™' <1, when(z,y)eT.

This yields

ESP((X,Y)ET)+(r-1) > px(2)P(ylz)Qy(x).

(z,y)€T

Now observe that
P(X,Y)¢T)=P(ny <t).

Finally, for (z,y) € T and z' € §,(z),
P(yla") > P(ylz) 2 py (y)2"".

px(z')

py ()

Multiplying by

gives

P(X =2'[Y = y) 2 px(a')2""

41

(10.8a)

(10.8b)

(10.9)

(10.10)

and summing over ' € 5,(z)

1>P (Sy(z)|Y - y) > Q,(z)2M,

or
@iy 87, (10.11)
Substituting (10.10) and (10.11) into (10.9) yiwelds the assertion of the lemma. O

We now can complete the proof of Theorem 9.3. In fact, take R=c—2andt=c—e
Then, as r = 2V(E+e(1)) | we have

E=Ee(F) <P(ny <c—¢)+2N(c—2e+tcteto(l)
P(nn < c—¢)+27Ne

The RHS tends to zero as n — oo, because P(ny < ¢ — €¢) — 0 owing to the condition
nN o Therefore, the random coding F' gives the expected error probability that
vanishes as N — oo.

By Theorem 8.4 (i), for any N > 1 there exists a deterministic encoding f = fy such
that, for R = ¢ — ¢,

li = 0.
Jim e(f) =0
Hence, R is a reliable transmission rate. This is true for any ¢ > 0, thus C' > c. O

42

Lecture 11: The channel capacity: concluding remarks

Theorems 9.7 and 10.1 may be extended to the case of a memoryless channel with an
arbitrary (finite) output alphabet, say {0,....t}. That is, at the input of the channel you
now havea word V(M) = Y; ... Yy where each Y; takes a (random) value from i —
For example, a channel may produce, in addition to the 0’s and 1’s, a ‘splodge’, ». The
memoryless property means, as before, that

Perannet (ve ™)) = T Pl (11.1)
1=1

and the symbol-to-symbol channel probabilities P(y|z) now form a 2 x (t + 1) stochastic
matrix (the channel matrix). A memoryless channel is called symmetric if the rows of
the channel matrix are permutations of each other and double symmetric if in addition
the columns of the channel matrix are permutations of each other. The definitions of the
reliable transmission rate and the channel capacity are carried through without change.

Theorem 11.1. The capacity of a memoryless symmetric channel with an output
alphabet {0,...,t} is
C <log(t+1)—h(po,--..p1) (11.2)

where (po, ... ,pt) is a row of the channel matrix. The equality is realized in the case of
a double-symmetric channel, and the maximizing random coding has i.i.d. symbols V;
taking values 0 and 1 with probability 1/2.

Proof of Theorem 11.1. The whole proof (including Shannon’s SCT) is carried out. and
in particular

(X1, Y1) = k(Y1) — h(Y1]X1) < log (t + 1) = h(Y1|X1).
But in the symmetric case

h(YilX:) = = Y P(X1 = z)P(ylz)log P(ylz)

z,y
— ZP(Xl = I)Zpk log pr = —h(pas...,p1). (11.3)
E k

I, in addition, the columns of the channel matrix are permutations of each other, then
h(Y1) attains log (t + 1). Indeed, take a random coding as suggested. Then

P =y)= 3 P = 2)Plle) = 3 3 Plule).

z=0,1
The sum ¥, P(y|z) is along a column of the channel matrix, and it does not depend on
y. Hence, P(Y = y) does not depend on y € {0,...,t}, which means equidistribution.
O

43

Remarks 11.2. In the random coding F’ used in Lemmas 10.2 and 10.3 and Theorems
9.3, 9.7, 10.1 and 11.1, the expected error probability E — 0 with N — co. This
guarantees not only the existence of a ‘good’ non-random coding for which the error
probability vanishes as N — oo (see Theorem 8.4 (1)), but also that ‘almost’ all codes
are asymptotically good. In fact, by Theorem 8.4 (ii), with p = 1 — VE,

P(E(F)<JE):31—\/E->1, as N — 59,

However, this doles not help to find a good code: constructing a good code remains

a challenging task in Information Theory. We will deal with this problem in the next
chapter of the course.

11.3. In the case of an m.b.s.c. with the row error probability p € (0,1/2), the m.l.

decoder looks for a codeword z{") that has maximum number of digits coinciding with

the received word y™). In fact, if y™) is received, the m.l. decoder compares the
probabilities

P (y]a) = ™y ™) _ N =~ da ™,y)

d(zN) (V)
= (1 -p N (_.E..._.)
U

for different codewords z(™). Here,
d(z™™,yM) = the number of digits i with z; # y;. (11.5)
As the first factor (1 — p)V does not depend on z(), the decoder seeks to maximize
the second factor, that is to minimize d(z(™), (™)) (since 0 < S g 1.) Quantity
1-p .

d(z™), y(N)) deserves a detailed discussion. We begin with the following observation.

Lemma 11.4. d(zN), y™)) defines a distance on {0,1}N. That is,
(1) 0 < d(z™ V) < N and d(zM),y(N)) = 0 iff 2(V) = (V)
(i) d(z), y(N)y = d(y™N), (M),
(iii) d(z™), 2N < d(z(M), 4 (M) 4 d(y (V) (V) (the triangle inequality).

Proof of Lcm:ma 11.4. (i) and (ii) are obvious. (iii) is straightforward: any digit i with
z; # z; has either y; # z; and then counted in d(z™), y(N)) or z; # y; and then counted
in d(yt™), 2(N), O

Distalevce fi(a:("f'],y(N)) is called the Hamming distance, and the space of binary words
{0,1}" with distance d(z(M), yN)) is called the Hamming space of length N, It contains

2N elements.

Geomet'rica.lly, Fhe Hamming space may be identified with the collection of the vertices
of a unit cube in N dimensions. The Hamming distance equals the lowest number of

edges you have to pass from one vertex to another. It is a good practice to plot pictures
for relatively low values of N:

44

N=2 N=3 N=

As in any metric space, we can consider a ball of a given radius about a given word in
the Hamming space. A ball of radius R about a word z(») is given by

Br(z™) = {y™ : d=™ ™M) < R}, (11.6)

{An important (and hard) problem is to calculate the maximal number of disjoint balls
of a given radius which can be packed in the Hamming space.]

Another important observation is that binary words admit an operation of addition
modulo 2:

g™ 4 yM) = (2, + y1)mod 2 ... (zy + yn)mod 2 (11.7)

[Recall the rule of the binary arithmetic: 1 4+ 1 = 0 mod 1.] This makes the Hamming
space a commutative group, with the zero codeword 0 = 0...0 playing the role of the

zero of the group. Each element of this group is opposite to itself: z(N) 4 z/(N) = 0 if
(N) = 2/(N)
i) = g (N

Henceforth, all operations over the binary words are understood in the sense of the
binary arithmetic.

Lemma 11.4. The Hamming distance on {0,1}" is invariant under the group transla-
tions:
d(:c(N) 4 z(N),y(N) + Z(N)) - d(z{N),y(N)) (11.8)

Proof of Lemma 11.4. If z; = 0, the corresponding digits are in the same relation in
words (™) + z(¥) and y(M) 4 2(V) as in words z(V) and y™). But the same is true if
zi= 1. O

The next lecture opens a new chapter of the course, related to the theory of codes.
We learned from the Shannon coding theorems that, under certain conditions, there
exist asymptotically good codes that attain the limits imposed by the information rate
of a source and the capacity of a channel. Moreover, we observed in Remark 11.2 that
almost all codes are asymptotically good. However, in a practical situation, these facts
are of a limited use: one wants to have a good code in an explicit form. Besides, as
was discussed in Lecture 1, it is desirable to have a code that leads to fast encoding and
decoding and maximizes the rate of the information transmission.

45

We will cc..iinue concentrating on the binary case where the symbols sent through a
channel are 0 and 1. Moreover, we also assume that the source emits binary strings

(1). ‘We have seen that, to obtain the overall error probability

vanishing as n — oo, we have to encode words u(™ by longer codewords (M) (N ~
C~1n). Word z{") is sent to the channel and is transformed into another word, y(™).
It i1s convenient to represent the error occurred by the difference of the two words:
elN) = y(N) — 2(N) or equivalently, write y(¥) = z(¥) 4+ &M in the sense of (11.8).

u("):ul, siey Mny Uy =

Thus, the more digits 1 the error word e(") has, the more symbols are distorted by the
channel. The m.l. decoder then produces a ‘guessed’ codeword (™ that may or may not
coincide with the ("), and then reconstructs a string u'™. In the case of an one-to-one
encoding rule, the last procedure is (theoretically) straightforward: you simply invert
the map u(® — z(N)_ Also, it is clear that the order of the codewords does not play any
important role, and so a code may be identified with the set of codewerds Xn C {0,1}7.

Intuitively, a ‘good’ code is the one that allows the receiver to ‘correct’ the error e(™"),
at least in the case where word e!) does not contain ‘too many’ digits 1.

As a convenient model of a channel we consider the m.b.s.c., with the row probability
of the error p < 1/2. The m.. decoder is then identified with a choice of a codeword

2™ that leads to a word (V) with a minimal number of the unit digits. In geometrical
terms:

2V ¢ Xy is a codeword closest to y)
(11.9)

in the Hamming distance d on {0,1}".

A drawback of this rule is that if you have more than one codeword at the same minimal
distance from a received word you are ‘stuck’. In this case you either choose a codeword
arbitrarily (possibly, randomly), or, when you require a high quality of transmission,
refuse to decode a received word and demand a re-transmission.

46

Chapter 3: Coding theory

Lecture 12: Bounds for codes

Recall, a code is identified below with a set of codewords Xn C {0,1}V.

Return to our basic scheme:

A decoder:
K s An encoder: A channel: produces
' : takes word transforms word 2N
emits words L™ o g TG il
u® =y u, 2N € Xy (V) = 2(N) 4 (M) a closest
N = € codeword
.. ..) . [
Definition 12.1. N is called the length of code X'y, r = A’y the size and p = Oz_r the

transmission rate. A code Xy is said to be D-error detecting if making up to D changes
in any codeword does not produce another codeword, and E-error correcting if making
up to E changes in any codeword z(") produces a word which is still (strictly) closer
to (V) than to any other codeword (that is, (V) is correctly guessed from a distorted
word). A code has minimal distance (or briefly distance) é if

§ = min [d(z™,zM): M) (V) e xy, V) £ (V)] (12.1)

Examples of codes and ways in which they are produced from each other may be found
in Questions 1,2 in Example Sheet 3.

Theorem 12.1 below is a simple exercise based on defintions:

Theorem 12.1. (a) Code Xy is D-error detecting iff its distance § > D + 1.

(b) Code Xy is E-error correcting iff the balls of radius E about the codewords are
disjoint.

Proof of Theorem 12.1. (a) is obvious. To prove (b), assume first that the balls of radius
E are disjoint. Then, changing up to E digits in a codeword produces a word that is
still in the corresponding ball, and hence is further apart from any other codeword.
Conversely, let our code be E-error correcting. Then any word obtained by changing
precisely E digits in a codeword does not fall in any ball of radius E but in the one
about the original codeword. If you make less changes you again do not fall in any other
ball, for if you do then, moving towards the second center will produce, soon or later,
a word that is at distance E from the original codeword and at distance < E from the
second one, which is impossible. O

47

Clearly, if a code detects D errors and D is even then it corrects E = D /2 errors, and if
D is odd than it corrects (D — 1)/2 errors.

Observe that the ‘volume’ of the ball in the Hamming space is

R

vn(R) = vol (Br(zM)) = Z C) : (12.2)

From Theorem 12.1 you see that you can’t have the number of the codewords too high if
you want to keep good a error-detecting and error-correcting ability. There are various
bounds for parameters of codes. we begin with a bound discovered by Hamming in the
late 40’s:

Theorem 12.2. (The Hamming bound). If a code Xy corrects E errors then its size
r =1 XN obeys

2 N

r< ;
- UN(E)

(12.3)

Proof of Theorem 12.2. The E-balls about the codewords (M) € Xy must be dis-
joint. Hence, the total number of points covered is rvx(E) and it should be < 2N the
cardinality of the Hamming space {0,1}. O

You see that a ‘good’ code X'y correcting E errors must give a ‘close-packing’ of the
Hamming space by balls of radius E. The problem of finding good codes becomes a
geometrical problem.

If you manage to find a code Xy that gives you a ‘true’ close-packing partition, you
have an additional advantage: your code not only corrects errors, but never leads to a
refusal of decoding. More precisely:

Definition . An E-error correcting code X'y of size § Xy = r is called perfect when the
equality is achieved in the Hamming bound:

2N
" un(E)

If a code Xy is perfect, every word y(™) € {0,1}" belongs to a (unique) ball Bg(z(M).
That is, you are always able to decode y!™) by a codeword: this leads to the correct
answer if the number of errors is < E, and to a wrong answer if it is > E. But you never
get ‘stuck’ in the case of decoding.

The problem of finding all perfect codes was solved ~ 20 years ago. These codes
exist only for

(a) E = 1: here N = 2/ — 1, r = 22'-1=!; the corresponding codes are called the
Hamming codes; .

(b) E = 3: here N = 23, r = 2!2; the corresponding code is called the (binary) Golay
code. [It is now usr " ‘together with some modifications) in the US space programme:

48

the quality of photographs encoded and transmitted frc ~ Mars and Venus was so
excellent that it did not require any improving procedure. In the former SU space
vessels (and early American ones) there were other codes used (we may come across
of them later): they produced lower quality photographs, and further manipulations
were needed, based on statistics of the pictures.] If you consider non-binary codes,
with three or more symbols, then there exists one more perfect code, for three
symbols.

Let us continue with bounds on codes in the binary case.

Theorem 12.3. (The Gilbert—Varshamov bound). There exists a code Xy with minimal
distance § such that

2N

=R

0(124)

Proof of Theorem 12.3. Consider a code of maximal size among the codes of minimal
distance & (and length N). Then any word y(™) € {0,1}" must be distant < § — 1 from
some codeword: otherwise you can add y") to the code without changing the minimal
distance. Hence, the balls of radius § — 1 about the codewords cover the whole Hamming
space {0,1}". That is, for our code,

run(6—1) = ai.

O

As was mentioned before, there are several ways of producing a code from another code
(or from a collection of codes). See Example Sheet 3. One particular procedure is
‘truncation’: in each codeword z(N) from an original code X you drop the last digit
zn. If code Xy had the minimal distance § > 1 then the new code, X5 _;, has the
minimal distance > § — 1 and the same size as X'y. The truncation procedure leads to
the following bound.

Theorem 12.4. (The Singleton bound). Any code Xy with minimal distance § has

=Xy <2V 0{12.5)

Proof of Theorern 12.4. You can repeat the above truncation procedure § — 1 times,
still preserving the size of code X'y. At the end you should ‘fit’ into the Hamming space
{0,1}N¥—%+1 that contains 2V ~%+1 elements. O

Corollary 12.5. If r*(N,§) is the maximal size of a code Xy with minimal distance ¢
then
2z r*(N,8) < min _ 2N oN-se O (12.6)
vn(6-1) " V0T vn([6/2]) ' B

49

To simp the notation, we systematically omit henceforth the subscript N and
the superscript (N) in Xy and (M), (V) etc.

The upper bound in (12.6) becomes too rough when § ~ N/2. For example, in the
case N = 10 and § = 5, it gives the bound r < 18, whereas in fact there is no code with
r > 13 (see Example 45 from Example Sheet 3), but there exists a code with r = 12.
The codewords are as follows:

0000000000
1111100000
1001011010
0100110110
1100001101
0011010101
0010011011
1110010011
1001100111
1010111100
0111001110
0101111001

The lower bound gives in this case 2 and is also far from being satisfactory.

In fact, in the case § ~ N/2 there are better upper bounds than (12.6), called the
Plotkin bounds. See the Appendix to Lecture 13.

Appendix to Lecture 12

The bounds provided in Theorems A.1 and A.3 below are known as the Plotkin bounds.

Theorem A.1. For any code X of length N and distance § with N < 26,

; [

Theorem A.2. Let r*(N,) denote the maximal size of a code of length N and distance
8. Then, for any N and I, (a)

r*(N, 21— 1) = r*(N + 1,21). (A.2)
and (b)
* T 1 *
r(N =1,) = 5r*(N,) [(A.3)

Theorem A.3. In the notation of Theorem A.2, if | is even and 21 > N then

(N, <2 [ﬁ] (A4)

30

and

r(21,1) < 4l. (A.5)
Iflis odd and 20 +1 > N then
I+1
. L L A6
’"{N’l)—z[zzﬂ—z\f} Lad)
and
P+ 1,0) <4+ 4 O(A.7)

Proof of Theorem A.1. You have an obvious bound

r(r—1)§ < Z Z d(z,z") (A.8)

TEXT'EX

On the other hand, write code X as an r x N matrix with rows as codewords. Suppose
that column ¢ of the matrix contains s; zero’s and r — s; one’s. Then

N

z Z d(z,z') < ZZS,{r—si). (A.9)
z€EX z'EX i=1

If r is even, the RHS of (A.9) is maximized when s; = r;/2 which, together with (A.8),

vields

. or

r(r—1)6 < %er, (A.10)
26
&
"S26-N
As r is even, this implies
)
<2|—0.
rs2 [25 ” N]

If r is odd, the RHS of (A.9) is < N(r? — 1)/2 which, together with (A.8) yields

N 26

L—-=———1.
TSN B-N

This implies in turn that

26 5
S) (T e
"S[za_N] 1*2[25—N1’

because [2z] < 2[z] + 1. O

Proof of Theorem A.2. (a) Let X* be a code of length N, distance 2/ — 1 and size
r*(N, 20 —1). Take its parity-check extention X+ (cf Example 2(b) fror “xample Sheet

51

N+1
3). That is, add digit zn+1 to each codeword z; ... zx so that Z z; =0. Then X%t is

i=1
a code of length N + 1, the same size r*(V, 2] — 1) and distance 2[. Therefore,
r*(N,21 - 1) < r*(N +1,20).
Similarly, deleting the last digit leads to the inverse:

r*(N,21—1) > r*(N +1,20).

(b) Given a code of length N and distance [, divide the codewords into two classes:
those ending with 0 and those ending with 1. One class must contain at least half of the
codewords. Hence the result. O

Proof of Theorem A.3. (A.4) follows from (A.1). (A.5) follows from (A.1) and (A.3):
r*(41,21) < 2r*(41 — 1,20) < 8L.

(A.6) follows from (A.2):
[+1
. =r* < —_—.
(N,) =r*(N+1,14+1) _2[21+1—N]

Finally, (A.7) follows from (A.2) and (A.5). O

52

Lecture 13: Asymptotical bounds. Lin. .r codes

It is interesting to write an asymptotical form of bounds (12.6). First, a technical
lemma:
Lemma 13.1. Let A € (0,%). Then
.1
AJim = logvn([AN]) = h(}, 1= X)
(= =Alog A — (1= X)log(1—A)=G(A) (see (6.2))).

(13.1)

Proof of Lemma 13.1. Use the formula

un(R) = Zﬁj (‘T) , R=[\N].

1=0

The key remark is that the last term in the sum is the largest. In fact, consider the ratio
of two successive terms:

N .
("“):J_V_”gl for 0 <i < R.
141

(3) swm=@+n(3,).

Now use Stirling’s formula: N! ~ N¥+3¢=N./2x. Then

Hence,

-

N
log (}\{) =—(N—R) log i

5 —Rlog%+0(log!\’)
and
R R R R 1 1
e 5 e EA Y e 2 R Y &
(1 N)log (l N) N logN + NU(]ogI\) S5 logrn(R)
< — log(R + 1) + the LHS.

The limit £ — X yields the result.

We want to study the asymptotics of 7*(N,[AN]), the maximal size of the code of
length N and distance [IN], as N — oo. That is, the asymptotics of the maximal size
of a code that detects and corrects a number of errors which grows linearly with N, the
length of a code. More precisely, we analyze

i
\}im N logr*(N,[AN]) = a(A), 0<A<1/2

53

Theorem .. .2.

(a) a(®) <1-G(y2) (Hamming), (13.2)
(b) a™) <1-A (Singleton), (13.3)
(c) a(® =>1—-G@{) (Gilbert-Varshamov). (13.4)

Proof of Theorern 13.2. By inspection.

leckure 12
By performing an (asymptotical procedure similar to the above ones, for the Plotkin
bound (see the Appendi®), one obtains an asymptotical Plotkin bound:

aly <1- 23 (13.5)

A figure below shows the asymptotical behaviour of the bounds established. ‘Good’
codes are the ones between the asymptotical Gilbert-Varshamov, Hamming and Plotkin
bounds. *

tqbood.’
codes
‘l:a.d.)
codes \
'
5 A

Until 1973, there was no explicit construction known, which leads to codes achieving
the asymptotical GV bound. [All known constructions led to codes below the the asymp-
totical GV curve.] The examples of codes that achieve the GV bound vere constructed
by using algebraic-geometrical ideas.

The Gilbert-Varshamov bound itself is questionable. Until 1987 there was no better
lower bound known (and in the case binary coding there is still no better lower bound
known). However if the alphabet used contains a > 49 symbols, there exists a construc-
tion, again based on algebraic geometry, which produces better lower bound and gives
examples codes that asymptotically exceed, as N — oo, the GV curve.

Practically all codes used in modern practice are linear:

Definition 13.1. A code X is called linear if, together with a pair of codewords, = and
x', X contains the sum z + z'(= z + z'mod 2), with digits (z; + z!)mod 2.

* There are about a dozen of various upper bounds known, competing with each other:
some of them are asymptotically insignificant (like the Singleton bound), although quite
important in particular domains of parameters.

54

[In other words, X is a linear subspace of {0,1}", over the field {0,1}.**]

Linear codes are popular because they are easy to work with. For example, to
identify a linear code & you only have to fix a ‘basis’ in the corresponding subspace.
A basis, as usual, is a maximal linearly independent set of words (I will sometimes call
them ‘vectors’); a linear subspace is, as usual, generated by its basis, and all bases in a
given subspace have the same number of words: this number is called the dimension or
the rank of the subspace. A linear code & of length N and rank k is also called an (IV, k)
code. A linear code of length N, rank k and distance d is called an (N, K, d)-code.

Note that any linear code contains the zero codeword 0.
Lemma 13.3. Any linear subspace of {0,1}" of rank k contains 2% vectors.

Proof of Lemma 13.3. A basis of the subspace contains k linearly independent vectors.
The whole subspace is generated by the basis; hence it consists of the sums of basic
vectors. There are precisely 2F sums (the number of subsets of {1,...,k} indicating the
summands), and they all give different vectors.

Thus, any linear code Xy has {(AXy) = 2%, where k = rank (Xn). [That is, an
(N, k) code may be used for encoding all possible source strings of length k.] But to
identify set Ay you only need to indicate k linearly independent words. In other words,
a linear code of rank k is chracterized by an k x N matrix of 0’s and 1’s, whose rows are
linearly independent:

g11 — . be ... O1IN
g21 vee e wee G2N
G = : g (13.6)
Gkl cov eve eov QRN
Namely, you take the rows (g;1,...,9:n) as the basic vectors of a linear code. Matrix G

is called a generating matriz or generator of a linear code. It is clear that two matrices
may generate the same code: the relation between them is discussed in examples from
Example Sheet 3.

Equivalently, a linear (N, k)-code X may be described as the kernel of a certain
matrix H, again with the entries 0 and 1:

hiy oo hag
hg]_ hgk
Be| ° f (13.7)
hyvi .. hink
kerH = {z™ — g, ...zn : ™M H =0} (13.8)

** A field is a set endowed with operations of addition and multiplication so that
natural properties of commutativity, associativity and distributivity arc lid. See below.

85

It is plain that the columns of H are vectors orthogonal to X, in the sense of the ‘usual’
scalar product***

N
(zry) =3 e (13.9)

Matrix H is called a parity check (or simply check) matrix of code A'. The parity check
matrix is again not unique. If code A'x has rank k then H must contain N — k linearly
independent columns. For definiteness, we discard redundant columns and always think
of H as an N x (N — k) matrix with linearly independent columns.

In many cases, the description of a code by a check matrix is more convenient than
by a generator.

Example 13.1. (The Hamming (7,4) code). The code is determined by a 7 x 3 parity

check matrix. The rows of the check matrix are all non-zero words of length 3. If you
order these words lexicographicaly, you obtain

0 0 1
010
011
Hiex 100 (13.10)
101
1. 1 B
1 11
The corresponding generating matrix may be written as
0 01 1001
w40 1L @8 104
G_0010110 (13.11)
1 11 0000

In many cases it is convenient to write the check matrix of a linear (n, k) code in a

canonicel (or standard) form:
Fean (I}\;k) (13.12)

In the case of the Hamming (7,4) code it gives

He = (13.13)

= ===
=N = i
N = = =]

*** Scalar product (13.9) (also called sometimes the dot-product) possesses all prop-
erties of the Euclidean scalar product in R¥, but one: it is not positive definite (and
therefore does not define a norm). That is, there are non-zero vectors =z € {0,1}" with
{(z-z) = 0. Luckily, -~ do not need the positive definiteness.

56

with a generating matrix also in a canonical form:

Gen = (G’ Ik). (13.14)
Namely,
0111000
wn _[1 01010 0
C"=1110001 0 (13.15)
1 11 0 0 0 1

Formally, G** and G**® determine different codes. However, these codes are equivalent:

Definition 13.2. Two codes are called equivalent if they differ only in the order of
digits.

In the sequel, unless otherwise stated, we do not distinguish between equivalent linear
codes.

Definition 13.3. A weight w(z) of a word z is the number of the non-zero digits in z:

w(z)={i:1<i<N, z; #£0}. (13.16)

Remark 13.4. An advantage of writing G in a canonical form is that a source string
ul®) is encoded as an N-vector u(k)G*"; according to (13.14), the last k digits form
word u(¥) (they are called information digits, whereas the first N —k are used for the
parity-check (and called parity-check digits). Pictorially, the parity-check digits carry
the redundancy that allows the decoder to detect and correct errors.

Theorem 13.5.
(i) The distance of a linear code equals the minimal weight of its codewords.

(i1) The distance of a linear code equals the minimal number of linearly dependent sets
of the rows in the check matrix.

Proof of Theorem 13.5.

(a) As code X is linear, the sum z +y € A’ for each pair of codewords z,y € X'. [Note:
The zero word 0 = = + x is always a codeword in a linear code.] Owing to the invariance
property of the Hamming distance (see Lemma 11.5), d(z,y) = d(0,z +y) = w(z +y)
for any pair of codewords. Hence, the minimal distance of X' equals the minimal distance

between 0 and the rest of the code, i.e., the minimal weight of a non-zero codeword from
X.

(b) Let &' be a linear code with a parity-check matrix H and minimal distance §. Then
there exists a codeword r € &’ with exactly é non-zero digits. Since 2 H = 0, you conclude
that there are ¢ rows of H which are linearly dependent (they correspond to non-zero
digits in). On the other hand, if 3(6 — 1) rows of H which are linearly dependent then
their sum is zero. But that means that 3 a word y, of weight w(y) = § — 1. such that
yH = 0. Then y must belong to X which is impossible, since minfw{z) : 2 € X,z #
0] = 6. O

(o1}
-1

Lecture 14: Linear codes (cont.). The Hamming codes

Theorem 14.1. The Hamming (7,4) code has minimal distance 3, i.e. it detects 2 errors
and corrects 1.

Proof of Theorem 14.1. Rows 1, 6, 7 of the parity check matrix H'®* are linearly
dependent (in fact, to any pair of rows you can add their sum: this gives you a linearly
dependent triple). No two rows are linearly dependent because they are distinct (z+y = 0
means that z = y). O

Theorem 14.2. The Hamming (7,4) code is a perfect 1-error correcting code.

Proof of Theorern _14.2. The volume of the 1-ball 17(1) equals 14+ 7 = 8 = 23, and the
size of the code is 2¢. 2443 = 27, |

You immediately conclude that the construction of the Hamming (7,4) code admits
a straightforward generalization. Namely, consider a matrix whose elements are all
possibel non-zero words of length [

10 ...00
loo 0 1 ,
H=1,, 00| 271
11 ...1 1
— | —

The columns of this matrix are linearly independent, and hence it may be considered as
a generating matrix of a linear code of length N = 2' — 1 and rank N — [=2/ —1— |,
Any two rows of H are linearly independent but there exist linearly dependent triples of
TOWS, e.g.

10 ... 0

0 1 0
and

11 ... 0

[As before, for any pair of rows 3 a third row such that the whole triple is linearly
dependent.] Hence, the code with the check matrix H has a minimal distance 3, i.e.(N)it
detects 2 errors and corrects 1.

This code is called the Hamming (2! — 1,2! — 1 —[) code. It is a perfect 1-error
correcting code: the volume of the 1-ball vyi_;(1) equals 1 +2' — 1 = 2!, and size x

ol _1_1
] e . 5 <
volume = 22' =11 x 91 = 92'=1 = 9N The information rate is —— = — 1 as | — oo.

2t -1
Thus,

Theorem 13.4. The above construction defines a family of (2 — 1,2! — 1 — 1) linear
codes, with minimal distance 3, which are perfect I-error correcting codes.

58

Until the late 1950s, the Hamming codes were a unique family of codes existing in
dimensions N — oo, with ‘regular’ properties. It was then discovered that these codes
have a deep albebraic background. The development of the algebraic methods based on
these observations is still a dominant theme in the modern coding theory.

We will be able to cover some basic concepts and facts from the algebraic coding
theory. Before moving in this direction, we need to discuss the decoding procedure for a
general linear code. As a linear code, X' contains 25 words where k is the rank of X. As
was noted before, it may be used for encoding source messages (strings) v = u; ... up of
length k. The source encoding u € {0,1}* ~ X becomes particularly simple when you
use the generating and parity check matrices in the canonical (or standard) form

con ’ an I-
G :[G I, TRAn B

ﬁ b) Hl IL‘

cf. notes for Lecture 13.

Theorem 14.4. For any linear code X there exists an equivalent code X' (obtained
from X by permutating digits), with the generating matrix G°® and the check matrix
H<*" in standard form (13.1), and G' = H'.

Proof of Theorern 14.4. Assume, wlog, that code X is non-trivial (that is, not reduced
to the zero word 0 ... 0). Write a basis for A and take the corresponding generating
matrix G. By performing row operations (where a pair of rows i and j is exchanged
or row ¢ is replaced by row i plus row j) we can change the basis, but do not change
the code. Our matrix G contains a nonzero column, say [,: perform row operations to
make gy;, the only non-zero entry in this column. By permuting digits (columns), place
column [; at poistion N — k. Drop row 1 and column N — k (i.e., the old column [;)
and perform a similar procedure with the rest, ending up with the only non-zero entry
g1, in a column /. Place column I, at position N — k + 1. Continue until you form
an upper triangular k£ x k submatrix. Further operations may be reduced to this matrix
only. If this matrix is a unit matrix, stop. If not, pick the first column with more than
one non-zero entry. Add the corresponding rows from the bottom to ‘kill’ redundant
non-zero entries. Repeat until you form a unit submatrix. You end up with a generating
matrix in a standard form, and new code is equivalent to the original one.

To complete the proof, observe that matrices G°*® and H®*" figuring in (13.12), (13.14),
with G' = H', have k independent rows and N —k independent columns, correspondingly.
Besides, the k x (N — k) matrix G H3" vanishes. In fact,

(G*"H**");; = { row 1 of G, column j of H)

= gij - Lj + Inv—stihi; = gij + 955 = 0.

See the diagram below.

59

Y
—

1 (a————.i—._.010)

1
8 N-h+.b I N"k"v

-~
b—————ed G 0es > O

Hence, H*" is a check matrix for G*". O

Returning to source encoding, suppose that generating matrix is in the canonical form
G, Then, given a string u = uy, ..., Uk, you set z = ZLI u;gs*™, where g§*" represents
row ¢ of G*®®. The last k digits in z give string u; they are called the information digits,
whereas the first N — k digits are used to ensure that z € X; they are called the parity

check digits.

The idea of the decoding procedure for linear codes is also relatively simple. Recall that
we agreed to decode a word y = y; ... yn by the closest codeword z € X.

Definition. Let A be a linear code of length N, and © = uy...uy be a word from
{0,1}". The coset of X determined by u is the set of all words of the form u + z where
z € X. We denote it by u + X.

Theorem 14.5. Let X be a linear code and u,v be words of length N. Then:

(1) Ifu is in the coset v + X, then v is in the coset u + X; in other words, each word
in a coset determines this coset.

2)ueu+X.
(3) u and v are in the same coset iff u +v € X.

(4) Every word of length N belongs to one and only one coset. That is, the cosets form
a partition of the whole Hamming space {0,1}V.

(5) All cosets contain the same number of words which equals { X. If the rang of X is
k then there are 2N ~* different cosets, each containing 2% words. Code X is itself a
coset of any of the codewords.

(6) The coset determined by u + v coincides with the set of elements of the form = +y,
wherez €u+ X, ye X +v.

Proof of Theorern 14.5. (An easy (and useful) exercise in linear algebra and set theory.)

Now the decoding rule for a linear code: you know the code X beforehand, hence you
can calculate all cosets. Upon receiving a word y, you find its coset y + & and find a word
u € y + & of least weight. Such a word is called a leader of coset y + X. A leader may
not be unique: in t' + case you choose among the leaders arbitrarily (which of course

60

may lead to an error) or refuse to decode and demand a re-..ansmission. Suppose you
have chosen a leader u. You then decode y by the word

T =y-+u. O

Theorem 14.6. Word z is always a codeword that minimizes the distance between y
and the words from X

Proof of Theorem 14.6. As y and u are in the same coset, y + u € X (see Theorem
14.5(3)). All other words from X are obtained as the sums y + v where v runs over coset
y + X. Hence, for any z € X,

d(y,z) =w(y +z) > Uér;i_’r_lxw(v) =w(u) = d(y, z)-

The parity-check matrix provides a convenient description of the cosets Xy + ul™).

Theorem 14.7. Cosets u+ A" are in one-to-one correspondence with vectors of the form
yH: two vectors, y and y' are in the same coset iff yH = y'H.

In other words, cosets are identified with the rank (or range) space of the parity-
check matrix.

Proof of Theorern 14.7. y and y' are in the same coset iff y + 3’ € X, i.e.

H
(y + yr)H =yH + y'H = 0 1.8 Y= y'H
O

In practice, the decoding rule is implemented as follows. Vectors of the form yH
are called syndromes: for a linear (N, k) code there are 2V—F syndromes. They are all
listed in the syndrome ‘table’, and for each syndrome a leader of the corresponding coset
is calculated. Upon receiving a word y, you calculate the syndrome yH and find, in the
syndrome table, the corresponding leader u. Then set, as before,

zT=y+u.

The procedure described is called syndrome decoding although it is relatively simple,
one has to write a rather long table of the leaders. Moreover, it is desirable to make
the whole procedure of decoding algorithmically independent on a concrete choice of the
code, i.e. of its generating matrix. This goal is achieved in the case of the Hamming
codes:

Theorem 14.8. For the Hamming code, for each syndrome the leader u is unique and
contains not more than one non-zero digit. More precisely, if the syndrome yH = s
gives row i of the check matrix then the leader of the corresponding coset has the only
non-zero digit 1.

61

Proof of Theorem 14.8. The leader minimizes the distance between the received word
and the code. The Hamming code is perfect 1-error correcting. Hence, every word is
either a codeword or within distance 1 of a unique codeword. Hence, the leader is unique
and contains at most one non-zero digit. If the syndrome yH = s occupies position 1
among the rows of the parity-check matrix then, for word e; = (0 ... 10 ... 0) with
the non-zero digit ¢,

(y+e)H=5+s=0.
That is, (y + e;) € X and ¢; € y + X. Obviously, e; is the leader. O

Lecture 15: Cyclic codes

Our next goal is to study a special class of codes which contains the Hamming codes.
This class is formed by the so-called cyclic codes. Before this class is introduced, we
discuss some related ‘polynomial’ algebra.

We consider polynomials with coefficients 0 and 1:
a(X)=a +a X+ +axX", a=], k=0,...N

These polynomials are added and multiplied in the usual fashion, except that X* 4 X* =
0. In the sequel we set deg 0 = 0.

Examples. 1. (1+X + X+ X)(X + X+ X3) =X + X"
21+XV=(14+X)1+X +---+ XN,
3. (1+X)* =1+ X? (A freshman’s dream).

Theorem 15.1. (The division algorithm). Let f(X) and h(X) be two polynomials with
h(X) # 0. Then there exist unique polvnomials g(X) and r(X) such that

FX) = g(X)A(X) +r(X) with degr(X) < deg h(X). O
Polynomial g(X) is called the quotient and r(X) the remainder.

Proof of Theorem 15.1. If deg h(X) > deg f(X) you simply set

fIX) =0 h(X) + f(X)-

If deg h(X) < deg f(X), you can perform the ‘standard’ procedure of long division,
with the rules of the binary addition and multiplication. O

Example 4. The quotient X + X2+ X%+ X7 4+ X8 /14+ X +XT4 X4 = X® 4+ X4,
the remainder is X + X? + X3,

Definition 15.1. Two polynomials, fi(X) and fa(X) are called equivalent modulo
h(X) if their remainders, after division by h(X), coincide. That is,

Fi(X) = gi(X)R(X) +r(X), i=1,2
and deg r(X) < deg h(X). In this case we write f1(X) = f2(X)mod h(X).

Theorem 15.2. Addition and multiplication of polynomials respect the equivalence.
That is, if

AX) = fo(X)mod h(X) aend pi(X) = p2(X)mod h(X)
then

63

AX) +pi(X) = F2(X) + pa(X) mod A(X)

and

[i(X)p1(X) = fo(X)p2(X)mod h(X).

Proof of Theorem 15.2. We have, for 1 = 1,2,

filX) = g X)(X) +r(X), pi(X) = qi(X)R(X) + 5(X),

with
degr(X), degs(X) < degh{X).
Hence
FilX) + pi(X) = (9i(X) + g:i(X))A(X) + (r(X) + s(X))
with
deg (r(X) + s(X)) < max[r(X),s(X)] < deg h(X).
Thus

fi(X) + p1(X) = f2(X) + p2(X) mod A(X).

Furthermore, for i = 1,2,
AR = (0 CORE) +r(X)a:(X) + 5(X)gi(X)) AX) + r(X)s(X).

Hence, the remainder for both polynomials fi (X)p;(X) and fo(X)p2(X) may come only
from r(X)s(X). Thus it is the same for both of them. : O

Return to linear codes. The first remark is that every linear code Ax corresponds to a

set of polynomials, with coefficients !, of degree N — 1 which is closed under addition
mod 2:)
a(X)=ap+ -+anv-1 & ad™M=ap...any

b(X) =bo4 - Fbyoy o BN =by. . by
a(X)+ X)) « a™ M mod 2 =ag+bg...any—1+ by_1.
[We changed the numeration of the digits in a word of lengths N: instead of numbers 1,

ooy N we now use 0, ..., N — 1 which is more convenient. Also, instead of z, y, ete, we
use for the words the notation «, b, etc.])

In what follows we systematically write a(X) € & in the case word a™) =qq ... an_1,
representing polynomial a(X), belongs to X.

Given a word a = ap...ay—_;, we define the cyclic shift 7a as a word ay—14a9...
anN-—2.

Definition 15.2. A linear code X is called eyclic if the cyclic shift of each codeword is
again a codeword.

A ‘straightforward’ way to form a cyclic code is as follows: take a word a, then its
subsequent cyclic shift <a, v2a etc., and finally all sums of the vectors obtained. Such

64

a construction allows you to build a code from a single w. ., and eventually all the
properties of the code may be inferred from the properties of word a.

It turns out that every cyclic code may be obtained in such a way: the corresponding
word is called a generator of a cyclic code.

Lemma 15.3. A code X is cyclic iff, for any vector a from a basis of X, ma € X',

Proof of Lemma 15.3. Each vector u € X is a sum of the vector of the basis. But
7(u + v) = 7u + mv, hence the result. O

An important property of a cyclic shift is established in Lemma 15.4:

Lemma 15.4. If word a corresponds to a polynomial a(X) then word ma corresponds
to Xa(X) mod (1 + X%).

Proof of Lemma 15.4. You can write

Xa(X) = agX + aXi4+ 4+ an_2 XN 14 an_1 XV
=an-1 +aX +aXi 44 an—2 XV 14 an1 XY +an
=ay-1+ agX + a1X2 + e+ aNr.zXN_l —+ aN_l(XN + 1)

which means that the polynomial
an—1+aX 4+ an—2XV7?
corresponding to 7a equals Xa(X) mod (1 + XN). Od

Contmumd in the same way, you can argue that word z* corresponds to X2%a(X)
mod (1 + X V). ete. A corollary of these facts is the following theorem.

Theorem 15.5. A cvelic code contains, with each pair of polynomials a(X) and b(X),
the sum a(X) + b(.X') and any polynomial v(X)a(X) mod (14 X¥).

Proof of Theorem 15.5. The sum a(X) + b(X) € A because of linearity. If v(X) =
vo + 11X + - vny—1 X" 7! then each polynomial X (% a(X) mod (14 X") corresponds to
n*a and hence belongs to . As

v(X)a(X) mod (1 +XN) = Z (Xa(X) mod (1 +X™M)),

the LHS belongs to A'. O
In other words. if vou introduce the operation of multiplication of polynomials
a(X) * b(X) = a(X)b(X) mod (1 + X™M),

thien the polynomials of degree < N —1, with the x-multiplication and the usual addition,
form a commutative ring, and cyclic codes are precisely the tdeals of this ring,

G5

Theorem 1. .. Let ¢(X) = 2?‘;0" ¢; X' be a non-zero polynomial of minimum degree
in a cyclic code X. Then

(i) ¢(X) is a unique polynomial of minimal degree,
(ii) code X has rank k,

(iii) the codewords corresponding to ¢(X),...,X* 1¢(X), form a basis in X; they are
cyclic shifts of word ¢g...cny—k0...0,

(iv) a(X) € X iff a(X) = v(X)c(X) for some polynomial v(z) of degree < k (that is,
¢(X) is a divisor of every polynomial from X'.)

Proof of Theorem 15.6.

(1) Suppose ¢ (). Zf\iok ¢! X; is another polynomial of minimal degree N — k in &’
Then cx—k = cj_p = 1, and hence deg (¢'(X) + (X)) < N — k. But as V - k is the
minimal degree, ¢/(X) + ¢(X) should equal zero. But this happens iff ¢(X) = (X).
Hence. ¢(X) is unique.

(1) follows from (iii).

(iii) Assume that property (iv) holds. Then each polynomial a(X) € X has the form
(X)) ZL,X*C (X), r<k.

Hence, each polynomial a(X) € X is a linear combination of polynomials ¢(X), Xe(X),
..... [k-le(X () (all of which belong to &'). On the other hand, polynomials ¢(X), X¢(X).

L Xk= 1¢(X) have distinct degrees and hence are linearly mdependent Therefore words
¢, 7e. ..., m=1c. corresponding to ¢(X), X¢(X),..., X 1e(X), form a basis in X'

(iv) We know that each polynomial a(X) € A’ has degree > degc(X). By the Division
Algorithm,

a(X) = v(X)e(X) + r(X).

Here. we must have
degv(X) < k and degr(X) < dege(X)=N — k.

But then v(X)c(X) belongs to X owing to Theorem 13.5 (as v(X)c(X) has degree
< N —1, it coincides with v(X)e(X) mod (1 + X7)). Hence,

r(X)=a(X)+v(X)e(X)e X

by linearity. As ¢(X) is a unique polynomial from A’ of minimum degree, r(X) =0. O

GG

Lecture 16: Cyclic codes (Cont.) The BCH codes

Corollary 16.1. Every cyclic code is obtained from the codeword corresponding to a
polvnomial of minimum degree, by cyclic shifts and linear combinations.

Definition 16.1. Polynomial ¢(X) of the minimal degree in X is called a generator of
a (cyclic) code X.

Remark. There may be other polynomials that generate X in the sense of the above
corollary. But the minimum degree polynomial is unique.

Theorem 16.2. A polynomial ¢(X) of degree < N — 1 is the generator of a cyclic linear
code of length N iff ¢(X) divides 1 + XV. That is,

1+ XV = A(X)e(X)
for some polynomial h(X) (of degree N — 1 — deg ¢(X)).

Proof of Theorem 16.2. By the Division Algorithm,

14+ XY = h(X)e(X) +r(X), degr(X) < ¢(X).
That is,
r(X) = h(X)e(X) +1+ XV, e r(X)=h(X)e(X) mod(1+X"Y).

By Theorem 15.5, 7(X) belongs to the cyclic code X' generated by ¢(X). But ¢(X)
must be the (unique) polynomial of minimum degree in X. Hence, r(X) = 0 and
1+ XN = h(X)e(X).

Corollary 16.3. All cyclic codes of length N are in one-to-one correspondence with the
divisors of polynomial 1 + XN,

Examples. 1. Polynomial 1 + X* has two ‘standard’ divisors:
1+X¥ =0 +X)Q+X +...+ XV

(recall, all operations are in the binary arithmetic). Polynomial 1 + X generates the
parity-check code {z = #; ... zn: Y ;i = 0}, whereas 1 + X + ... + XV~ the
symbol-repetition code { 00...0, 11...1}.

2. (The Hamming (7,4) code). Recall, the generating and check matrices are, in the
lexicographic form:

Zy IT9 T3 Ty Tz Tg T7 g?é
0 0 1 1 0 0 1 01 1
o R RN N I
1 01
1 1. 1 0 0 0 O 110
1 1
67

If you re-order the digits z4z7z51322262; (Which leads to an equivalent code) then the
rows of the generating matrix become subsequent cyclic shifts of each other:

T 000
chcl: 001 10 1 00
0011 010
0001 101

and the cyclic shift of the last row is again in the code:
7(0001101)=(1000110)=(1101000)4(0110100)+(0011010)

By Lemma 15.2, the code is cyclic. By Theorem 15.6 (iii), the generating polynomial
¢(X) corresponds to the framed part in matrix Gevel:

~e(X) =14 X+ X* = the generator.

Theorem 16.4. (Not to be proved in the course.) Any Hamming (2' — 1,2 =1 1)
code is cyclic.

[The generator of the Hamming (2! — 1,2/ — 1 — [) code is a polynomial ¢(X), of degree
k, with a special property: ¢(X) is a divisor of 1 + X?-1 but not of 1+ X for any
r < 2! — 1. Such a polynomial exists for any [: it is called a primitive polynomial of
degree [. 1+ X + X? is the primitive polynomial of degree 3.]

Cyeclic codes admit encoding and decoding procedures in terms of the polynomials.
It is convenient to consider a generating matrix, of a cyclic code &, in a form similar to
G<¥el for the Hamming (7,4) code (see above). That is, we want to find the basis in &'
which gives the following picture in the corresponding generating matrix:

="
e 0
Gevel — e |

0

)

Such a basis is provided by Theorem 15.6 (iii): take the generator polynomial ¢(X) and
its multiples:)

e(X), Xe(X),..., X 1e(X), dege(X) =N — k.
Symbolically,
(X)
e XcFX)
:z:k‘l-c(X)

Your code has rank k: you may use it for encoding words of length k as follows. Given a
word a = ag ... ag—1, you form the polynomial a(X) = Ef;ol a; X" and take the product
a(X)e(X). It belong - X (see Theorem 15.6) and hence defines a codeword. So all

68

you have to do is to store polynomial ¢(X): the encoding will correspond to polynomial
multiplication.

If encoding is given by multiplication, decoding must be related to division. Recall
that we decode a received word by the closest codeword in the Hamming distance. Such
a codeword is related to a leader of the corresponding coset: we have seen that the cosets
are in one-to-one correspondence with the syndrome words of the form yH. See above.

In the case of a cyclic code, the syndromes are calculated straightforwardly. Recall
that, if ¢(X) is a generator polynomial of a cyclic code A’ and dege(X) = N — k, then
the rank of X' equals k, and there must be 2V ~* distinct cosets (see Theorem 9.5 (3)).

Theorem 16.5. The cosets y+ A are in one-to-one correspondence with the remainders
u(X) = y(X) mod ¢(X). In other words, two words y,y' belong to the same coset iff, in
the Division Algorithm representation,

Y(X) = a(X)e(X) +u(X), ¢'(X) = d'(X)e(X)+u'(X) and u(X)=u'(X).

Proof of Theorem 16.5. y and y' belong to the same coset iff y + 3’ € X' (see Theorem
14.5 (3)). This is equivalent to u(X) + v'(X) =0, i.e. u(X) = u'(X). O

Hence the cosets are labelled by the polynomials u(X) of degu(X) < dege(X) =
N — k: there are exactly 2V ~* such polynomials. To determine the coset y + X' it is
enough to compute the remainder u(X) = y(X) mod (X).

Unfortunately, there is still a task to find a leader in each case: there is @0 simple
algorithm for finding leaders, for a general cyclic code. Some particular classes of cyclic
codes admit a relatively simple decoding: I will briefly comment on one of these classes,
the so-called Bose-Chaudhuri-Hocquengham (BCH) codes.

To explain the idea behind the BCH construction let us return to the Hamming codes.
The facts about these are summarized in Definition 16.2 and in Theorem 16.6 (cf. The-
orems 14.2 and 14.8).

Definition 16.2. The Hamming (2° — 1,2/ — 1 — () code is a linear code whose parity-
check matrix contains all non-zero words of length £ as the rows:

0 oo 0 1
HHam= 261

Theorem 16.6. The Hamming (2 — 1,2 — 1 — () is a perfect l-error correcting code
of length 2¢ — 1. The procedure of decoding the Hamming (2¢ — 1,2¢ — 1 —£) code is as
follows. Having a wordy = y1 ...yn, N = 20 — 1, form the syndrome s = yHyam. This
word has length £: s = s, ..., s¢. If s =0, decode y by y. If s # 0 then s is among the
rows of Hyam. If this is row 1, decode y by z. = y+e;, where worde; = (0...010...0)
(1 in the i*" position, 0 otherwise).

69

Let us repeat the proof of the last statement. In fact, z. is a codeword:
zyH=yH+eH=5+s5=0,

and d(y,z.) = 1 which is of course the minimal non-zero distance.

So the Hamming code corrects a single error, but gives a wrong answer when the
number of errors is two or more.

We now want to be able to correct more than one error (two to start with). And it
is desirable to develop a procedure of decoding that is similar to Hamming’s.

We can try the following idea. Take the rows of the parity-check matrix of length 2¢ and
write it in the form

I?: (HHam H-HHam 28—1
— ——
14 £

— 2 —

where [Hyam is obtained by permutating the rows of Hgam (J] is a permutation of
degree 2¢ — 1):

H: row ¢ +— row []i.

The new matrix H must contain 2¢ linearly independent columns: it then determines an
(2 = 1,2 =1 — 2¢) linear code. The syndromes are now words of length 2/ (or pairs of
words of length £):

g = (5,4

A syndrome (s, s") may or not be among the rows of H. Recall, we want the new code
to be 2-error correcting, and the decoding procedure to be similar to the one for the
Hamming codes.

Suppose two errors occur, i.e. y differs from a codeword z by two digits, say i and
7. Then the syndrome is

yH = (s; + §j, sl—Il- +snj)
where sx is the word representing row k in Hyam. Organize your permutation so that.

knowing vector (s; + $ir ST+ + sHj), you can always find ¢ and j (or equivalently. s;
and s;).

In other words, you should be able to solve the equations
si+sj =z, SH,--I-SHJ-:z’ (16.1)
for any pair (z.z') that may eventually occur as a syndrome under two errors.

70

A natural guess is to try a permutation [] that has some algebraic significance. For
example,

S[[i = Si*si =(s;)*"* (abad choice)
or
S[[¢ = Si*si*si= (5:)"* (a good choice)
or, generally,
Bl Bk ¥y (g times)

where * is an operation of multiplication of words (or the corresponding polynomials).

We already met one such operation: the x multiplication, or multiplication modulo
1+ XV,

So, suppose you organize your check matrix as

0 01 (0 0 1)% T
H= L |
1 11 (1 1 1) J'
e of -

You will then have to deal with equations of the type
i+ 85 =z r+y=a
similar to : (16.2)

¥ o4 _ 2
sit s =z i +y?=b

But for solving these equations you need not only multiplication but also division. as an

71

operation inverse to #. In other words, the set of words of length ¢ should be a (commu-
tative) field.*

Definition 16.3. A commutative field 1s a commutative ring where each non-zero
element has an inverse. In other words, a ring is a field if the multiplication generates a
group.

So we need to study finite fields. Unfortunately, the above * multiplication does not lead
to a field. The reason is that polynomial 1 + 2" is always reducilble.

Definition 16.4. A polynomial a(X) = ag+a; X+ - +ay_1 XV ! is called irreducible
if a(X) cannot be written as a product of two polynomials, b(X) and b'(X). with min
[deg b(X),deg ¥'(X)] > 1.
Examples. Polynomials
1+X+XY 1+X°+X* and 1+X+X*+ X%+ X°
are irreducible, whereas
14X, 14X 4X°4X"4+X% and 14+X24+X54 X3
are not. In fact, as was noted, polynomial 1 + XV is always reducible:
1+ XY =1+ X)14+X+...+ XN,
Theorem 16.7. Let g(X) be an irreducible polynomial of degree N. Then the multipli-
cation mod g(X) makes the set of the polynomials of degree < N —1 (i.e., the Hamming
space {0,1}") a commutative field. Conversely, if the multiplication mod g(X) leads to

a fleld then g(X) is irreducible.

A field obtained via the above construction is called a pelynomial field. The multipli-
cation in a polynomial field is denoted below by #. The zero polynomial and the unit

*

In fact, the simplest consistent system of form (16.2) is

s+5'zz,

3*3 +Sh3 - zr;
it is reduced to a single equation

*2

z %™ — 2*2

xs+2% -2 =0,
and our problem becomes to decompose the polynomial a* X*2 —a*? « X 4+ z*3 — 2/ into
the product of polynomials of degree 1. It is well known that operation # should lead to

a field in order to gu: 1tee a possibility of such decomposition.

72

polynomial are denoted, correspondingly, by 0 and 1: they are obviously the zero and
the unity of the polynomial field.

Proof of Theorem 16.7. Among the properties to check the only non-trivial one is the
existence of the inverse element. Take a non-zero polynomial f(X), with deg f(X) <
N — 1, and consider all polynomials of the form f(X)h(X) (the usual multiplication)
where A(X) runs over the whole set of the polynomials of degree < N —1. These products
must be distinct mod g(X), because, if

f(X)hi(X) = f(X)ha(X) mod g(X),
then, for some polynomial v(X) of degree < N — 2,
FX)(h1(X) = ha(X)) = v(X)g(X). (16.3)

But equality (16.3) is impossible, for an irreducible polynomial g(X) of degree N, unless
h1(X) = ha(X). So, for one and only one polynomial A(X), you have

F(X)h(X) = 1mod g(X),

this h(X) being the inverse f(X)™*1.

On the other hand, if g(X) is reducible, then g(X) = b(X)b'(X) where both 5(X) and
b'(X) are non-zero and have degree < N. That is, 5(X)b'(X) = 0 mod g(X). If the
multiplication mod ¢ led to a field, both b(X) and ¥'(X) would have inverses, (X)~*!
and b'(X)~*1. But then

B(X)™ *xb(X)* 6 (X)=¥(X)=0,
and similarly b(X) = 0. The contradiction obtained proves the theorem. 0

A key role is played by the following.

Theorem 16.8. (a) The plolynomial fields obtained by picking different irreducible
polynomials of degree N are all isomorphic.

(b) The multiplicative group of any of these fields is isomorphic to the cyclic group
22N —1-

Note that all fields figuring in (a) have 2V elements, and they are identical as linear
spaces. However, the field isomorphism is more intricate. The proof below shows that in
fact assertions (a) and (b) are valid for all commutative fields containing 2V elements.
Such a field (which is unique up to isomorphism) is frequently denoted by GF(2N).

Proof of Theorem 16.8. What we really need in the future is assertion (b), so we prove
it first. Assertion (a) is not used in the sequel (although it is quite illuminating), and
its proof is based on some lemmas (which are of interest themselves).

So, let us show that the multiplicative group of any field with 2V elements is isomorphic
to Z,n_;, the cyclic group of 2V — 1 elements. Take any element a of the field and

73

observe that a* = a *...*a (the multiplication in the field) takes at most 2N —]
1 times)

values (the number of elements in the field less one, because 0 is excluded). Hence there

exist a positive integer r such that a*" = 1; we pick the smallest value of 7 and call i1,

the order of a.

Choose a with the largest order r. Then the order of any other element o' divides
7. In fact, let ' be the order of &'. Pick a prime factor p of r' and write

r=p"0, r = p¢

where b',b > 0 and £,£ are not divided by p. We want to show that b > V. Indeed.
element a*?" has order £, o'*! has order p'* and the product a*?* * a'*!' has order £p®'.
Hence, b < b or else r would not be maximal. This is true for any prime b, hence r'
divides r.

Thus every element # in the field obeys #*" = 1, i.e., polynomial 1 * X*" — 1
(= 1+ X" +1) **is divisible by]__[Zg € field (X £ B). It is easy to conclude that

r = 2N — 1, the number of non-zero elements of the field. Hence, 1, a,...,a%" —!
exhaust the multiplicative groups of the field. O

We now pass to the proof of assertion (a) that all commutative fields with 2% elements
and in particular all polynomial fields that are obtained via the above construction, for
different irreducible polynomials of degree N, are isomorphic. For simplicity, we sz
‘a field’, instead of ‘a commutative field of 2V elements’. We also say ‘a polynomiai
istead of ‘a polynomial with coefficients from a field’ (although, wherever convenient, we
identify them with polynomials with coefficients 0 and 1). The definition of irreducibilit:-
is extended to these polynomials straightforwardly.

Definition. Any element a of the highest order 2V — 1 in a field is called a primitive
element. A primitive element is not always unique, but it exists, as follows from Theorem
14.8.

Definition. Let 8 be a non-zero element of a field. The minimal polynomial of 3 is the
lowest degree polynomial m(X) such that m(3) = 0. In particular, if § is a primitive
element of the field, the corresponding polynomial is called primitive.

Remark. Although, as we prove below, the polynomial fields obtained by taking dif-
ferent irreducible polynomials of degree N are isomorphic, they are not identical. That
is, a given polynomial # is not mapped to itself under a natural isomorphism of two
polynomial fields. This is related to the fact that, for the same j, different fields give
different minimal polynomials.

Lemma 16.9. Any minimal polynomial is irreducible and has degree < N. Any prim-
itive polynomial has degree N. If m(X) is a minimal polynomial of f and f(X) is

** Note that 1 + X*™ £ 1 is a polynomial whose coefficients are from a given field of
2N elements (such a field may itself be a polynomial field). This is quite confusing, but
fortunately many properties are valid if you forget about it and identify 1X*" 4+ 1 as
X" %1, a polynomial with coefficients 0 and 1. Below we use such an identification everx
time when it works: it simplifies the notation and the arguments.

T4

another polynomial with f(8) = 0, then m(X) divides f(X). In particular, any minimal
polynomial divides X2" =1 +1.

Proof. If m(X) = mM(X) * m®(X) with degm()(X) > 1, then m(8) = mM(F) *
m{?)(8) = 0, and hence at least one m*(3) is zero (this is a property of the field). But
this contradicts the condition of minimality. Thus m(X) is irreducible.

If f(X) is another polynomial with f(3) = O then deg f(X) > degm(X). You can write
fIX)=m(X)*v(X)+r(X), degr(X) < degm(X).

But then
r(B) = f(B) + m(B) xv(B) =0,

and you conclude that r(X) = 0. Finally, polynomial X2" =1 4+1 has all elements 8 from
the field as the roots, i.e., is divided by any minimal polynomial.

Let us now prove that degm(X) < N. Our polynomial field is a vector space of dimen-
sion N. Therefore, any N + 1 elements, such as 1, 8,...,8*N are linearly dependent:
E?i:o a;Bf* = 0 where a; = i and not all ¢; = 0. Thus Ta; X' is a polynomial of degree
N having 3 as a root. Hence, degm(X) < N.

If 3 is primitive, then degm(X) = N; otherwise we could not obtain the whole 2V
elements of the field. O

We can now quickly complete the proof of assertion (a) of Theorem 14.8. Let F and
G be two fields with 2V elements. Let a be a primitive element in F with a minimal
polynomial m(X). Then m(X) is irreducible and divides X2" + 1 = X2" — 1. Hence
there exists an element 3 € G for which m(X) is minimal polynomial. Field 7 may be
considered as the field of polynomials mod m(X), and field G contains (and thus consists
of) all polynomials of degree < N — 1. Hence 3 is primitive in G and a < [is an
isomorphism. This completes the proof of Theorem 14.9. O

Ezamples. 1. Field GF(2%). There is a unique ireducible polynomial of degree 2:
X? + X 4+ 1. The corresponding field GF(2?) consists of polynomials 0 (the zero of the
field), 1 (the unity of the field), X and 1+ X. The corresponding words are 00 ~ 0,
10 ~ 1,01 ~ X and 11 ~ 1+ X. In this field, the multiplicative group is Z3. The
multiplication ruleis X2 =1+ X, (14+ X)? =X, X (1 + X) = 1; both X and (1 + X)
are primitive elements. [One frequently writes field GF(2?) as {0,1,a,a? = 1+a}.] The
minimal polynomials are: for 0 m(X) = X, for 1 m(X) =X +1and for X and 1 + X
m(X)=X24+X +1.

2. Field GF(2%). There are two irreducible polynomials of degree 3: X*® 4+ X + 1 and
X?*+4 X% +1. The corresponding fields are isomorphic and have the multiplicative group

5

Z7. If you take polynomial X® + X +1 then the field is described as follows

element of the word element of Z7 minimal

polynomial field polynomial
0 000 - X
1 100 1 1+ X

X 010 « XP+X+1
X2 001 o X34 X+1
1+ X 110 a® X34+ X%2+1
X +X? 011 at X34+ X+1
1+ X+ X2 111 ab X34+ X241
1+ X? 101 ab X4 X241

Now return to the BCH construction. Recall, we want to construct a 2-error cor-
recting code with a parity check matrix

0 01 (0 0 1)
H= 2t -1
1 1. 1 (1 1 1)~
— 2¢ —

where the multiplication is modulo an irreducible polynomial of degree £. A good exam-
pleis £ =4 and ¢ = 3: here, N = 15, and the rank of a code with the check matrix H is
expected to be k = 15— 8 = 7 (if all 8 columns are linearly independent). Take the m.ul-
tiplication determined by an irreducible polynomial 1+ X + X*. Write the corresponding
field GF(24):

element of the word element of Z;5

polynomial field

0 0000 -

1 1000 1

X 0100 o

X2 0010 a?

X3 0001 a?

1+ X 1100 at
X+ X? 0110 a’
Xe4Xe 0011 ab
1+X+ X8 1101 a’

14+ X2 1010 a®
X+ X3 0101 o’
14X+ X2 1110 al?
X 4.X? 4.X° 0111 all
1+ X+ X2+ X% 1111 al?
14X24X3 1011 al?
14-X3 1001 alt

76

Then write matrix }";', with ¢ = 3. In words:

1 0 0 0 1 0 0 O
01 00 0 0 0 1
0010 0 0 11
0 0 0 1 01 01
11 00 I 1T 31 1
0110 1 0 00
oo 11 000 1
B=|1101 001 1], (16.4)
1 @9 1 D 01 0 1
01 0 1 1. 1 4 2
1110 1 0 0 0
01 1 1 0 0 0 1
1 1 11 00 1 1
10 1 1 01 01
1 0 0 1 1 1 11
and in the ‘field notation’
1 1
a o
a? at
QS Cl'g
o L
a® 1
a® a?
H=| o7 o (16.4a)
ot af
a? al?
al® 1
Gl a2
ot b
ol? a?
alt al?

Here, and below we omit * while referring to the multiplication in the field. The left-
hand ‘half’ of H is nothing but the corresponding Hamming (15,11) check matrix Hyam-
Note that 1 appears more than one time in the right-hand half of H: this is because a3
is not a primitive element of GF(2%).

Theorem 16.10. A linear code with the check matrix H of form (16.4) or (16.4a) is a
2-error correcting (15,7) code.

Proof. The rank 7 is due to the linear independence of the columns of H. [It is a tedious
although staightforward calculation; we omit it because of lack of time.] The key point
is to check that the code corrects up to two errors. First suppose you received a word
Y = Y1,-..,y15 in which two errors occurred, in digits i and j that are unknown. You
want to find these places. First, you calculate the syndrom yH = (z, z'). Recall, z and

T

z' are woras of length 4; the total length of the syndrome is 8. (Note that z' # 2%: if
z' = 2% there is precisely one error occurred.) You write a pair of equations

s+ = &5

RS (16.5)
where s and s’ are words of length 4 (or equivalently their polynomials), and the multi-
plication is modulo 1+ X + X*. In the case of two errors it is guaranteed that there are
at least two solutions to (16.2), one occupying position i and another position j among
the rows of the left-hand (Hamming) half of matrix H. To show that (16.4), cannot have
other solutions, write

2 =8 457 = (5 +5)(s% + 58’ +57) = 2(2% + s5)
(because z? = (s +5')? = s? + ss' + ss' + §) and deduce that
s =z'771 4 22 (16.6)

Now (16.6) and the first equation in (16.2) give that the solutions to (16.2) are precisely
the roots of a quadratic equation

x?+zx+ (2271 +2%) = 0. (16.7)

(Again note that 2'z=? + 22 # 0.) But the polynomial in the LHS of (16.7) cannot have
more than two distinct roots (in principle it could have no root or a two coinciding roots,
but it is excluded by the assumption that there are precisely two errors).

In the case where a single error occurred, you will have 2’ = 23: in this case s = z is the
only root and you just find word z among the rows of the left-hand half of matrix H.

Q.E.D.

Thus, the decoding scheme for decoding, in the case of the above (15,7) code is as
follows: upon receiving word y, form a syndrome yﬁ' = (z,2'). Then

(1) If both z and z' are zero words, conclude that no error occurred and decode y
by y itself.

(i) If = is non-zero and 2* = z’, conclude that a single error occurred and find the
location of the error digit by identifying word z among the rows of the Hamming check
matrix.

(iii) If 2 is non-zero and 2* # 2/, form the quadric (16.4), and if it has two distinct
roots s and s', conclude that two errors occurred and locate the error digits by identifying
words s and s' among the rows of the Hamming check matrix.

(iv) If z is non-zero and z* # z' and quadric (16.7) has no roots, or if z is zero but
2" is not, conclude that there are at least three errors occurred. The code is not perfect,
so you have to perform additional (unreliable) procedures or refuse to decode the word
received.

Observe that the case where z is non-zero, z* # 2’ and quadric (16.7) has a single root
is impossible: if (16.7) has a root, s say, then the quadric is divisible by x — s:

x? 4 2x + (2271 + 21) = (x — s)(x — &),

78

and either s # s’ in which case (16.7) has another root or s = s’ in which case 2% = z'.
The decoding procedure outlined leads to a correct codeword in the cases where up to
two errors occurred; it also allows to dectect, in some cases, that more than three errors
occurred. However, in general, this procedure may lead to a wrong codeword when three
Or INOIC €ITOIS OCCUr.

Ezample. Suppose the syndrome is (1001,0100) = (a!!,a). Since (a'')? = a'? # q,
vou may conclude that either case (iii) occurs or the first possibility in case (iv). You
caleulate z'z71 + 22 = a? + o' = 1001 = a'* and write the quadric (16.7):

X +aMx+att =(x+ef)(x+a®)=0

whence s = o®. s’ = a®. You locate the error digits as 6 and 8. [Exercise: Find a word
g

y producing the above syndrome.]

On the other hand, if the syndrome is (1101,1100) = (a",a*), equation (16.7) becomes
x> +a'x+a®=0.

By trving each element of the field, you can check that there is no solution to this
equation. [There are general methods of finding the roots of a quadratic equation in a
field GF(2¢). but we do not have time to discuss them.] You conclude that three or more
errors occurred.

Of course, nothing in the above construction depends on the length being 15: you can
use any field GF(2*). The parity-check matrix is

11
a 0.3
o af

H= T : (16.8)

2-2 0 32 -2

to get it in words you should write a field table similar to the above examples. The last
result to quote in this course is the following

Theorem 16.11. Matrix H of form (16.5) is a parity-check matrix of a two-error
correcting (2¢ — 1,2 — 1 — 2¢) code. The code is equivalent to a cyclic code, with the
generator ¢(X) = ma(X)mgs(X), where mq(X) Is the minimal polynomial of « (i.e., a
primitive polynomial), and m,s(X) is the minimal polynomial of o®.

We do not have time to prove Theorem 16.10. However, the main idea is the same as
in the above example of the (15, 7) code. The codes figuring in Theorem 16.2 are called
two-error correcting BCH codes. The theory of BCH codes goes far beyond theses class
of codes: one can construct, in a similar fashion, an (2¢ — 1,2¢ — 1 — 3¢) code correcting
three errors, etc. Moreover, the construction may be extended to any length N, not
necessarily of the form 2¢ — 1.

79

Altogether, it gives a wide class of codes corecting any a priori given number of errors.
the BCH codes were invented in the end of the 50's and there is still a good deal of activity
around them. However, the BCH codes are asymptotically "bad’: for any sequence of
BCH codes of length N — oo, either £/N or §/N — 0. In other words, they lie at
the bottom of the diagram (see the figure on p.3 of the notes for Lecture 12 and a
figure below). To obtain codes that meet the Gilbert-Varshamov bound. one needs more
powerful methods, based on Algebraic Geometry. Such codes were constructed in the
early 70’s (the Goppa codes, the Justesen codes). There is still an open problem to
construct codes that lie ebove the GV curve (the GV curve gives a lower bound for the
best code, but it does not forbid a code to be above it: the problem is to find such a code
(or to prove that iit does not exist)). In 1983, there was a new class of codes invented,
which are above the GV curve, but for the number of symbols in the code alphabet > 49.
For binary codes, the problem is waiting for solution.

80

