- 1. Construct a 3-regular graph on 8 vertices. Is there a 3-regular graph on 9 vertices?
- 2. Prove that every connected graph has a vertex that is not a cutvertex.
- 3. Let G be a graph on n vertices, $G \neq K_n$. Show that G is a tree if and only if the addition of any edge to G produces exactly 1 new cycle.
- 4. Let $n \geq 2$, and let $d_1 \leq d_2 \ldots \leq d_n$ be a sequence of integers. Show that there is a tree with degree sequence d_1, \ldots, d_n if and only if $d_1 \geq 1$ and $\sum d_i = 2n 2$.
- 5. Let T_1, \ldots, T_k be subtrees of a tree T, any two of which have at least one vertex in common. Prove that there is a vertex in all the T_i .
- 6. Let G be a graph, with degree sequence $d_1 \leq \ldots \leq d_n = \Delta$, such that $d_i \geq i$ for all $i \leq n \Delta 1$. Prove that G is connected.
- 7. The *clique number* of a graph G is the maximum order of a complete subgraph of G. Show that the possible clique numbers for a regular graph on n vertices are $[1, 2, ..., \lfloor n/2 \rfloor]$ and n.
- 8. Let G be a graph on vertex set V. Show that there is a partition $V_1 \cup V_2$ of V such that in each of $G[V_1]$ and $G[V_2]$ all vertices are of even degree.
- 9. Let G be a bipartite graph with vertex classes X, Y. Show that if G has a matching from X to Y then there exists $x \in X$ such that every edge incident with x extends to a matching from X to Y.
- 10. Let G be a connected bipartite graph with vertex classes X, Y. Show that every edge of G extends to a matching from X to Y if and only if $|\Gamma(A)| > |A|$ for every $A \subset X$, $A \neq \emptyset$, X.
- 11. Let A be a matrix with each entry 0 or 1. Prove that the minimum number of rows and columns containing all the 1s of A equals the maximum number of 1s that can be found with no two in the same row or column.
- 12. An $n \times n$ Latin square (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
- +13. Let G be a (possibly infinite) bipartite graph, with vertex classes X, Y, such that $|\Gamma(A)| \ge |A|$ for every $A \subset X$. Give an example to show that G need not contain a matching from X to Y. Show however that if G is countable and $d(x) < \infty$ for every $x \in X$ then G does contain a matching from X to Y. Does this remain true if G is uncountable?
- +14. Show that there are exactly n^{n-2} trees on a given set of n vertices.
- $^{+}15$. The group of all isomorphisms from a graph G to itself is called the *automorphism group* of G. Show that every finite group is the automorphism group of some graph. Is every group the automorphism group of some (possibly infinite) graph?

- 1. What are the 99th, 100th and 101st elements in the colex order on $\mathbb{N}^{(4)}$? For which $A \in \mathbb{N}^{(4)}$ is it true that A and the successor of A (in colex) have the same sum?
- 2. Let n be even, and let $A \subset \mathcal{P}(X)$ be a set system that contains no chain of order 3. Prove that $|A| \leq \binom{n}{n/2} + \binom{n}{n/2-1}$.
- 3. Let $A \subset \mathcal{P}(X)$ be an antichain not of the form $X^{(r)}$, $0 \leq r \leq n$. Must there exist a maximal chain that is disjoint from A?
- 4. A set system $\mathcal{A} \subset \mathcal{P}(X)$ is called a *cross-cut* if for every $B \in \mathcal{P}(X)$ there exists $A \in \mathcal{A}$ with $B \subset A$ or $A \subset B$. Prove that every cross-cut contains a cross-cut of size at most $\binom{n}{\lfloor n/2 \rfloor}$. Does every cross-cut contain a cross-cut that is an antichain?
- 5. Let x_1, \ldots, x_n be real numbers with $|x_i| \ge 1$ for all i, and let a be real. Show that at most $\binom{n}{\lfloor n/2 \rfloor}$ of the sums $\sum_{i \in A} x_i$, $A \subset [n]$, can lie in the open interval (a, a + 1).
- 6. A set system $A \subset \mathcal{P}(X)$ is called a *down-set* if whenever $A \in \mathcal{A}$ and $B \subset A$ then also $B \in \mathcal{A}$. Show that if \mathcal{A} is a (non-empty) down-set then the average size of the members of \mathcal{A} is at most n/2.
- 7. Let G be a graph of order $n \ (n \ge 3)$ with $e(G) > \binom{n}{2} (n-2)$. Prove that G is Hamiltonian.
- 8. For each $r \geq 3$, construct a graph G such that G does not contain K_r but G is not (r-1)-partite.
- 9. Let G be a graph of order n that does not contain an even cycle. Prove that each vertex x of G with $d(x) \geq 3$ is a cutvertex, and deduce that G has at most $\lfloor 3(n-1)/2 \rfloor$ edges. Give (for each n) a graph for which equality holds. How does this bound compare with the maximum number of edges of a graph of order n containing no odd cycles?
- 10. A deleted K_r consists of a K_r from which an edge has been removed. Show that if G is a graph of order n $(n \ge r + 1)$ with $e(G) > e(T_{r-1}(n))$ then G contains a deleted K_{r+1} .
- 11. A bowtie consists of two triangles meeting in one vertex. Show that if G is a graph of order $n \ (n \ge 5)$ with $e(G) > \lfloor n^2/4 \rfloor + 1$ then G contains a bowtie.
- +12. Let G be an r-regular graph on 2r + 1 vertices. Prove that G is Hamiltonian.
- +13. For n=2r+1, give an explicit bijection $f: X^{(r)} \to X^{(r+1)}$ such that $A \subset f(A)$ for every $A \in X^{(r)}$.

- 1. Show that $R(3,4) \leq 9$. By considering the graph on \mathbb{Z}_8 (the integers modulo 8) in which x is joined to y if $x y = \pm 1$ or ± 2 , show that R(3,4) = 9.
- 2. By considering the graph on \mathbb{Z}_{17} in which x is joined to y if $x y = \pm 1, \pm 2, \pm 4$ or ± 8 , show that R(4,4) = 18.
- 3. Let $\mathcal{A} \subset [9]^{(3)}$ with $|\mathcal{A}| = 28$. How small can the lower shadow of \mathcal{A} be? And the upper shadow?
- 4. Let $A \subset X^{(r)}$, and let $U, V \subset X$ with |U| = |V|, $U \cap V = \emptyset$ and $\max U < \max V$. If A is left-compressed, can we have $|\partial C_{UV}(A)| > |\partial A|$?
- 5. Find a set system \mathcal{A} for which equality holds in the Kruskal-Katona theorem but which is not isomorphic to an initial segment of colex.
- 6. Show that every maximal intersecting family in $\mathcal{P}(X)$ has size 2^{n-1} .
- 7. Let A be a set of $R^{(4)}(n, 5)$ points in the plane, with no three points of A collinear. Prove that A contains n points forming a convex n-gon.
- 8. Let $f, g_1, \ldots, g_n : \mathbb{R} \to \mathbb{R}$ be real-valued functions, with g_1, \ldots, g_n bounded. Suppose that whenever $|f(x) f(y)| \ge 1$ we have $|g_i(x) g_i(y)| \ge 1$ for some i. Prove that f is bounded.
- 9. Let $A \subset \mathcal{P}(X)$ be a t-intersecting family. By applying UV-compressions, for disjoint pairs U, V with |U| > |V|, show that if n + t is even then $|A| \leq \sum_{i=(n+t)/2}^{n} {n \choose i}$.
- 10. Let $A \subset \mathcal{P}(X)$ be such that $|A \cap B|$ is even for all $A, B \in A$, $A \neq B$. Prove that if |A| is odd for all $A \in A$ then $|A| \leq n$, while if |A| is even for all $A \in A$ then $|A| \leq 2^{n/2}$.
- 11. Let $A \subset \mathcal{P}(\mathbb{N})$ be an intersecting family of finite sets. Must there exist a finite set $F \subset \mathbb{N}$ such that the family $\{A \cap F : A \in A\}$ is intersecting? And what if $A \subset \mathbb{N}^{(r)}$?
- 12. Let the infinite subsets of \mathbb{N} be 2-coloured. Must there exist an infinite set $M \subset \mathbb{N}$ all of whose infinite subsets have the same colour?
- $^{+}13$. Let A be an uncountable set, and let $A^{(2)}$ be 2-coloured. Must there exist an uncountable monochromatic set in A?
- +14. Let $A \subset X^{(r)}$ and $B \subset X^{(r+1)}$ be initial segments of colex with |A| = |B|. Do we always have $|\partial A| \leq |\partial B|$?