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Algebraic Topology P.T.J. Lent 1995
Notes on Topological Spaces

All the spaces we meet in the Algebraic Topology course will be metrizable; in fact
almost all of them will be subspaces of (finite-dimensional) Euclidean spaces. However, it
is generally convenient to think of them as topological spaces rather than metric spaces.
Since the new Tripos does not provide students with a formal introduction to topological
spaces before this stage, it seems sensible to provide a brief résumé of the basic facts about
them which we shall assume. '

Recall that, if (X, d) is a metric space, a subset U of X is said to be open if, for every
z € U, there exists € > 0 such that the open ball B(z,e) = {y € X | d(z,y) < €} is
contained in U. It is easy to check the following properties:

(1) The empty set § and the whole space X are open.

(i) An arbitrary union of open sets is open.

(iii) A finite intersection of open sets is open.

Formally, a topology on a set X is a collection of subsets of X, called open sets, satisfying
properties (i-iii) above. A topological space is a set equipped with a topology. We say a
topological space X is metrizable if there is a metric d on X for which the open sets are
exactly the given ones. Not every topological space is metrizable: a good example is the
indiscrete topology in which the only open sets are § and X, which cannot be metrizable
if X has more than one element [exercise: why not?}- On the other hand, many different
metrics can give rise to the-same topology: for example, on the Euclidean space R™ the
three metrics dy, d; and do given by
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all give rise to the same notion of open set. We say that two metrics are equivalent if they
give rise to the same topology; as far as we are concerned in this course, we do not really
want to distinguish between metric spaces (X, d) and (X, d') if d and d’ are equivalent.

As you know, continuity of functions between metric spaces can be defined in terms of
open sets: f: X — Y is continuous iff f~!(V") is openin X for every open V' C Y. We adopt
the same definition of continuity for mappings between topological spaces. Similarly, many
important properties of metric spaces such as compactness and connectedness are defined in
terms of properties of their open subsets; and so these properties can be extended without
difficulty to topological spaces. [However, you should not assume that all the theorems
about compactness and connectedness in metric spaces, which you encountered in the IB



Analysis course, remain true for topological spaces.] All such properties are invariant under
homeomorphism; recall that a homeomorphism X — Y is a bijective mapping which is
continuous in both directions. We write X = Y to denote that the spaces X and Y are
homeomorphic. [Remember that a bijective mapping may be continuous in one direction
but not in the other; an example is the mapping ¢ — e2™it from the half-open interval
[0,1) C R to the circle St={2e€C|lz] =1}]

We shall say that a topological space X is subeuclidean (this is not a standard term!)
if it is homeomorphic to a subset of R™ (for some n) with (the topology induced by)
the restriction of one of the three metrics di, dy or de mentioned above. Not every
metrizable space is subeuclidean, although it’s difficult to give counterexamples at this
stage apart from ‘trivial’ ones such as the set P(R) of all subsets of R with the discrete
metric (d(4,B) = 1 whenever A # B); this can’t be subeuclidean because P(R) doesn’t
map injectively into R" for any n. As mentioned earlier, almost all the spaces we shall
meet in this course will be subeuclidean, although they will not always be given explicitly
in the form of subspaces of R"™. Therefore, it will be useful to develop a few techniques for
recognizing that spaces are subeuclidean. 7

If X and Y are topological spaces, the cartesian product X x Y is made into a
topological space by declaring its open subsets to be all those subsets expressible as unions
of ‘open rectangles’ U x V, where U is open in X and V is open in Y. (Note that a finite
intersection of open rectangles is an open rectangle, which is needed to verify condition
(iii). Note also that this topology makes the projections X X Y 5 Xand X xY -7
continuous; indeed, it is the smallest topology on X x Y, in the sense of having fewest
open sets, which does this.) If the topologies on X and Y are induced by metrics d and d'
respectively, then that on X x ¥ may be induced by any of thethree equivalent metrics

di((z1,%1), (T2, ¥2)) = d(z1,22) +d'(y1,92)

dg(($1,y1),($2,y2)) = (d($1,$2)2 i d'(ylay2)2) y OF
deo((21,31), (22,¥2)) = max {d(z1,2),d (v1,92)} -

Thus a product of metrizable spaces 13 metrizable. Tt is also clear that a product of subeu-
clidean spaces is subeuclidean: if X and Y are homeomorphic to subspaces of R™ and R™
respectively, then X x Y is homeomorphic to a subspace of R,

If ¥ is a subset of a topological space X, we define the subspace topology on Y to
consist of all sets of the form U NY where U is open in X it is trivial to verify that this
is a topology on Y, and that it makes the inclusion Y — X continuous (once again, it is
the smallest topology on Y which does so). Once again, a subspace of @ metrizable space
is metrizable: if the topology on X is induced by a metric d, then that on Y is induced
by the restriction of d to ¥ X Y C X x X. It is even easier to see that subspace of a
subeuclidean space i3 subeuclidean.

If X and Y are disjoint topological spaces, we can make their union X UY into a
topological space by taking its open subsets to be all sets of the form U UV where U 1s
open in X and V is open in Y. Again, it 's clear that this is a topology; in fact the unique
topology which makes both X and Y into open subspaces of X UY. [Recall also that X



and Y are not disjoint, we can always ‘make them disjoint’ by replacing them by the sets
X x {0} and Y x {1}, on which we can impose topologies homeomorphic to the original
ones.] To show that a disjoint union of metrizable spaces is metrizable, recall first that
every metric is equivalent to a bounded metric, i.e. one satisfying d(z,y) < k for all z,y
and some fixed k—in fact we can take k = 1: we simply have to replace our original metric
(e, say) by

d(z,y) = min {e(z,y),1} .

Now, given metrics d, d’ on X, Y respectively which are both bounded by 1, we can define
d"on XUY by d'(z,y) =d(z,y) f z,y € X, =d'(z,y) if z,y € Y, = 1 otherwise. It is
easy to check that this induces the correct topology on X UY. Similarly, a disjoint union
of subeuclidean spaces is subeuclidean; if X and ¥ are homeomorphic to subspaces X and
Y of R™ (we may assume they are in Euclidean space of the same dimension, since R™ is
homeomorphic to the subspace R™ x {0} of R™*1), then X UY is homeomorphic to the
subspace X x {0} UY x {1} of R"*1.

- If X is a topological space and R is an equivalence relation-on X, we define the quotient
topology on X /R (the quotient of X by R, i.e. the set of R-equivalence classes) by declaring
V C X/Rtobeopeniff | J{C |C €V} ={zx e X |[z] € V}isopenin X. (Here [z]
denotes the R-equivalence class of z.) It is easy to verify that this is a topology on X/R,
and that it makes the quotient map z — [z] continuous—indeed, it is the unique largest
topology for which this map is continuous. Unlike products, subspaces and disjoint unions,
the operation of passing to a quotient space can take us out of the realm of metrizable
spaces. Let X = R, and let R be the equivalence relation of congruence mod Q, i.e.
Ry iff z — y is rational. Then the quotient topology on X/R is indiscrete (because every
nonempty open set in R meets each coset of the additive subgroup Q), but it has more
than one point (indeed, it is uncountable, since each R-equivalence class is countable), and
so it is not metrizable.

Nevertheless, there are important particular cases of the quotient construction which
preserve metrizability, and we shall make a good deal of use of them in the course. One
such is the construction of ‘glueing two spaces together along a map’: suppose given spaces
X and Y and a continuous map f: Z — X, where Z is a subspace of Y. The space X UyY
obtained by glueing Y to X along f is the quotient of the disjoint union of X and Y by
the smallest equivalence relation which identifies z with f(z) for each z € Z. Note that,
although this relation may identify distinct points of Z if they have the same image under
f, it cannot identify distinct points of X; thus the points of X Us Y correspond bijectively
to those of the disjoint union of X and ¥ \ Z. It can be shown that if X and Y are
metrizable and the domain Z of f is compact, then X Uy Y is metrizable: we shall not
prove this here, since the proof is quite involved and there is no reason why you should
know it, but you are hereby warned that we shall be meeting lots of examples of spaces that
are constructed in this way. The above result shows that there is no need to be frightened
of them.

Example 1. n-dimensional (real) projective space P™ is defined as the quotient of R™*!\
{0} by the equivalence relation which identifies two points iff they lie on the same straight
line through the origin. However, since every point X is identified with the point x/||x||, we



may equivalently regard it as the quotient of the unit sphere S™ = {x € R"*! | ||x|| = 1}
by the equivalence relation which identifies x with —x for each x. (It is not obvious that
the topology which this set acquires as a quotient of the subeuclidean space S™ is the same
as that which P™ acquires as a quotient of R™*1\ {0}, but it happens to be true.) We may
further restrict our attention to peints in the (closed) upper hemisphere {x € S™ | zp41 >
0} of S™, which is homeomorphic to the unit ball B® = {x € R" | ||x|| £ 1}; and the only
identifications which have to be made to points in this hemisphere is the identification of
opposite points on the ‘equator’ {x € S™ | 2,41 = 0}, which is a copy of S*~'. Thus we
deduce that P™ is homeomorphic to the space P! U, B", where q: S®~! — P"~! is the
quotient map. Since S™~! is compact (and P! is easily seen to be homeomorphic to S D),
it follows by induction on n that P™ is metrizable for all n. (However, in this case the
same conclusion could have been reached directly from the description of P™ as a quotient
of S™, by observing that its topology is induced by the metric which takes the shortest
distance between representatives of equivalence classes, i.e.

d([x], [y]) = min {d(x,y), d(x, ~¥)} -)

Example 2. A particular case of glueing spaces together occurs when the subspace Z
which is the domain of the glueing map f is just a single point {yo}; then X Uy Y is the
quotient of the disjoint union obtained by making the single identification of zo = f(yo)
with yg. We call this the wedge union of X and Y, and denote it by X VY. (This notation
is ambiguous, since it fails to indicate which point of X is being identified with which point
of Y; but it often doesn’t matter. For example, if X and Y are both copies of S", then
any point looks like any other point.) It is clear that if X and Y are subeuclidean then so
is XVY;if X CR" and Y C R™ (and the points to be identified have been shifted to
the origin in each case), then X VY is homeomorphic to the subset (X x {0}) U ({0} xY')
of R+

Example 3. Another example which we shall meet is that of the cone CX on a topological
space X; this is defined as the quotient of the product X x I (where I is the closed unit
interval [0,1] € R) by the equivalence relation whose equivalence classes are X X {1} and
all singletons {(z,t)}, t < 1; equivalently, it is the space {*} Uy (X x I), where {x} is the
one-point space and f is the unique map (X x {1}) — {*}. By the result quoted above, if
X is compact and metrizable then CX is metrizable; if X is a compact subspace of R™,
then CX may be identified with the subspace of R®*! obtained by ‘joining X to a point’,
i.e. to the set of all points on (closed) line segments joining points (x,0) (x € X) to (0,1)
(or to any other point outside the hyperplane R™ x {0}). [Warning: for a non-compact
subeuclidean space X, CX (defined as a quotient, as above) is not homeomorphic to
the space obtained by joining X to a point; indeed, it is not even metrizable in general.
Ezercise for the ambitious: prove that CR is not metrizable.]



Algebraic Topology P.T.J. Lent 1995
Notes on Abstract and Geometric Complexes

The distinction between abstract and geometric simplicial complexes is often a source
of confusion; these notes are an attempt to clarify it.

An abstract simplicial complez is a purely combinatorial object: it is a pair (V, )
where V' is a finite set (whose elements are called vertices) and T is a set of nonempty
subsets of V, satisfying (i) every member of V' occurs as a member of some o € I, and
(ii) o € S and 0 # 7 C o imply 7 € E. A simplicial map (V,Z) — (V',5') is a mapping
f:V — V' such that {a¢,a1,...,an} € ¥ implies {f(ao), f(a1),...,f(an)} € T'. As they
stand, these definitions clearly have no topological content, and it is possible to develop
the theory of simplicial complexes and their homology as a piece of pure combinatorics.
(Indeed, the theory has applications in contexts other than the topological one which we
present below.)

Example. The complete n-simplez A™ is the abstract complex with V' = {0,1,2,...,n}
and ¥ taken to be the set of all nonempty subsets of V.

However, we are interested in abstract complexes only as a means to an end, the
end being the convenient handling of a class of subeuclidean spaces called polyhedra. To
introduce these, we define a geometric simplicial complez to be a finite set K of (geometric)
simplices, all lying in the same Euclidean space R™, such that (i) if o € K and 7 is a face
of o, then 7 € K, and (ii) if o, 7 € K, then o N 7 is (either empty or) the simplex spanned
by the common vertices of ¢ and 7. It is clear that any geometric complex K gives rise
to an underlying abstract complez (V,X), where V is the set of 0-simplices of K and ¥ is
the set of those finite subsets of V' which span simplices of K (so that I is in bijective
correspondence with K—and in practice we generally identify them).

By a geometric realization of an abstract simplicial complex (V,X), we mean a ge-
ometric complex whose underlying abstract complex (defined as above) is isomorphic to
(V,Z). Such a realization is specified by a map r : V — R™ such that (i) for each
o ={ao,...,an} € L, the points r(ag),...,r(an) are affinely independent (and so span a
simplex r(¢)), and (ii) for any two elements ¢ and 7 of X, the intersection of r(¢) and r(7)
is (no larger than) the simplex r(o N 7) (to be interpreted as the empty set if o N 7 = ).

For example, the (abstract) complete n-simplex A™ may be realized by the (geometric)
complete n-simplex (also denoted A™!), which consists of the n-simplex in R™ with vertices
{0,e1,e2,...,e,} (where {e1,...,e,} is the standard basis of R") together with all its
faces. More generally, one way to obtain a geometric realization of an arbitrary abstract
complex (V, ) with card V = n + 1 is to regard it as a subcomplex of A™, i.e. to map the
elements of V' to the standard affinely independent set indicated above (but this is not the
most efficient way; cf. question 2 on example sheet 2).

The polyhedron of a geometric simplicial complex K is the subspace |K| of R™ which
is the union of all the simplices of K. We say a space is triangulable if it is homeomorphic
to a polyhedron; more precisely, a triangulation of a given space X is a pair (K, h) where
K is a (geometric) simplicial complex and h: X — |K| is a homeomorphism. (However,
in practice we generally omit any mention of A and say ‘K is a triangulation of X".)



If K and L are geometric simplicial complexes, a simplicial map f between their
underlying abstract complexes induces a continuous map |f|: |K| — |L| by ‘linear inter-
polation’: that is, if x = tgag + --- + tnan, 1s a point in a simplex o of K with vertices
a9, ..., an, then |f|(x) =ty f(ag) + - + tnf(an) (which makes sense because the f(a;)
span a simplex of L). Clearly |f| is continuous on each simplex of K, and the definitions
on different simplices agree where they overlap; so |f| is continuous on |K|. In practice
we usually write |f| as f; when we say ‘f: |K| — |L] is a simplicial map’, we mean that
f is the continuous map induced (as above) by a simplicial map between the underlying
abstract complexes of K and L (the latter is of course uniquely determined by f, since it
is the restriction of f to those points of |K| which are vertices of K ).

It is clear that if M is another geometric simplicial complex and ¢: I — M another
simplicial map, then |gf| = |g|o|f]: |K| — |M|. Hence in particular, if f is an isomorphism
of abstract simplicial complexes, then |f| is a homeomorphism. Thus any two geometric
realizations of a given abstract simplicial complez are homeomorphic. This is the key
result which tells us that the topological structure of a polyhedron (or more generally, of a
triangulable space) is entirely recoverable from the combinatorial structure of the abstract
simplicial complex underlying any triangulation of it.

However, not every continuous map between polyhedra is a simplicial map. The
Simplicial Approzimation Theorem tells us that every continuous map f: |K| — |L| is
homotopic to a simplicial map, not necessarily from K to L but from some subdivision of
K to L. The notion of subdivision may be defined very easily for abstract complexes: the
(first) subdivision of a complex (V, T) is the complex (V' X'), where V! = £ and %' is the
set of all those nonempty subsets of & which are totally ordered by inclusion. If K is a
geometric realization of (V, X), then there is a geometric realization K' of (V',2") with the
same polyhedron, obtained by mapping a simplex o = {ao,...,a,} of (V,2) (regarded as a
vertex of (V' X)) to the barycentre ?:?;) = (r(a0)+---+7(as))/(n+1) of the (geometric)
simplex 7(c). (Of course, it requires proof that this is a geometric realization, i.e. that the
images of the simplices in £’ don’t overlap more than they should; and that every point of
| K| lies in some simplex of K'—the converse is easy.) By.iterating this process, we define
the nth (barycentric) subdivision K™ of K for all n >0: KO = g, K(n+1) (K™Y,

Note that there are plenty of simplicial maps f: K' - K; we get one by choosing,
for each vertex & of K', a vertex f(3) of o. Moreover, any f constructed in this way
induces a continuous map |K'| — |K| homotopic to the identity. But in general there
are no simplicial maps K — K' whose underlying continuous maps are homotopic to the
identity; thus the set of homotopy classes of maps |K| — |L| which contain simplicial maps
K — L is a subset, and in general a proper subset, of the set of homotopy classes which
contain simplicial maps K’ — L, and so on. The Simplicial Approximation Theorem says
that, if we iterate this process far enough, we can eventually capture the homotopy class
of any given map |K| — |L|.



