
Lent 2025 VECTOR CALCULUS – EXAMPLE SHEET 1 G.Taylor

1. Find the equation of the plane tangent to the surface z = 3x2y sin(π2x) at the point x = y = 1.

Taking East to be in the direction (1, 0, 0) and North to be (0, 1, 0), in which compass direction
will a marble roll if placed on the surface at x = 1, y = 1

2?

2. (a) Let ψ(x) be a scalar field and v(x) a vector field. Using suffix notation, show that

∇ · (ψv) = (∇ψ) · v + ψ∇ ·v and ∇× (ψv) = (∇ψ)× v + ψ∇×v.

(b) Find the divergence and curl of the following vector fields on R3 :

rx, a(b · x), a× x, x/r3,

where r = |x|, and a,b are fixed vectors.

Use part (a) where you can. Thinking about the definitions of divergence and curl, could
you have guessed any of the answers in advance?

3. (a) A vector field F is parallel to the normals of a family of surfaces f(x) = constant. Show
that F · (∇×F) = 0.

(b) The vector fields F and G are everywhere parallel, non-zero and solenoidal. Show that
F ·∇(F/G) = 0, where F = |F| and G = |G|.

4. Let u and v be vector fields. Using suffix notation, show that

(i) ∇× (u× v) = u(∇ ·v) + (v ·∇)u− v(∇ ·u)− (u ·∇)v

(ii) (u ·∇)u = ∇(12u
2)− u× (∇×u), where u = |u|.

5. Verify directly that the vector field

v(x) =
(
ex(x cos y + cos y − y sin y), ex(−x sin y − sin y − y cos y), 0

)
is irrotational and express it as the gradient of a scalar field φ.

Verify also that v is also solenoidal and express it as the curl of a vector field (0, 0, ψ).

6. For a constant vector a and r = |x|, verify that

∇(a · x) = a and ∇(rn) = nrn−2x,

using (i) Cartesian coordinates and suffix notation, (ii) cylindrical polar coordinates, and (iii)
spherical polar coordinates. Hint: choose axes to make a nice.

7. Calculate, in three ways, the curl of the vector field

F(x) = −yex + xey = ρeϕ = r sin θ eϕ,

by applying the standard formulae in Cartesian, cylindrical, and spherical coordinates.

By considering the relationship between the basis vectors, check that your answers agree.
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8. (a) Let f be a scalar function on R3. Use the chain rule to express the partial derivatives of f
with respect to Cartesian coordinates x, y, z in terms of those with respect to cylindrical
polar coordinates ρ, ϕ, z. Using this and expressions for the basis vectors eρ, eϕ, ez, show
that

∇f =
∂f

∂ρ
eρ +

1

ρ

∂f

∂ϕ
eϕ +

∂f

∂z
ez.

(b) Show that the basis vectors eρ, eϕ, ez satisfy

∂eρ
∂ϕ

= eϕ and
∂eϕ
∂ϕ

= −eρ

and that all other derivatives of them with respect to ρ, ϕ and z are zero.

(c) From (i), we deduce that

∇ = eρ
∂

∂ρ
+ eϕ

1

ρ

∂

∂ϕ
+ ez

∂

∂z
.

Use this and (ii) to derive expressions for∇ ·F and∇×F, where F = Fρeρ+Fϕeϕ+Fzez.

Also derive an expression for ∇2f , for a scalar function f .

9. (a) The curve defined parametrically by x(t) = (a cos3 t, a sin3 t) with 0 ⩽ t ⩽ 2π is called an
astroid. Sketch it, and find its length.

(b) The curve defined by y2 = x3 is called Neile’s parabola. Sketch the segment of Neile’s
parabola with 0 ⩽ x ⩽ 4, and find its length.

10. (a) A path in R2 is defined in polar coordinates by r = f(θ) for α ⩽ θ ⩽ β. Show that the
length L of the path is given by

L =

∫ β

α

√(
f(θ)

)2
+
(
f ′(θ)

)2
dθ.

(b) The curves r = aθ, r = aebθ and r = a(1 + cos θ) are called an Archimedean spiral, a
logarithmic spiral and a cardioid, respectively. For a, b > 0 and 0 ⩽ θ ⩽ 2π, sketch the
curves and find their lengths.

11. A circular helix is given by x(t) = (a cos t, a sin t, ct), where a, c > 0. Calculate the tangent t,
principal normal n, curvature κ, binormal b, and torsion τ . Sketch the helix, showing t, n, b
at some point.

12. (a) Show that a planar curve given by x(t) = (x(t), y(t)) has curvature

κ(t) =
|ẋÿ − ẍẏ|

(ẋ2 + ẏ2)3/2
.

(b) Find the maximum and minimum curvature of the ellipse
x2

a2
+
y2

b2
= 1, for a > b > 0.
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The remaining questions are optional.

13. A curve in the plane is given in polar coordinates as r = f(θ). Find an expression for its
curvature as a function of θ.

Find the curvature of the curve given by r = sin θ, and sketch it for 0 ⩽ θ ⩽ π.

14. Using the formula for ∇ in the appropriate coordinates, prove the following two results.

(i) Let L be the line through the origin in the direction of the fixed non-zero vector a. Then
the field f(x) has cylindrical symmetry about L if and only if a · (x×∇f) = 0.

(ii) The field f(x) has spherical symmetry about the origin if and only if x×∇f = 0.

Explain geometrically why these results make sense.

15. Let f : R3 → R be a homogeneous function of degree n, i.e., such that f(kx) = knf(x) for all
k. By differentiating with respect to k, show that x ·∇f = nf .

16. The field lines of a non-vanishing vector field F are the curves parallel to F(x) at each point
x. Show that the curvature of the field lines of F is given by |F|−3|F× (F ·∇)F|.

Selected solutions for you to check your answers.

2. (b) The divergences are: 4r, a · b, 0, 0. The curls are: 0, b× a, 2a, 0.

5. Interesting fact: it turns out that ϕ+ iψ = zez, where z = x+ iy.

9. (b) The segment of Neile’s parabola has length 16
27

(
103/2 − 1

)
.

10. (b) The lengths are as follows.

� Archimedean spiral: a
2 (sinh

−1 2π + 2π
√
4π2 + 1)

� logarithmic spiral: a
b

√
1 + b2(e2bπ − 1)

� cardioid: 8a.
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Lent 2025 VECTOR CALCULUS – EXAMPLE SHEET 2 G.Taylor

1. Evaluate explicitly each of the line integrals

(a)

∫
(x dx+ y dy + z dz), (b)

∫
(y dx+ x dy + dz), (c)

∫
(y dx− x dy + ex+y dz)

along (i) the straight line path joining (0, 0, 0) to (1, 1, 1), and (ii) the parabolic path given by
x(t) = (t, t, t2) with 0 ⩽ t ⩽ 1.

For the integrals that give the same answers, why does this happen?

2. Let F(x) = (3x2y2z, 2x3yz, x3y2) and G(x) = (3x2yz2, 2x3yz, x3z2) be vector fields.

Show that F is conservative and G is not, and find the most general scalar potential for F.

By exploiting similarities between F and G, evaluate the line integral
∫
G · dx from (0, 0, 0)

to (1, 1, 1) along the path x(t) = (t, sin π
2 t, sin

π
2 t) with 0 ⩽ t ⩽ 1.

3. (i) A curve C is given parametrically in Cartesian coordinates by

x(t) =
(
cos(sinnt) cos t, cos(sinnt) sin t, sin(sinnt)

)
, 0 ⩽ t ⩽ 2π,

where n is some fixed integer. Using spherical polar coordinates, sketch C.

(ii) Let F(x) =
(
− y

x2+y2
, x
x2+y2

, 0
)
. By evaluating the line integral explicitly, show that∫

C F · dx = 2π, where C is traversed in the direction of increasing t.

(iii) Find a scalar function f such that ∇f = F. Comment on this, given (ii).

4. Use the substitution x = ρ cosϕ, y = 1
2ρ sinϕ to show that∫

A

x2

x2 + 4y2
dA =

3π

4
,

where A is the region between the two ellipses x2 + 4y2 = 1 and x2 + 4y2 = 4.

5. The closed curve C in the (x, y) plane consists of the arc of the parabola y2 = 4ax (a > 0) be-
tween the points (a,±2a) and the straight line joining (a,∓2a). The region enclosed by C is A.
By calculating both integrals explicitly, show that∫

C
(x2y dx+ xy2 dy) =

∫
A
(y2 − x2) dA =

104

105
a4,

where C is traversed anticlockwise.

6. The region A is bounded by the straight line segments {x = 0, 0 ⩽ y ⩽ 1}, {y = 0, 0 ⩽ x ⩽ 1},
{y = 1, 0 ⩽ x ⩽ 3

4}, and by an arc of the parabola y2 = 4(1−x). Consider a mapping into the
(x, y) plane from the (u, v) plane defined by the transformation x = u2 − v2, y = 2uv. Sketch
A and find the two regions in the (u, v) plane which are mapped into it.

Hence calculate ∫
A

dA

(x2 + y2)1/2
.
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7. Let T be the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the
volume V of T , and also the centre of volume, given by

1

V

∫
T
x dV .

8. A solid cone is bounded by the surface θ = α (in spherical polar coordinates) and the surface
z = a, and its density is ρ0 cos θ. Show that its mass is 2

3πρ0a
3(secα− 1).

You can use either spherical or cylindrical polars for this calculation. (You could do both!)
It is also possible to use a mixture of spherical and cylindrical polar variables to make the
limits of the integrals particularly nice.

9. Let a, b, c be positive. By using the new variables α = x/y, β = xy, γ = yz, show that∫ ∞

x=0

∫ 1

y=0

∫ x

z=0
x e−ax/y−bxy−cyz dz dy dx =

1

2a(a+ b)(a+ b+ c)
.

10. The vector field F is given in cylindrical polar coordinates (ρ, ϕ, z) by F = 1
ρeϕ, for ρ ̸= 0.

Show that ∇×F = 0 for ρ ̸= 0. Calculate
∮
C F · dx with C the circle given by ρ = R,

0 ⩽ ϕ ⩽ 2π, z = 0. Why does Stokes’ theorem not apply?

11. Verify Stokes’ theorem for the vector field F(x) = (y,−x, z) and the open surface defined in
cylindrical polar coordinates by ρ+ z = a and z ⩾ 0, where a > 0.

12. Verify Stokes’ theorem for the vector field F(x) = (−y3, x3, z3) and the open surface defined
by z = x2 + y2 and 1

4 ⩽ z ⩽ 1.

13. By applying Stokes’ theorem to the vector field c×F, where c is an arbitrary constant vector
and F is a vector field, show that∮

C
dx× F =

∫
A
(dA×∇)× F ,

where the curve C bounds the open surface A.

Verify this result when F(x) = x and A is the unit square in the (x, y) plane with opposite
vertices at (0, 0, 0) and (1, 1, 0).

The remaining questions are optional.

14. Without changing the order of integration, show that∫ 1

0

(∫ 1

0

x− y

(x+ y)3
dy

)
dx =

1

2
, and

∫ 1

0

(∫ 1

0

x− y

(x+ y)3
dx

)
dy = −1

2
.

Comment on these results.

15. A tricylinder is the body formed by intersecting the three solid cylinders given by the equations
x2 + y2 ⩽ a2, y2 + z2 ⩽ a2 and z2 + x2 ⩽ a2, with a > 0. Using cylindrical polar coordinates,
show that the volume of a tricylinder is 8(2−

√
2)a3.
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16. The curve x3 + y3 − 3axy = 0 with a > 0 is called the Cartesian Leaf. Sketch the Cartesian
Leaf, and find the area bounded by it in the first quadrant.

17. Let F : R3 → R3 be a vector field, and define

G(x) =

∫ 1

0
F(tx)× tx dt,

Show that if ∇ ·F = 0 then ∇×G = F.

Selected solutions for you to check your answers.

1. (a) both integrals are 3
2 ; (b) both integrals are 2 ; (c) the integrals are 1

2(e
2 ∓ 1)

6. The area of A has the form λ(1 + log 2) for λ that you should work out.

12. The integrals both equal 45
32π (or both equal −45

32π, depending on your choice of orientation).
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Lent 2025 VECTOR CALCULUS – EXAMPLE SHEET 3 G.Taylor

1. Let I =
∫
S r

n x · dS, for n > 0, where r = |x| and S is the sphere of radius R centred at the
origin in R3. Evaluate I directly, and by means of the divergence theorem.

2. Let F(x) = (x3 + 3y + z2, y3, x2 + y2 + 3z2), and let S be the open surface

x2 + y2 = 1− z, 0 ⩽ z ⩽ 1.

Use the divergence theorem (and cylindrical polar coordinates) to show that
∫
S F · dS = 2π.

Verify this by direct calculation.

3. By applying the divergence theorem to the vector field c×F, where c is an arbitrary constant
vector and F(x) is a vector field, show that∫

V
∇×F dV =

∫
A
dA× F ,

where the surface A encloses the volume V .

Verify this result when F(x) = (z, 0, 0) and V is the cuboid 0 ⩽ x ⩽ a, 0 ⩽ y ⩽ b, 0 ⩽ z ⩽ c.

4. Let V be a volume with boundary ∂V , and let f be a scalar field and F a vector field on V .
By applying the divergence theorem to suitable vector fields, prove the following results.

(i) If f is constant on ∂V , then
∫
V ∇f dV = 0.

(ii) If ∇ ·F = 0 in V and F · n = 0 on ∂V , then
∫
V F dV = 0.

Explain why these results make sense, given the conditions on f and F.

5. Let F,G be vector fields satisfying ∇ ·F = ∇ ·G = 0 in the volume V . Show that∫
V
F · ∇2G−G · ∇2F dV =

∫
∂V

(
F× (∇×G)−G× (∇×F)

)
· dS.

6. (a) The scalar field φ(r) depends only on the radial distance r = |x| in R3. Use Cartesian
coordinates and the chain rule to show that

∇φ = φ′(r)
x

r
and ∇2φ = φ′′(r) +

2

r
φ′(r).

What are the corresponding results when working in R2 rather than R3?

(b) Show that the radially symmetric solutions of Laplace’s equation in R2 have the form
φ = α+ β log r, where α and β are constants.

(c) Find the solution of ∇2φ = 1 in the region r ⩽ 1 in R3 which is not singular at the origin
and satisfies φ(1) = 1.

7. (a) Find all solutions of Laplace’s equation, ∇2f = 0, in two dimensions that can be written
in the separable form f(r, θ) = R(r)Φ(θ), where r and θ are plane polar coordinates.

(b) Consider the following boundary value problem in R2.

∇2f = 0, f(a, θ) = sin θ.

Find the solution for r ⩽ a which is not singular at the origin.

Find the solution for r ⩾ a that satisfies f(r, θ) → 0 as r → ∞.

Find the solution for a ⩽ r ⩽ b that satisfies ∂f
∂n(b, θ) = 0. Recall that ∂f

∂n = n ·∇f .
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8. A spherically symmetric charge density is given by

ρ(r) =


0 for 0 ⩽ r < a
r for a ⩽ r ⩽ b
0 for b < r <∞

Find the electric field everywhere in two ways, namely:

(i) direct solution of Poisson’s equation, using formulae from question 6,

(ii) Gauss’s flux method.

You should assume that the potential is a function only of r, is not singular at the origin and
that the potential and its first derivative are continuous at r = a and r = b.

(Note that you are asked to find the electric field, not the potential.)

9. The surface S encloses a volume in which the scalar field φ satisfies the Klein-Gordon equation
∇2φ = m2φ, wherem is a real non-zero constant. Prove that φ is uniquely determined if either
φ or ∂φ/∂n is given on S.

10. Show that the solution to Laplace’s equation ∇2φ = 0 in a volume V with boundary condition

g
∂φ

∂n
+ φ = f on ∂V

is unique if g(x) ⩾ 0 on ∂V .

Find a non-zero (and so non-unique) solution of Laplace’s equation defined on r ⩽ 1 which
satisfies the boundary condition above with f = 0 and g = −1 on r = 1.

Don’t assume that the solution is spherically symmetric. (Why not?)

11. The scalar fields u(x) and v(x) satisfy ∇2u = 0 on V and v = 0 on ∂V . Show that∫
V
∇u ·∇v dV = 0.

Let w be a scalar field which satisfies w = u on ∂V . Show that∫
V
|∇w|2 dV ⩾

∫
V
|∇u|2 dV,

i.e. the solution of the Laplace problem minimises
∫
V |∇w|2 dV .

12. The scalar field φ is harmonic (i.e., solves Laplace’s equation) in a volume V bounded by a
closed surface S. Given that V does not contain the origin, show that∫

S

(
φ∇

(
1

r

)
−

(
1

r

)
∇φ

)
· dS = 0.

Now let V be the volume given by ε ⩽ r ⩽ a and let Sa be the surface r = a. Given that φ(x)
is harmonic for r ⩽ a, use this result, in the limit ε→ 0, to show that

φ(0) =
1

4πa2

∫
Sa

φ(x) dS.
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The remaining questions are optional.

13. Find the electric field in question 8 by a third method, namely the integral solution of Poisson’s
equation: if ∇2φ = ρ then

φ(y) = − 1

4π

∫
V

ρ(x)

|x− y|
dV.

14. Let S be a surface with unit normal n, and v(x) a vector field such that v · n = 0 on S. Let
m be a unit vector field such that m = n on S. By applying Stokes’ theorem to m× v, show
that ∫

S
(δij − ninj)

∂vi
∂xj

dS =

∮
C
u · v ds,

where s denotes arc-length along the boundary C of S, and u is such that uds = dx× n.

Verify this result by taking v = x and S to be the disc |x| ⩽ R in the z = 0 plane.

15. Let S1 be the 3-dimensional sphere of radius 1 centred at (0, 0, 0), S2 be the sphere of radius
1
2 centred at (12 , 0, 0) and S3 be the sphere of radius 1

4 centred at (−1
4 , 0, 0).

The eccentrically-shaped planet Zog is composed of rock of uniform density ρ occupying the
region within S1 and outside S2 and S3. The regions inside S2 and S3 are empty. Give an
expression for Zog’s gravitational potential at a general coordinate x that is outside S1.

Show that there is a point in the interior of S3 where a particle would remain at rest. Does it
do so stably?

16. Consider the partial differential equation
∂u

∂t
= ∇2u, for u = u(t,x), with initial condition

u(0,x) = u0(x) in V , and boundary condition u(t,x) = f(x) on ∂V for all t ⩾ 0.

Show that
d

dt

∫
V
|∇u|2 dV ⩽ 0. When does equality hold?

Selected solutions for you to check your answers.

3. The integrals equal (0, abc, 0).

6. (c) The solution is ϕ(r) = 1
6(r

2 + 5).

7. (b) The three solutions are, respectively: r
a sin θ,

a
r sin θ,

a
a2+b2

(
r + b2

r

)
sin θ.

8. The field is given by E(r) = E(r)er, where E(r) =


0 for 0 ⩽ r < a
(r4 − a4)/4ε0r

2 for a ⩽ r ⩽ b
(b4 − a4)/4ε0r

2 for b < r <∞
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Lent 2025 VECTOR CALCULUS – EXAMPLE SHEET 4 G.Taylor

We are working in R3 throughout. Where needed, you may quote that the most general isotropic
tensor of rank 4 has the form λδijδkℓ + µδikδjℓ + νδiℓδjk for λ, µ, ν ∈ R.

1. Let n be a unit vector in R3, and let Pij = δij − ninj .

(a) Find the eigenvalues and eigenvectors of Pij .

(b) For Aij = εijknk, find AijAjkAkℓAℓm in terms of Pim. Explain this result geometrically.

2. Given vectors u = (1, 0, 1), v = (0, 1,−1) and w = (1, 1, 0), find all components of the second-
rank and third-rank tensors defined by

(i) Sij = uivj + viwj

(ii) Tijk = uivjwk − viujwk + viwjuk − wivjuk + wiujvk − uiwjvk.

3. (a) Any 3× 3 matrix A can be decomposed in the form Ax = αx+v×x+Bx, where α is a
scalar, v is a vector, and B is a traceless symmetric matrix. Verify this claim by finding
α, vk and Bij explicitly in terms of Aij .

(b) Find α, v and B for the matrix A =

1 2 3
4 5 6
1 2 3

.

(c) For a vector field u(x), let Aij = ∂ui/∂xj . Show that α = 1
3∇ ·u and v = 1

2∇×u.

Find Bij in the case u(x) = (x1x
2
2 , x2x

2
3 , x3x

2
1). Verify that (0, 0, 1) is one of the principal

axes of Bij at the point x = (2, 3, 0), and find the others.

4. If u(x) is a vector field, show that ∂ui/∂xj transforms as a second-rank tensor.

If σ(x) is a second-rank tensor field, show that ∂σij/∂xj transforms as a vector.

5. The current Ji due to an electric field Ei is given by Ji = σijEj , where σij is the conductivity
tensor. In a given Cartesian coordinate system

(σij) =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Show that for one direction of the applied electric field, no current flows. For which direction(s)
of Ei is the current largest?

6. An object has symmetry such that it is unchanged by rotations of π about the three usual
Cartesian axes. Show that any second-rank tensor calculated for the object will be diagonal
in the standard basis, although the diagonal elements need not be equal.

Find the inertia tensor of a cuboid of uniform density ρ with sides of length 2a, 2b and 2c
about the centre of the cuboid.

7. For any second-rank tensor Tij , prove using the transformation law that the quantities

α = Tii, β = TijTji, and γ = TijTjkTki

are the same in all bases.

If Tij is a symmetric tensor, express these invariants in terms of the eigenvalues. Deduce that
the determinant of Tij is 1

6(α
3 − 3αβ + 2γ).
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8. Let S be the surface of the unit sphere.

(a) Calculate the following integrals using properties of isotropic tensors:

(i)

∫
S
xi dS, (ii)

∫
S
xixj dS.

Verify your answers using the tensor divergence theorem (if you have met it in lectures).

(b) For the second-rank tensor Tij = δij + εijkxk, calculate the following integrals:

(i)

∫
S
Tij dS, (ii)

∫
S
TijTjk dS.

If your lectures only considered isotropic integrals over volumes rather than surfaces, then you
should assume that the corresponding results for surfaces hold.

9. Evaluate the following integrals over the whole of R3.

(i)

∫
r−3e−r2xixj dV, (ii)

∫
r−4e−r2xixjxk dV, (iii)

∫
r−5e−r2xixjxkxℓ dV.

10. (a) Show that εijkεijℓ is isotropic of rank 2, and deduce that it equals 2δkℓ.

(b) Using that εijkεiℓm is isotropic of rank 4, show that it equals δjℓδkm − δjmδkℓ.

(c) Prove that εijkεpqr =

∣∣∣∣∣∣
δip δiq δir
δjp δjq δjr
δkp δkq δkr

∣∣∣∣∣∣ .
11. The array dijk with 33 elements is such that dijksjk is a vector for every symmetric second-rank

tensor sjk. Show that dijk need not be a tensor, but that dijk + dikj must be.

12. In linear elasticity, the symmetric second-rank stress tensor σij depends on the symmetric
second-rank strain tensor eij according to σij = cijkℓekℓ, where cijkℓ is a fourth-rank tensor.
Show that, in an isotropic material,

σij = λδijekk + 2µeij (∗)

for two scalars λ and µ.

Assume now that µ > 0 and λ > −2
3µ.

Use (∗) to find an expression for eij in terms of σij , and explain why the principal axes of σij
and eij coincide.

The elastic energy density resulting from a deformation of the material is given by E = 1
2eijσij .

Show that E > 0 for any non-zero strain eij .

The remaining questions are optional.

13. Let vi be a non-zero vector. Show that any 3 × 3 symmetric matrix Tij can be expressed in
the form Tij = Aδij +Bvivj + (Civj + Cjvi) +Dij for scalars A and B, a vector Ci satisfying
Civi = 0, and a symmetric matrix Dij satisfying Dii = 0 and Dijvj = 0.

Explain why A, B, Ci andDij together provide a space of the correct dimension to parameterise
an arbitrary symmetric 3× 3 matrix Tij .
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14. (a) A tensor of rank 3 satisfies Tijk = Tjik and Tijk = −Tikj . Show that Tijk = 0.

(b) A tensor of rank 4 satisfies Tjikℓ = −Tijkℓ = Tijℓk and Tijij = 0. Show that

Tijkℓ = εijpεkℓqSpq, where Spq = −Trqrp.

15. (a) In question 8, you were told to assume that the results from lectures regarding isotropic
integrals over volumes also hold for surfaces. Prove that this is valid for a spherical
surface, using the tensor divergence theorem.

(b) Using the tensor divergence theorem, verify the formula in question 12 on sheet 2:∫
V
∇×F dV =

∫
A
dS× F .

(c) Using a ‘tensor Stokes’ theorem’, verify the formula in question 4 on sheet 3:∮
C
dx× F =

∫
A
(dA×∇)× F .

16. A second-rank tensor T (y) is defined for n > −1 by

Tij(y) =

∫
S
(yi − xi)(yj − xj)|y − x|2n−2 dA ,

where y is a fixed unit vector and S is the unit sphere.

Given that Tij = αδij + βyiyj for some scalar constants α and β, find the value of n for which
T is isotropic.

Selected solutions for you to check your answers.

3. (c) The other principal axes are (2, 1, 0) and (1,−2, 0).

6. The inertia tensor has diagonal entries M
3 (b

2+ c2), M
3 (c

2+a2), M
3 (a

2+ b2), where M = 8abcρ.

8. The answers are: (a)(i) 0, (a)(ii) 4
3πδij , (b)(i) 4πδij , (b)(ii) 4

3πδik.

9. The answers are: (i) 2
3πδij , (ii) 0, (iii) 2π

15 (δijδkℓ + δikδjℓ + δiℓδjk).
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