IA Numbers & Sets – Example Sheet 3

Michaelmas 2025

zoe.wyatt@maths.cam.ac.uk

Questions marked † are more challenging.

- 1. Solve (i.e. find all solutions of) the equations
 - (i) $7x \equiv 77 \mod 40$;
 - (ii) $12y \equiv 30 \mod 54$;
 - (iii) $3z \equiv 2 \mod 17$ and $4z \equiv 3 \mod 19$.
- 2. By considering the *n* fractions $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}$ or otherwise, prove that $n = \sum_{d|n} \varphi(d)$.
- 3. Explain (without electronic assistance) why 23 cannot divide $10^{881} 1$.
- 4. Let p be a prime of the form 3k + 2. Show that if $x^3 \equiv 1 \mod p$, then $x \equiv 1 \mod p$. Deduce that every number is a cube modulo p, that is, $y^3 \equiv a \mod p$ has an integer solution y for all $a \in \mathbb{Z}$.
- 5. What is the 5th-last digit of $5^{5^{5^5}}$?
- 6. Is there a positive integer n for which $n^7 77$ is a Fibonacci number?
- 7. By considering numbers of the form $(2p_1p_2...p_k)^2 + 1$, prove that there are infinitely many primes of the form 4n + 1.
- 8. An RSA encryption scheme (n, e) has modulus n = 187 and encoding exponent e = 7. Find a suitable decoding exponent d. Check your answer (without electronic assistance) by explicitly encoding the number 35 and then decoding the result.
- 9. Prove carefully, using the least upper bound axiom, that there is a real number x satisfying $x^3 = 2$. Prove also that such an x must be irrational.
- 10. Prove that $\sqrt{2} + \sqrt{3}$ is irrational and algebraic.
- 11. Suppose that $x \in \mathbb{R}$ is a root of a monic integer polynomial, i.e. we have $x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0 = 0$, for some integers a_{n-1}, \dots, a_0 . Prove that x is either integer or irrational.
- 12. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}} + \sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
- 13. Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be sequences of reals. Show that if $x_n \to 0$ and $y_n \to 0$, then $x_n y_n \to 0$. By considering $x_n c$ and $y_n d$, prove carefully that if $x_n \to c$ and $y_n \to d$, then $x_n y_n \to cd$.
- 14. Let $(x_n)_{n=1}^{\infty}$ be a sequence of reals. Show that if $(x_n)_{n=1}^{\infty}$ is convergent, then we must have $x_n x_{n-1} \to 0$. If $x_n x_{n-1} \to 0$, must $(x_n)_{n=1}^{\infty}$ be convergent?
- 15. † Let n and k be positive integers. Suppose that n is a kth power modulo p for all primes p. Must n be a kth power?