Michaelmas 2024

zoe.wyatt@maths.cam.ac.uk

Questions marked † are more challenging.

- 1. Find integers x and y with 76x + 45y = 1. Do there exist integers x and y with 3381x + 2646y = 21?
- 2. Let $a, b, c, d \in \mathbb{N}$. Must the numbers (a, b)(c, d) and (ac, bd) be equal? If not, must one be a factor of the other? If (a, b) = (a, c) = 1, must we have (a, bc) = 1?
- 3. Show that a positive integer n is a multiple of 9 if and only if the sum of its digits is a multiple of 9. The number 2^{29} has nine distinct digits. Which digit is missing?
- 4. The Fibonacci numbers $F_1, F_2, F_3, ...$ are defined by: $F_1 = F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all n > 2 (so eg. $F_3 = 2, F_4 = 3, F_5 = 5$). Is F_{2024} even or odd? Is it a multiple of 3?
- 5. Solve (i.e. find all solutions of) the equations
 - (i) $7x \equiv 77 \mod 40$;
 - (ii) $12y \equiv 30 \mod 54;$
 - (iii) $3z \equiv 2 \mod 17$ and $4z \equiv 3 \mod 19$.
- 6. An RSA encryption scheme (n, e) has modulus n = 187 and encoding exponent e = 7. Find a suitable decoding exponent d. Check your answer (without electronic assistance) by explicitly encoding the number 35 and then decoding the result.
- 7. By considering the *n* fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$ or otherwise, prove that $n = \sum_{d|n} \varphi(d)$.
- 8. Explain (without electronic assistance) why 23 cannot divide $10^{881} 1$.
- 9. Let p be a prime of the form 3k + 2. Show that if $x^3 \equiv 1 \mod p$, then $x \equiv 1 \mod p$. Deduce that every number is a cube modulo p, that is, $y^3 \equiv a \mod p$ has an integer solution y for all $a \in \mathbb{Z}$.
- 10. By considering numbers of the form $(2p_1p_2...p_k)^2 + 1$, prove that there are infinitely many primes of the form 4n + 1.
- 11. What is the 5th-last digit of $5^{5^{5^5}}$?
- 12. Is there a positive integer n for which $n^7 77$ is a Fibonacci number?
- 13. Let A be the sum of the digits of 4444^{4444} , and let B be the sum of the digits of A. What is the sum of the digits of B?
- 14. \dagger Let *n* and *k* be positive integers. Suppose that *n* is a *k*th power modulo *p* for all primes *p*. Must *n* be a *k*th power?