
E. 2024 METRIC AND TOPOLOGICAL SPACES – SHEET 1 G. Taylor

1. (a) Let (X1, d1) and (X2, d2) be metric spaces. Show that we may define a metric d
on the product X1 ×X2 by d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2).

Show that the projections πi : X1 ×X2 → Xi, (x1, x2) 7→ xi, are continuous.

Show that if (X1, d1) and (X2, d2) are complete, then so is (X1 ×X2, d).

(b) Let (Xi, di) be metric spaces for i = 1, 2, . . ., and let X be the set of all sequences
(xi)

∞
i=1 with xi ∈ Xi for all i. Show that we may define a metric d on X by

d
(
(xi), (yi)

)
=

∞∑
i=1

1

2i
di(xi, yi)

1 + di(xi, yi)
.

2. (a) Let d1, d2, d∞ be the metrics on Rn given by

d1(x,y) =

n∑
i=1

|xi − yi|, d2(x,y) =

[ n∑
i=1

(xi − yi)2
]1/2

, d∞(x,y) = sup
i
|xi − yi|.

For x,y ∈ Rn, show that

d1(x,y) > d2(x,y) > d∞(x,y) >
1√
n
d2(x,y) >

1

n
d1(x,y) .

Deduce that the metrics induce the same topology on Rn.

(b) Now let d1, d2, d∞ be the metrics on C[0, 1] given by

d1(f, g) =

∫ 1

0
|f − g|, d2(f, g) =

[ ∫ 1

0
(f − g)2

]1/2
, d∞(f, g) = sup

[0,1]
|f − g|.

Show that the metrics induce distinct topologies on C[0, 1].

3. Define the maps f, g : R2 → R by f(x, y) = x + y and g(x, y) = xy. Show that f, g
are continuous with respect to the Euclidean topologies on R2 and R.

Now give R the topology τ in which the open sets are intervals of the form (a,∞),
and give R2 the resulting product topology. Are f, g continuous with respect to these
topologies?

Find all continuous functions from (R, τ) to (R,Euclidean).

4. Determine whether the following subsets of R2 are open, closed, both or neither.

(i) {(x, y) | x < 0} ∪ {(x, y) | x > 0, y > 1/x}

(ii) {(x, sin(1/x)) | x > 0} ∪ {(0, y) | y ∈ [−1, 1]}

(iii) {(x, y) | y = xn for some positive integer n}.

5. Show that Q is not complete with respect to the Euclidean metric.

Is there a metric on Q which makes it into a complete metric space?
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6. For a function f : X → Y , define its graph to be Γf = {(x, f(x)) : x ∈ X} ⊆ X × Y .

Prove that f : [0, 1]→ [0, 1] is continuous if and only if Γf is closed in [0, 1]2.

Give an example of f : R→ R for which Γf is closed in R2 but f is not continuous.

7. Let (X, d) be a metric space. For A ⊆ X, define dA : X → R by dA(x) = infy∈A d(x, y).
Show that dA is continuous, and that A is closed if and only if dA(x) > 0 for all x /∈ A.

Let A,B be disjoint closed subsets of X. Show that there exist disjoint open subsets
U, V of X with A ⊆ U and B ⊆ V . Must we have infx∈B dA(x) > 0 ?

8. Let f : X → Y be a map of topological spaces. Show that f is continuous if and only
if f(cl(A)) ⊆ cl(f(A)) for all A ⊆ X.

Deduce that if f is continuous and surjective, then the image of a dense set in X is
dense in Y .

9. Let X be a topological space, and let A be a subset of X. Prove that at most seven
distinct sets (including A itself) can be obtained from A by repeated applications of
the closure and interior operations.

Find a subset of R for which seven distinct sets can be obtained in this way.

10. Let X be a topological space. Show that the following statements are equivalent:

(i) X is Hausdorff

(ii) The diagonal ∆ = {(x, x) | x ∈ X} is closed in X×X, with the product topology

(iii) For any topological space Y and any continuous maps f, g : Y → X, the set
{y ∈ Y : f(y) = g(y)} is closed in Y .

Deduce that if X is Hausdorff and f : Y → X is a continuous function on a space Y ,
then f is determined by its values on any dense subset of Y .

If instead the diagonal ∆ is an open subset of X ×X, what is the topology on X?

11. A topological space is called separable if it has a countable dense subset, and is called
second countable if it has a countable base of open sets.

(a) Show that R with the Euclidean topology is separable and second countable.

(b) Let X be R with the topology in which a subset of R is open if either it is empty
or contains 0. Is X separable? Is X second countable?

(c) Prove that a second countable topological space is separable, and that a separable
metric space is second countable. Deduce that a subspace of a separable metric
space is separable.

12. Let X be R with the cocountable topology, in which a subset of R is open if either it is
empty or its complement in R is countable. Is X separable? Is X second countable?
Which sequences (xi)

∞
i=1 in X converge, and what can you say about the limit?

Repeat with the cofinite topology, in which a subset of R is open if either it is empty
or its complement in R is finite.
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E. 2024 METRIC AND TOPOLOGICAL SPACES – SHEET 2 G. Taylor

1. Let R have the Euclidean topology, and let ∼ be the equivalence relation defined by
x ∼ y if and only if either x = y = 0 or xy > 0. Find all open sets of the quotient
space R/∼. Is R/∼ Hausdorff?

Now let ∼ instead be the equivalence relation on R defined by x ∼ y if and only if
x− y ∈ Q. What is the topology on R/∼ ?

2. Determine whether the following subsets of R2 are connected, path-connected, both
or neither. Here, Br(x) is the open ball with centre x and radius r, and Br(x) is the
corresponding closed ball.

(i) B1((1, 0)) ∪B1((−1, 0))

(ii) B1((1, 0)) ∪B1((−1, 0))

(iii) {(x, y) | at least one of x and y is rational}
(iv) {(x, y) | exactly one of x and y is rational}.

3. Let X be a connected topological space such that that for every x ∈ X, there is an
open neighbourhood of x which is path-connected. Show that X is path-connected.

4. Let X be a topological space, and A is a connected subset of X. Show that cl(A) is
connected, and deduce that any connected component of X is closed.

Prove that every connected component of the product X×X is a product of connected
components of X.

5. Show that there is no continuous injective function from R2 to R.

6. Is there a metric on Q which makes it into a connected space? What about R \Q?

Is there an infinite compact subset of Q, in the Euclidean topology?

7. (a) Show that a subset A of Rn is compact if and only if every continuous function
from A to R has bounded image.

(b) Show that any open cover of Rn has a countable subcover.

8. Let τc ( τ ( τf be topologies on a set X. (I.e., ‘c’ for ‘coarser’ and ‘f ’ for ‘finer’.)

(a) Suppose that (X, τ) is compact. Show that (X, τc) is compact.

Give an example to show that (X, τf ) may not be compact.

(b) Suppose that (X, τ) is Hausdorff. Show that (X, τf ) is Hausdorff.

Give an example to show that (X, τc) may not be Hausdorff.

(c) Suppose that (X, τ) is compact and Hausdorff. Show that (X, τf ) is not compact,
and that (X, τc) is not Hausdorff.
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9. Let X be a topological space. Its one-point compactification X∗ is defined as follows.
As a set, X∗ is the union of X with an additional point denoted by ∞. A subset U
of X∗ is open if either

(i) ∞ /∈ U and U is open in X, or

(ii) ∞ ∈ U and X∗ \ U is a closed and compact subset of X.

Show that this defines a topology, and that X∗ is compact. When is X dense in X∗?

Write down a subset of R which is homeomorphic to Z∗.

Show that C∗ is homeomorphic to the sphere S2.

10. Let T2 be the two-dimensional torus, defined as R2/∼, where (x, y) ∼ (x′, y′) if and
only if x− x′ and y − y′ are both integers.

(a) Show that T2 is compact and path-connected.

(b) Let L ⊂ R2 be a line of the form y = αx, where α is irrational, and let q(L) be
its image in T2, where q : R2 → T2 is the quotient map.

What are the interior and closure of q(L) in T2 ?

Show that the restriction of q to L is a continuous bijection from L to q(L). Is
it a homeomorphism?

11. For each of the spaces X below, is the one-point compactification X∗ metrizable?

(i) X = R, with the Euclidean topology

(ii) X = R, with the discrete topology

(iii) X = Q, with the Euclidean topology

(iv) X = Q, with the discrete topology.

12. (a) Find a sequence [a1, b1], [a2, b2], . . . of closed intervals in R of positive length
whose union contains all rationals in [0, 1] and such that

∑∞
i=1(bi − ai) < 1.

(b) Let [a1, b1], [a2, b2], . . . be a sequence of closed intervals in R of positive length
whose union contains all irrationals in [0, 1]. Can we have

∑∞
i=1(bi − ai) < 1?
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E. 2024 METRIC AND TOPOLOGICAL SPACES – SHEET 3 G. Taylor

1. Let Z have the 5-adic metric. Show that:

(i) the sequence 2020, 20020, 200020, 2000020, . . . converges

(ii) the sequence 2020, 22020, 222020, 2222020, . . . is Cauchy but doesn’t converge.

2. (a) Let A ⊆ R2 be a countable set of points. Show that R2 \A is path-connected.

(b) Let B ⊆ R2 be a set of points satisfying the following two conditions:

(i) if x ∈ Q, then (x, y) ∈ B for every y ∈ R
(ii) if x /∈ Q, then (x, y) ∈ B for at least one y ∈ R.

Show that B is connected.

3. I am standing in a forest on R2 and cannot see anything but trees in every direction.
Is it possible to cut down all but finitely many trees so that I still can’t see out?

4. Let X be R with the half-open interval topology, which has a base of open sets given
by all intervals [a, b) with a < b. Show that X is totally disconnected, i.e. the only
connected subsets are single points. Show also that the interval [a, b], where a < b, is
closed but not compact.

Show that X ×X is separable (recall question 11 on sheet 1), but that the subspace
{(x,−x) : x ∈ R} of X ×X is not separable. Deduce that X is not metrizable.

5. We generalise question 6 on sheet 1. Let f : X → Y be a map between topological
spaces, and let Γf be its graph.

(a) Show that if Y is Hausdorff and f is continuous then Γf is closed.

(b) Show that if Y is compact then the projection π1 : X × Y → X, (x, y) 7→ x, is a
closed map, i.e. sends closed sets to closed sets.

Deduce that if Y is compact and Γf is closed then f is continuous.

6. A topological space X is called normal if, given disjoint closed subsets A,B of X,
there exist disjoint open subsets U, V of X with A ⊆ U and B ⊆ V . (So question 7
on sheet 1 shows that any metric space is normal.)

(a) Show that we may choose the open subsets U, V above to have disjoint closures.

(b) Prove that a compact Hausdorff space is normal.

7. Let U, V be subsets of a topological space X. If U, V are compact, must U ∪ V be
compact? Must U ∩ V be compact?

8. Let X be a finite topological space. Show that if X is Hausdorff then the topology is
discrete. Show that if X is connected then X is path-connected.

9. Can a topological space be homeomorphic to its own one-point compactification?

10. Refer back to question 1(b) on sheet 1. For each property P in {complete, separable,
connected, compact}, prove that if each (Xi, di) has property P then so does (X, d).
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11. Let C1, C2, . . . be compact, connected, non-empty subsets of a Hausdorff space, such
that C1 ⊇ C2 ⊇ · · · . Prove that the intersection

⋂
n∈NCn is connected.

Give an example to show that the compactness assumption is required.

12. Let X,Y be topological spaces such that there exist continuous bijections f : X → Y
and g : Y → X. Show that if X,Y are finite then they are homeomorphic. What if
X,Y are infinite?
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