A brief explanation of the Steinitz Exchange Lemma

Suppose we have a set of linearly independent vectors \(I = \{i_1, i_2, i_3\} \), and a set of spanning vectors \(S = \{s_1, s_2, s_3, s_4\} \). Then we may replace, one at a time, vectors in \(S \) with vectors in \(I \), until we get a spanning set \(T = \{i_1, i_2, i_3, s\} \), where \(s \) is one of the \(s_i \).

Since \(S \) spans, we know that \(i_1 \) may be written as a linear combination of elements of \(S \), say \(i_1 = \lambda_1 s_1 + \lambda_2 s_2 + \lambda_3 s_3 + \lambda_4 s_4 \). One of the \(\lambda_i \) must be non-zero, or else we have \(i_1 = 0 \), which contradicts \(I \) being linearly independent. So, by renaming the \(s_i \) if necessary, we may assume that \(\lambda_1 \neq 0 \).

We have \(s_1 = \frac{1}{\lambda_1} (i_1 - \lambda_2 s_2 - \lambda_3 s_3 - \lambda_4 s_4) \).

Then \(S' = \{i_1, s_2, s_3, s_4\} \) spans. Why? We know that \(S \) spans, so any vector is some combination of \(s_1, \ldots, s_4 \), and we can now replace the occurrence of \(s_1 \) by the above expression in \(i_1, s_2, s_3, s_4 \).

We now have the linearly independent set \(I' = \{i_2\} \) and the spanning set \(S' = \{i_1, s_2, s_3, s_4\} \).

Since \(S' \) spans, we know that \(i_2 \) may be written as a linear combination of elements of \(S' \), say \(i_2 = \mu_1 i_1 + \mu_2 s_2 + \mu_3 s_3 + \mu_4 s_4 \). This time, we know that one of \(\mu_2, \mu_3, \mu_4 \) must be non-zero, or else we have \(i_2 = \mu_1 i_1 \), which contradicts the original \(I \) being linearly independent. So, by renaming the \(s_i \) if necessary, we may assume that \(\mu_2 \neq 0 \).

We have \(s_2 = \frac{1}{\mu_2} (i_2 - \mu_1 i_1 - \mu_3 s_3 - \mu_4 s_4) \).

Then \(S'' = \{i_1, i_2, s_3, s_4\} \) spans. Why? Like before, we know that \(S' \) spans, so that any vector is some combination of \(i_1, s_2, s_3, s_4 \), and we can now replace the occurrence of \(s_2 \) with the above expression in \(i_1, i_2, s_3, s_4 \).

We now have the linearly independent set \(I'' = \{i_3\} \) and the spanning set \(S'' = \{i_1, i_2, s_3, s_4\} \).

Since \(S'' \) spans, we know that \(i_3 \) may be written as a linear combination of elements of \(S'' \), say \(i_3 = \nu_1 i_1 + \nu_2 i_2 + \nu_3 s_3 + \nu_4 s_4 \). This time, we know that one of \(\nu_3, \nu_4 \) must be non-zero, or else we have \(i_3 = \nu_1 i_1 + \nu_2 i_2 \), which contradicts the original \(I \) being linearly independent. So, by renaming the \(s_i \) if necessary, we may assume that \(\nu_3 \neq 0 \).

We have \(s_3 = \frac{1}{\nu_3} (i_3 - \nu_1 i_1 - \nu_2 i_2 - \nu_4 s_4) \).

Then \(S''' = \{i_1, i_2, i_3, s_4\} \) spans, for reasons just like before. And this is the set \(T \) we claimed existed at the start.

What would have happened if we’d started with the linearly independent set \(I = \{i_1, i_2, i_3, i_4\} \) and the spanning set \(S = \{s_1, s_2, s_3, s_4\} \)?

We would do one more step in the process above, and end up replacing all elements in \(S \) with those in \(I \), and we would conclude that \(I \) itself spans.
What if we’d started with the linearly independent set \(I = \{i_1, i_2, i_3, i_4, i_5\} \) and the spanning set \(S = \{s_1, s_2, s_3, s_4\} \) ?

Well, after four steps in the above process we would have reached the point where \(I^{\prime\prime\prime} = \{i_5\} \) and \(S^{\prime\prime\prime} = \{i_1, i_2, i_3, i_4\} \) were the sets under consideration. But this is impossible, for if this \(S^{\prime\prime\prime} \) spanned, then we could write \(i_5 \) as a linear combination of \(i_1, i_2, i_3, i_4 \), which would contradict \(I \) being linearly independent in the first place.

It is clear that if \(I \) is a finite linearly independent set and \(S \) is a finite spanning set, then the procedure above could be performed. In particular, we would find that \(|I| \leq |S|\).

An immediate corollary is that if a vector space has a finite basis, then any two bases for it have the same size. For if \(B_1 \) and \(B_2 \) are two bases for it, then taking \(I = B_1 \) and \(S = B_2 \), we see that \(|B_1| \leq |B_2|\), and taking \(I = B_2 \) and \(S = B_1 \), we see that \(|B_2| \leq |B_1|\).

This means that ‘dimension’ is well-defined.

We can also see that, in a finite-dimensional vector space, any linearly independent set may be extended to a basis: let \(I \) be the linearly independent set and let \(S \) be any basis you like, and at the end of the process we have reached a basis containing \(I \).

Note the use of the word ‘finite’ a few times above. The process described did assume that \(I \) and \(S \) were finite. We could have taken \(S \) to be infinite, and replaced \(|I|\) many elements of \(S \) with the elements of \(I \). That’s okay, because the process would still terminate after \(|I|\) many steps.

It’s not obvious what would happen if \(I \) were infinite. If the exchange process turns out to be invalid, then the corollaries might not follow. Is ‘dimension’ even well-defined for huge spaces, and does every vector space actually have a basis? The answers are yes – but you’ll have to go to Logic & Set Theory in the third year, and throw Zorn’s Lemma at the problem.

Please let me know of any corrections: glt1000@cam.ac.uk