

IB Linear Algebra – Example Sheet 4

Michaelmas 2025

hb470@cam.ac.uk

1. The square matrices A and B over the field F are congruent if $B = P^TAP$ for some invertible matrix P over F . Which of the following symmetric matrices are congruent to the identity matrix over \mathbb{R} , and which over \mathbb{C} ? (Which, if any, over \mathbb{Q} ?) Try to get away with the minimum calculation.

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 4 & 4 \\ 4 & 5 \end{pmatrix}.$$

2. Find the rank and signature of the following quadratic forms over \mathbb{R} .

$$x^2 + y^2 + z^2 - 2xz - 2yz, \quad x^2 + 2y^2 - 2z^2 - 4xy - 4yz, \quad 16xy - z^2, \quad 2xy + 2yz + 2zx.$$

If A is the matrix of the first of these (say), find a non-singular matrix P such that P^TAP is diagonal with entries ± 1 .

3. (i) Show that the function $\psi(A, B) = \text{tr}(AB^T)$ is a symmetric positive definite bilinear form on the space $\text{Mat}_n(\mathbb{R})$ of all $n \times n$ real matrices. Deduce that $|\text{tr}(AB^T)| \leq \text{tr}(AA^T)^{1/2}\text{tr}(BB^T)^{1/2}$.
(ii) Show that the map $A \mapsto \text{tr}(A^2)$ is a quadratic form on $\text{Mat}_n(\mathbb{R})$. Find its rank and signature.

4. A bilinear form $\varphi : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ is called *skewsymmetric* if $\varphi(u, v) = -\varphi(v, u)$ for all u, v . If φ is non-degenerate, show that n is even, and that there is a basis with respect to which the matrix representation of φ is block-diagonal with blocks of the form $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. What is the maximum dimension of a subspace on which φ vanishes?

5. Let $\psi : V \times V \rightarrow \mathbb{C}$ be a Hermitian form on a complex vector space V .
(i) Find the rank and signature of ψ in the case $V = \mathbb{C}^3$ and

$$\psi(x, x) = |x_1 + ix_2|^2 + |x_2 + ix_3|^2 + |x_3 + ix_1|^2 - |x_1 + x_2 + x_3|^2.$$

(ii) Show in general that if $n > 2$ then $\psi(u, v) = \frac{1}{n} \sum_{k=1}^n \zeta^k \psi(u + \zeta^k v, u + \zeta^k v)$ where $\zeta = e^{2\pi i/n}$.

6. Show that the quadratic form $2(x^2 + y^2 + z^2 + xy + yz + zx)$ is positive definite. Write down an orthonormal basis for the corresponding inner product on \mathbb{R}^3 . Compute the basis of \mathbb{R}^3 obtained by applying the Gram-Schmidt process to the standard basis with respect to this inner product.

7. An endomorphism α of a finite dimensional inner product space V is *positive definite* if it is self-adjoint and satisfies $\langle \alpha(\mathbf{x}), \mathbf{x} \rangle > 0$ for all non-zero $\mathbf{x} \in V$.
(i) Prove that a positive definite endomorphism has a unique positive definite square root.
(ii) Let α be an invertible endomorphism of V and α^* its adjoint. By considering $\alpha^* \alpha$, show that α can be factored as $\beta \gamma$ with β unitary and γ positive definite.

8. Let V be a finite dimensional complex inner product space, and let α be an endomorphism on V . Assume that α is *normal*, that is, α commutes with its adjoint: $\alpha \alpha^* = \alpha^* \alpha$. Show that α and α^* have a common eigenvector \mathbf{v} , and the corresponding eigenvalues are complex conjugates. Show that the subspace $\langle \mathbf{v} \rangle^\perp$ is invariant under both α and α^* . Deduce that there is an orthonormal basis of eigenvectors of α .

9. Let P_n be the $((n+1)$ -dimensional) space of real polynomials of degree $\leq n$. Define

$$(f, g) = \int_{-1}^{+1} f(t)g(t)dt.$$

Show that (\cdot, \cdot) is an inner product on P_n and that the endomorphism $\alpha : P_n \rightarrow P_n$ defined by

$$\alpha(f)(t) = (1 - t^2)f''(t) - 2tf'(t)$$

is self-adjoint. If f is an eigenvector of α of degree k , what is the corresponding eigenvalue? Why must α have precisely one monic eigenvector of degree k for each $0 \leq k \leq n$?

Let $s_k \in P_n$ be defined by $s_k(t) = \frac{d^k}{dt^k}(1 - t^2)^k$. Prove the following.

- (i) For $i \neq j$, $(s_i, s_j) = 0$.
- (ii) s_0, \dots, s_n forms a basis for P_n .
- (iii) For all $1 \leq k \leq n$, s_k spans the orthogonal complement of P_{k-1} in P_k .
- (iv) s_k is an eigenvector of α .

What is the relation between the s_k and the result of applying Gram-Schmidt to the sequence $1, x, x^2, x^3$ and so on? Explain why that is the case.

10. Let a_1, a_2, \dots, a_n be real numbers such that $a_1 + \dots + a_n = 0$ and $a_1^2 + \dots + a_n^2 = 1$. What is the maximum value of $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n + a_na_1$?
11. Let S be an $n \times n$ real symmetric matrix with $S^k = I_n$ for some $k \geq 1$. Show that $S^2 = I_n$.
12. Prove Hadamard's Inequality: if A is a real $n \times n$ matrix and $k > 0$ satisfies $|a_{i,j}| \leq k$ for all $1 \leq i, j \leq n$, then:

$$|\det(A)| \leq k^n n^{\frac{n}{2}}.$$