1. Write down the three types of elementary matrices and find their inverses. Use elementary matrices to find the inverse of

$$
\begin{pmatrix}\n1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1\n\end{pmatrix}
$$

2. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as $A = BC$ with $B \in M_{m \times r}(\mathbb{F})$ and $C \in \mathbb{M}_{r \times n}(\mathbb{F}).$

Using the fact that $(BC)^T = C^T B^T$, deduce that the (column) rank of A^T equals r.

3. Let A and B be $n \times n$ matrices over a field F. Show that the $2n \times 2n$ matrix

$$
C = \begin{pmatrix} I & B \\ -A & 0 \end{pmatrix}
$$
 can be transformed into $D = \begin{pmatrix} I & B \\ 0 & AB \end{pmatrix}$

by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that $\det(AB) = \det(A) \det(B)$.

4. Let $\alpha: V \to V$ be a linear map on a real finite dimensional vector space V with $tr(\alpha) = 0$. (i) Show that, if $\alpha \neq 0$, there is a vector **v** with **v**, $\alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.

(ii) Show that there are endomorphisms β, γ of V with $\alpha = \beta\gamma - \gamma\beta$.

5. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then

(i) adj $(AB) = \text{adj}(B)$ adj (A) , (ii) det(adj $A) = (\text{det } A)^{n-1}$, (iii) adj $(\text{adj } A) = (\text{det } A)^{n-2}A$.

Show that the rank of the adjugate matrix is $rk(\text{adj }A) =$ $\sqrt{ }$ $\left| \right|$ \mathcal{L} $n \text{ if } rk(A) = n$ 1 if $rk(A) = n - 1$ 0 if $rk(A) \leq n-2$.

Do (i)-(iii) hold if A is singular? [Hint: for (i) consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

- 6. Let V be a 4-dimensional vector space over \mathbb{R} , and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^* dual to the basis $\{x_1, x_2, x_3, x_4\}$ for V. Determine, in terms of the ξ_i , the bases dual to each of the following: (a) $\{x_2, x_1, x_4, x_3\}$;
	- (b) $\{x_1, 2x_2, \frac{1}{2}\}$ $\frac{1}{2}\mathbf{x}_3, \mathbf{x}_4\}$;
	- (c) $\{x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4\};$
	- (d) { $x_1, x_2 x_1, x_3 x_2 + x_1, x_4 x_3 + x_2 x_1$.
- 7. For $A \in M_{n \times m}(\mathbb{F})$ and $B \in M_{m \times n}(\mathbb{F})$, let $\tau_A(B)$ denote $\text{tr}(AB)$. Show that, for each fixed A, $\tau_A: \mathbb{M}_{m \times n}(\mathbb{F}) \to \mathbb{F}$ is linear. Show moreover that the mapping $A \mapsto \tau_A$ defines a linear isomorphism $\mathbb{M}_{n\times m}(\mathbb{F}) \to \mathbb{M}_{m\times n}(\mathbb{F})^*.$
- 8. (a) Suppose that $f \in M_{n \times n}(\mathbb{R})^*$ is such that $f(AB) = f(BA)$ for all $A, B \in M_{n \times n}(\mathbb{R})$ and $f(I) = n$. Show that f is the trace functional, i.e. $f(A) = \text{tr}A$ for all $A \in M_{n \times n}(\mathbb{R})$.

 (b) Now let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms α , β of V with $\alpha\beta - \beta\alpha = id_V$.

(c) Let V be the space of infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$. Find endomorphisms α and β of V such that $\alpha\beta - \beta\alpha = id_V$.

9. (a) Let $a_0, ..., a_n$ be distinct real numbers, and let

$$
A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_0 & a_1 & \cdots & a_n \\ a_0^2 & a_1^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_0^n & a_1^n & \cdots & a_n^n \end{pmatrix}.
$$

Show that $\det(A) \neq 0$.

(b) Let P_n be the space of real polynomials of degree at most n. For $x \in \mathbf{R}$ define $e_x \in P_n^*$ by $e_x(p) = p(x)$. By considering the standard basis $(1, t, \ldots, t^n)$ for P_n , use (a) to show that $\{e_0, \ldots, e_n\}$ is linearly independent and hence forms a basis for P_n^* .

- (c) Identify the basis of P_n to which $(e_0, ..., e_n)$ is dual.
- 10. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi : P \to \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \ldots).$

In terms of this identification, describe the effect on a sequence (a_0, a_1, a_2, \ldots) of the linear maps dual to each of the following linear maps $P \to P$:

- (a) The map D defined by $D(p)(t) = p'(t)$.
- (b) The map S defined by $S(p)(t) = p(t^2)$.
- (c) The composite DS.
- (d) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

11. Let V be a finite dimensional vector space. Suppose that $f_1, \ldots, f_n, g \in V^*$. Show that g is in the span of f_1, \ldots, f_n if and only if $\bigcap_{i=1}^n \ker f_i \subset \ker g$. What if V is infinite dimensional?