## IB Linear Algebra – Example Sheet 1

Michaelmas 2024

- 1. Suppose that the vectors  $\mathbf{e}_1, \ldots, \mathbf{e}_n$  form a basis for a real vector space V. Which of the following are also bases?
  - (a)  $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n;$
  - (b)  $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1;$
  - (c)  $\mathbf{e}_1 \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1.$

2. Let T, U and W be subspaces of V.

- (i) Show that  $T \cup U$  is a subspace of V only if either  $T \leq U$  or  $U \leq T$ .
- (ii) Give explicit counter-examples to the following statements:

(a) 
$$T + (U \cap W) = (T + U) \cap (T + W);$$
 (b)  $(T + U) \cap W = (T \cap W) + (U \cap W).$ 

(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.

- 3. For each of the following pairs of vector spaces (V, W) over R, either give an isomorphism V → W or show that no such isomorphism can exist. [Here P denotes the space of polynomial functions R → R, and C[a, b] denotes the space of continuous functions defined on the closed interval [a, b].]
  (a) V = R<sup>4</sup>, W = {x ∈ R<sup>5</sup> : x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> + x<sub>5</sub> = 0}.
  (b) V = R<sup>5</sup>, W = {p ∈ P : deg p ≤ 5}.
  (c) V = C[0, 1], W = {f ∈ C[0, 1] : f(0) = 0, f continuously differentiable }.
  (e) V = R<sup>2</sup>, W = {real solutions of ẍ(t) + x(t) = 0}.
  - (f)  $V = \mathbb{R}^4$ ,  $W = \tilde{C}[0, 1]$ .
  - (g) (Harder:) V = P,  $W = \mathbb{R}^{\mathbb{N}}$ .
- 4. (i) If  $\alpha$  and  $\beta$  are linear maps from U to V show that  $\alpha + \beta$  is linear. Give explicit counter-examples to the following statements:

(a)  $\operatorname{im}(\alpha + \beta) = \operatorname{im}(\alpha) + \operatorname{im}(\beta);$  (b)  $\operatorname{Ker}(\alpha + \beta) = \operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta).$ 

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other.

(ii) Let  $\alpha$  be a linear map from V to V. Show that if  $\alpha^2 = \alpha$  then  $V = \text{Ker}(\alpha) \oplus \text{im}(\alpha)$ . Does your proof still work if V is infinite dimensional? Is the result still true?

5. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \}, \ W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}.$$

Find bases for U and W containing a basis for  $U \cap W$  as a subset. Give a basis for U + W and show that

$$U + W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}.$$

6. (i) Let  $\alpha: V \to V$  be an endomorphism of a finite dimensional vector space V. Show that

$$V \ge \operatorname{im}(\alpha) \ge \operatorname{im}(\alpha^2) \ge \dots$$
 and  $\{0\} \le \operatorname{Ker}(\alpha) \le \operatorname{Ker}(\alpha^2) \le \dots$ 

If  $r_k = \operatorname{rk}(\alpha^k)$ , deduce that  $r_k \ge r_{k+1}$  and that  $r_k - r_{k+1} \ge r_{k+1} - r_{k+2}$ . Conclude that if, for some  $k \ge 0$ , we have  $r_k = r_{k+1}$ , then  $r_k = r_{k+\ell}$  for all  $\ell \ge 0$ .

(ii) Suppose that dim(V) = 5,  $\alpha^3 = 0$ , but  $\alpha^2 \neq 0$ . What possibilities are there for  $rk(\alpha)$  and  $rk(\alpha^2)$ ?

7. Let  $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$  be the linear map given by  $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ . Find the matrix  $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ .

representing  $\alpha$  relative to the basis  $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ ,  $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ ,  $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$  for both the domain and the range. Write down bases for the domain and range with respect to which the matrix of  $\alpha$  is the identity.

- 8. Let  $U_1, \ldots, U_k$  be subspaces of a vector space V and let  $B_i$  be a basis for  $U_i$ . Show that the following statements are equivalent:
  - (i)  $U = \sum_{i} U_i$  is a direct sum, *i.e.* every element of U can be written uniquely as  $\sum_{i} u_i$  with  $u_i \in U_i$ .
  - (ii)  $U_j \cap \sum_{i \neq j} U_i = \{0\}$  for all j.
  - (iii) The  $B_i$  are pairwise disjoint and their union is a basis for  $\sum_i U_i$ .

Give an example where  $U_i \cap U_j = \{0\}$  for all  $i \neq j$ , yet  $U_1 + \ldots + U_k$  is not a direct sum.

- 9. Show that any two subspaces of the same dimension in a finite dimensional vector space have a common complementary subspace.
- 10. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that  $R = \{\alpha \in \mathcal{L}(V, W) : \alpha(Y) \leq Z\}$  is a subspace of the space  $\mathcal{L}(V, W)$  of all linear maps from V to W. What is the dimension of R?
- 11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that  $\alpha: V \to W$  is a linear map such that  $\alpha(Y) \subset Z$ . Show that  $\alpha$  induces linear maps  $\alpha|_Y: Y \to Z$ via  $\alpha|_Y(y) = \alpha(y)$  and  $\overline{\alpha}: V/Y \to W/Z$  via  $\overline{\alpha}(v+Y) = \alpha(v) + Z$ .

Consider a basis  $(v_1, \ldots, v_n)$  for V containing a basis  $(v_1, \ldots, v_k)$  for Y and a basis  $(w_1, \ldots, w_m)$  for W containing a basis  $(w_1, \ldots, w_l)$  for Z. Show that the matrix representing  $\alpha$  with respect to  $(v_1, \ldots, v_n)$  and  $(w_1, \ldots, w_m)$  is a block matrix of the form  $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ . Explain how to determine the matrices representing  $\alpha|_Y$  with respect to the bases  $(v_1, \ldots, v_k)$  and  $(w_1, \ldots, w_l)$  and representing  $\overline{\alpha}$  with respect to the bases  $(v_{k+1} + Y, \ldots, v_n + Y)$  and  $(w_{l+1} + Z, \ldots, w_m + Z)$  from this block matrix.

12. Let T, U, V, W be vector spaces over  $\mathbb{F}$  and let  $\alpha: T \to U, \beta: V \to W$  be fixed linear maps. Show that the mapping  $\Phi: \mathcal{L}(U, V) \to \mathcal{L}(T, W)$  which sends  $\theta$  to  $\beta \circ \theta \circ \alpha$  is linear. If the spaces are finite-dimensional and  $\alpha$  and  $\beta$  have rank r and s respectively, find the rank of  $\Phi$ .