IB Linear Algebra – Example Sheet 1

Michaelmas 2024 **hb470@cam.ac.uk** hb470**@cam.ac.uk**

- 1. Suppose that the vectors e_1, \ldots, e_n form a basis for a real vector space V. Which of the following are also bases?
	- (a) $e_1 + e_2, e_2 + e_3, \ldots, e_{n-1} + e_n, e_n;$
	- (b) $e_1 + e_2, e_2 + e_3, \ldots, e_{n-1} + e_n, e_n + e_1;$
	- (c) $e_1 e_n, e_2 + e_{n-1}, \ldots, e_n + (-1)^n e_1.$

2. Let T, U and W be subspaces of V .

(i) Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.

(ii) Give explicit counter-examples to the following statements:

(a)
$$
T + (U \cap W) = (T + U) \cap (T + W);
$$

 (b) $(T + U) \cap W = (T \cap W) + (U \cap W).$

(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.

- 3. For each of the following pairs of vector spaces (V, W) over R, either give an isomorphism $V \to W$ or show that no such isomorphism can exist. Here P denotes the space of polynomial functions $\mathbb{R} \to \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$. (a) $V = \mathbb{R}^4$, $W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}.$ (b) $V = \mathbb{R}^5$, $W = \{p \in P : \text{deg } p \leq 5\}.$ (c) $V = C[0, 1], W = C[-1, 1].$ (d) $V = C[0, 1], W = \{f \in C[0, 1] : f(0) = 0, f \text{ continuously differentiable }\}.$
	- (e) $V = \mathbb{R}^2$, $W = \{\text{real solutions of } \ddot{x}(t) + x(t) = 0\}.$
	- (f) $V = \mathbb{R}^4$, $W = C[0, 1]$.
	- (g) (Harder:) $V = P$, $W = \mathbb{R}^N$.
- 4. (i) If α and β are linear maps from U to V show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements:

(a) $\text{im}(\alpha + \beta) = \text{im}(\alpha) + \text{im}(\beta);$ (b) $\text{Ker}(\alpha + \beta) = \text{Ker}(\alpha) \cap \text{Ker}(\beta).$

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other.

(ii) Let α be a linear map from V to V. Show that if $\alpha^2 = \alpha$ then $V = \text{Ker}(\alpha) \oplus \text{im}(\alpha)$. Does your proof still work if V is infinite dimensional? Is the result still true?

5. Let

$$
U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ \ 2x_1 + 2x_2 + x_5 = 0 \}, \ \ W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ \ x_2 = x_3 = x_4 \}.
$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U + W$ and show that

$$
U + W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}.
$$

6. (i) Let $\alpha: V \to V$ be an endomorphism of a finite dimensional vector space V. Show that

 $V \geq \text{im}(\alpha) \geq \text{im}(\alpha^2) \geq \dots$ and $\{0\} \leq \text{Ker}(\alpha) \leq \text{Ker}(\alpha^2) \leq \dots$

If $r_k = \text{rk}(\alpha^k)$, deduce that $r_k \ge r_{k+1}$ and that $r_k - r_{k+1} \ge r_{k+1} - r_{k+2}$. Conclude that if, for some $k \geq 0$, we have $r_k = r_{k+1}$, then $r_k = r_{k+\ell}$ for all $\ell \geq 0$.

(ii) Suppose that $\dim(V) = 5$, $\alpha^3 = 0$, but $\alpha^2 \neq 0$. What possibilities are there for rk(α) and $rk(\alpha^2)?$

7. Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by α : $\sqrt{ }$ \mathcal{L} \overline{x}_1 $\overline{x_2}$ $\overline{x_3}$ \setminus \rightarrow $\sqrt{ }$ $\overline{1}$ 2 1 0 0 2 1 0 0 2 \setminus $\overline{1}$ $\sqrt{ }$ $\overline{1}$ \overline{x}_1 $\overline{x_2}$ $\overline{x_3}$ \setminus . Find the matrix representing α relative to the basis $\sqrt{ }$ $\overline{1}$ 1 1 \setminus \vert , $\sqrt{ }$ $\overline{1}$ 1 1 \setminus \vert , $\sqrt{ }$ $\overline{1}$ 1 0 \setminus for both the domain and the range.

1 0 0 Write down bases for the domain and range with respect to which the matrix of α is the identity.

- 8. Let U_1, \ldots, U_k be subspaces of a vector space V and let B_i be a basis for U_i . Show that the following statements are equivalent:
	- (i) $U = \sum_i U_i$ is a direct sum, *i.e.* every element of U can be written uniquely as $\sum_i u_i$ with $u_i \in U_i$.
	- (ii) $U_j \cap \sum_{i \neq j} U_i = \{0\}$ for all j.
	- (iii) The B_i are pairwise disjoint and their union is a basis for $\sum_i U_i$.

Give an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, yet $U_1 + \ldots + U_k$ is not a direct sum.

- 9. Show that any two subspaces of the same dimension in a finite dimensional vector space have a common complementary subspace.
- 10. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that $R = \{\alpha \in \mathcal{L}(V, W) : \alpha(Y) \leq Z\}$ is a subspace of the space $\mathcal{L}(V, W)$ of all linear maps from V to W . What is the dimension of R ?
- 11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \to W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\alpha|_Y: Y \to Z$ via $\alpha|_Y(y) = \alpha(y)$ and $\overline{\alpha}: V/Y \to W/Z$ via $\overline{\alpha}(v+Y) = \alpha(v) + Z$.

Consider a basis (v_1, \ldots, v_n) for V containing a basis (v_1, \ldots, v_k) for Y and a basis (w_1, \ldots, w_m) for W containing a basis (w_1, \ldots, w_l) for Z. Show that the matrix representing α with respect to (v_1, \ldots, v_n) and (w_1, \ldots, w_m) is a block matrix of the form $\begin{pmatrix} A & C \ 0 & B \end{pmatrix}$ $0 \quad B$. Explain how to determine the matrices representing $\alpha|_Y$ with respect to the bases (v_1, \ldots, v_k) and (w_1, \ldots, w_l) and representing $\overline{\alpha}$ with respect to the bases $(v_{k+1} + Y, \ldots, v_n + Y)$ and $(w_{l+1} + Z, \ldots, w_m + Z)$ from this block matrix.

12. Let T, U, V, W be vector spaces over $\mathbb F$ and let $\alpha: T \to U$, $\beta: V \to W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \to \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ .