1. For each case below, let U be the subset of the real vector space \mathbb{R}^3 consisting of all vectors (x_1, x_2, x_3) satisfying the given condition. In which cases is U a subspace of \mathbb{R}^3 ?

(a)
$$x_1 \ge 0$$

(d)
$$x_1 + x_2 = 1$$

(b) either
$$x_1 = 0$$
 or $x_2 = 0$ (e) $x_1^2 + x_2^2 = 0$

(e)
$$x_1^2 + x_2^2 = 0$$

(c)
$$x_1 + x_2 = 0$$

(f)
$$x_1 + x_2 + x_3 = 0$$
 and $x_1 - x_3 = 0$.

2. Let $\mathbb{R}^{\mathbb{N}}$ be the set of all real sequences, which you may assume is a vector space over \mathbb{R} . Determine which of the following sets of sequences of real numbers (x_n) form subspaces of $\mathbb{R}^{\mathbb{N}}$. (You may assume any results from Part IA Analysis I.)

(a)
$$x_n$$
 is bounded

(e)
$$x_{n+2} = x_{n+1} + x_n$$
 for all n

(b) x_n is convergent (f) there exists N such that $x_n = 0$ for n > N (c) $x_n \to 0$ as $n \to \infty$ (g) $\sum |x_n|$ is convergent (d) $x_n \to \infty$ as $n \to \infty$ (h) $\sum x_n^2$ is convergent.

(c)
$$x_n \to 0$$
 as $n \to \infty$

(g)
$$\sum |x_n|$$
 is convergent

(d)
$$x_n \to \infty$$
 as $n \to \infty$

(h)
$$\sum x_n^2$$
 is convergent

3. Let $\mathbb{R}^{\mathbb{R}}$ be the set of all functions $f:\mathbb{R}\to\mathbb{R}$, with addition and scalar multiplication defined pointwise, which you may assume is a vector space over \mathbb{R} . Determine which of the following sets of functions f form subspaces of $\mathbb{R}^{\mathbb{R}}$.

(a)
$$f$$
 is a polynomial

(d)
$$f$$
 is a solution of $(f'(t))^2 - f(t) = 0$

(b)
$$f$$
 is a polynomial of even degree (e) f is a solution of $(f''(t))^4 + (f(t))^2 = 0$

(c)
$$f$$
 is constant on \mathbb{Z}

(f)
$$f$$
 is periodic.

4. For each of the vector spaces found in questions 1–3, determine whether it is finite-dimensional or not. When it is finite-dimensional, state the dimension and find a basis. When it is not finite-dimensional, demonstrate why is it not.

5. Which of the following are bases for the given spaces?

(a) For
$$\mathbb{R}^3$$
: $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$

(c) For
$$\mathbb{R}^3$$
: $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$

(b) For
$$\mathbb{R}^4$$
: $\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$

(b) For
$$\mathbb{R}^4$$
: $\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$ (d) For \mathbb{R}^4 : $\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\}$.

6. For each following matrix A, find bases for the kernel and image of the linear map $\mathbf{x} \mapsto A\mathbf{x}$.

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} , \quad \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} , \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

7. (a) Let P denote the vector space of all polynomial functions $\mathbb{R} \to \mathbb{R}$, and let P_n denote the subspace of P consisting of polynomials of degree at most n. Which of the following define linear maps $P_n \to P$?

(i)
$$S(p)(t) = p(t^2 + 1)$$

(iv)
$$E(p)(t) = p(e^t)$$

(ii)
$$T(p)(t) = p(t)^2 + 1$$

$$(v) D(p)(t) = p'(t)$$

(i)
$$S(p)(t) = p(t^2 + 1)$$

(ii) $T(p)(t) = p(t)^2 + 1$
(iii) $U(p)(t) = p(t^2) - tp(t)$

(vi)
$$I(p)(t) = \int_0^t p(s)ds$$
.

For those that are linear maps, find their rank and nullity.

- (b) Let Q(p) and R(p), respectively, be the quotient and remainder when p is divided by $t^2 + 1$. Show that Q and R are linear maps $P_n \to P$. Find their rank and nullity.
- 8. The linear map $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} -5x + 9y \\ -4x + 7y \end{pmatrix}.$$

Find the matrix of α relative to the basis

$$\left\{ \begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix} \right\}.$$

Write down the matrix of α relative to the basis

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}.$$

9. Let V_1, V_2 be subspaces of \mathbb{R}^4 with bases

$$V_1 : \left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix} \begin{pmatrix} -2\\3\\-2\\3 \end{pmatrix} \right\} \quad \text{and} \quad V_2 : \left\{ \begin{pmatrix} 1\\0\\-4\\-3 \end{pmatrix} \begin{pmatrix} 0\\1\\3\\2 \end{pmatrix} \begin{pmatrix} -4\\4\\1\\2 \end{pmatrix} \right\}.$$

Find a basis for the subspace $V_1 \cap V_2$ of the form $\left\{ \begin{pmatrix} a \\ b \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} c \\ d \\ 0 \\ 1 \end{pmatrix} \right\}$, for suitable a, b, c, d.

10. Let A, B be $n \times n$ real matrices. If AB = 0, must BA = 0? If $(AB)^n = 0$, must $(BA)^n = 0$?

2