Linear Algebra: Example Sheet 3 of 4

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.

- 2. By considering the rank or minimal polynomial of a suitable matrix, find the eigenvalues of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A.
- 3. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
- 4. (i) Let V be a vector space, let $\pi_1, \pi_2, \ldots, \pi_k$ be endomorphisms of V such that $\mathrm{id}_V = \pi_1 + \cdots + \pi_k$ and $\pi_i \pi_j = 0$ for any $i \neq j$. Show that $V = U_1 \oplus \cdots \oplus U_k$, where $U_j = \mathrm{Im}(\pi_j)$.
 - (ii) Let α be an endomorphism of V satisfying the equation $\alpha^3 = \alpha$. By finding suitable endomorphisms of V depending on α , use (i) to prove that $V = V_0 \oplus V_1 \oplus V_{-1}$, where V_{λ} is the λ -eigenspace of α .
 - (iii) Apply (i) to prove the Generalised Eigenspace Decomposition Theorem stated in lectures. [Hint: It may help to re-read the proof of the Diagonalisability Theorem given in lectures. You may use the fact that if $p_1(t), \ldots, p_k(t) \in \mathbb{C}[t]$ are non-zero polynomials with no common factor, Euclid's algorithm implies that there exist polynomials $q_1(t), \ldots, q_k(t) \in \mathbb{C}[t]$ such that $p_1(t)q_1(t) + \ldots + p_k(t)q_k(t) = 1$.]
- 5. Let α be an endomorphism of a complex vector space. Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces $\operatorname{Ker}(\alpha \lambda \iota)$ and $\operatorname{Ker}(\alpha^2 \lambda^2 \iota)$ necessarily the same?
- 6. (Cayley-Hamilton theorem for a general field) Let F be any field, $A \in M_n(F)$, and B = tI A. By considering the equation $B \cdot adj(B) = det(B)I$, or otherwise, prove that $\chi_A(A) = 0$, where $\chi_A(t)$ is the characteristic polynomial of A.
- 7. Without appealing directly to the uniqueness of Jordan Normal Form show that none of the following matrices are similar:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Is the matrix

$$\begin{pmatrix}
-2 & -2 & -1 \\
3 & 3 & 1 \\
3 & 2 & 2
\end{pmatrix}$$

similar to any of them? If so, which? Find a basis such that it is in Jordan Normal Form.

- 8. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
 - (b) Let A be a 5×5 complex matrix with $A^4 = A^2 \neq A$. What are the possible minimal polynomials of A? If A is not diagonalisable, what are the possible characteristic polynomials and JNFs of A?
- 9. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Without appealing to Jordan Normal Form, show that there is a vector y such that $(y, \alpha(y), \alpha^2(y), \dots, \alpha^{n-1}(y))$ is a basis for V. What is the matrix representation of α with respect to this basis? And the matrix representation of α^k , for an arbitrary positive integer k?

Show that if β is an endomorphism of V which commutes with α , then $\beta = p(\alpha)$ for some polynomial p. [Hint: consider $\beta(y)$.] What is the form of the matrix for β with respect to the above basis?

1

- 10. (a) Let A be an invertible square matrix. Describe the eigenvalues and the characteristic and minimal polynomials of A^{-1} in terms of those of A.
 - (b) Prove that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan Normal Form a Jordan block $J_m(\lambda^{-1})$. Use this to find the Jordan Normal Form of A^{-1} , for an invertible square matrix A.
 - (c) Prove that any square complex matrix is similar to its transpose.
- 11. Let C be an $n \times n$ matrix over \mathbb{C} , and write C = A + iB, where A and B are real $n \times n$ matrices. By considering $\det(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C} , then they are similar as matrices over \mathbb{R} .
- 12. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{j=0}^n f(\zeta^j)$, where $\zeta = \exp(2\pi i/(n+1))$.