Michaelmas 2025 hjrw2@cam.ac.uk

Questions marked * are more challenging. As usual, 'identify' means 'find a standard group that it is isomorphic to'.

- 1. Suppose $a, b \in \mathbb{Z}$ and consider $\phi : \mathbb{Z}^2 \to \mathbb{Z}$ given by $\phi(x, y) = ax + by$. Show that ϕ is a group homomorphism and describe $\operatorname{im}(\phi)$ and $\ker(\phi)$. Draw a picture illustrating the cosets of $\ker(\phi)$ in \mathbb{Z}^2 .
- 2. Show that every group of order 10 is cyclic or dihedral. * Can you extend your proof to groups of order 2p, where p is any odd prime number?
- 3. Prove that

$$(\sigma p)(x_1, x_2, x_3, x_4) = p(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)})$$

defines an action of the group S_4 on the set of polynomials in variables x_1, x_2, x_3, x_4 . Show that the stabiliser H of the polynomial $x_1x_2 + x_3x_4$ has order 8, and identify it.

- 4. Let p be a prime and let G be a group of order p^2 . By considering the conjugation action of G on itself, show that G is abelian. Furthermore, show that there are just two groups of that order for each prime p, up to isomorphism.
- 5. Show that a subgroup of a group G is normal if and only if it is a union of conjugacy classes in G.
- 6. Let K be a subgroup of a group G. Show that K is a normal subgroup if and only if it is the kernel of some group homomorphism $\phi: G \to H$.
- 7. (a) Let $H \leq C_n$. Identify the quotient C_n/H .
 - (b) Show that any subgroup $N \leq D_{2n}$ consisting only of rotations is normal. Identify the quotient D_{2n}/N .
 - (c) Consider the subgroup

$$\Gamma = \{ m + in \mid m, n \in \mathbb{Z} \}$$

of \mathbb{C} . Show that the group \mathbb{C}/Γ is isomorphic to $S^1 \times S^1$, where S^1 is the group of complex numbers with modulus 1.

- 8. Suppose that G is a group in which every subgroup is normal. Must G be abelian?
- 9. Let G be a finite group and H a proper subgroup. Let k = |G: H| and suppose that |G| does not divide k!. By considering the action of G on G/H, show that H contains a non-trivial normal subgroup of G.
- 10. (a) Show that a group of order 28 has a normal subgroup of order 7.
 - (b) Show that if a group G of order 28 has a normal subgroup of order 4 then G is abelian.
- 11. * Let G be a (not necessarily finite) group generated by a finite set X. Prove that the number of subgroups of a given index n in G is finite and give a bound for this number in terms of n and |X|.
- 12. Write the following permutations as compositions of disjoint cycles and hence compute their orders:
 - (a) (12)(1234)(12);
 - (b) (123)(1234)(132);
 - (c) (123)(235)(345)(45).
- 13. What is the largest possible order of an element of S_5 ? Of S_9 ?

- 14. Show that S_n is generated by each of the following sets of permutations:
 - (a) $\{(j, j+1) \mid 1 \le j < n\};$
 - (b) $\{(1,k) \mid 1 < k \le n\};$
 - (c) $\{(12), (123 \cdots n)\}.$
- 15. Let $X = \mathbb{Z}/31\mathbb{Z}$, and $\sigma : X \to X$ be given by $\sigma(x+31\mathbb{Z}) = 2x+31\mathbb{Z}$. Show that σ is a permutation, and decompose it as a composition of disjoint cycles.
- 16. * Prove that S_n has a subgroup isomorphic to Q_8 if and only if $n \geq 8$.