Michaelmas 2025 hjrw2@cam.ac.uk

Questions marked * are more challenging.

- 1. Show that if two elements of a group are conjugate, then they have the same order.
- 2. Let *H* be a subgroup of a group *G*. Show that there is a bijection between the set of left cosets of *H* in *G* and the set of right cosets of *H* in *G*.
- 3. Show that if a group G contains an element of order 6 and an element of order 10, then G has order at least 30.
- 4. For H a subgroup of a finite group G, and K a subgroup of H, show that

$$|G:K| = |G:H| \cdot |H:K|$$
.

- * What happens when G is infinite?
- 5. Suppose that a group G acts on a set X.
 - (a) Show that

$$\operatorname{Stab}_G(hx) = h \operatorname{Stab}_G(x) h^{-1}$$

for any $x \in X$ and $h \in G$.

(b) For any $g \in G$, let $Fix(g) = \{y \in X \mid gy = y\}$ be the set of points fixed by g. Show that

$$Fix(hgh^{-1}) = h Fix(g)$$

for any $h \in G$.

- 6. Show that D_{2n} has one conjugacy class of reflections if n is odd and two conjugacy classes of reflections if n is even. Draw a picture to illustrate your answer.
- 7. Let G be the group of all isometries of a cube in \mathbb{R}^3 . Show that G acts on the set of 4 lines that join diagonally opposite pairs of vertices. * Show that if ℓ is one of these lines then $\operatorname{Stab}_G(\ell) \cong D_{12}$.
- 8. Let G be a finite abelian group acting faithfully on a set X. Show that if the action is transitive then |G| = |X|.
- 9. Let G be a finite group and let Sub(G) be the set of all its subgroups. Show that

$$g(H) = gHg^{-1} = \{ghg^{-1} \mid h \in H\}$$

defines an action of G on Sub(G). Show that, for any $H \in Sub(G)$, the size of the orbit of H under this action is at most |G:H|. Deduce that if $H \neq G$ then G is not the union of all conjugates of H.

10. Let G be a finite group acting on a set X. By counting the set $\{(g,x) \in G \times X \mid g(x) = x\}$ in two ways, show that the number of orbits of the action is equal to

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

[This famous result is called 'Burnside's lemma'.] Deduce that if G acts transitively and |X| > 1, then there is some $g \in G$ with no fixed point.

11. Express the Möbius transformation $f(z) = \frac{2z+3}{z-4}$ as the composition of transformations of the form

$$\alpha_a: z \mapsto az$$
, $\beta_b: z \mapsto z + b$, $\gamma: z \mapsto 1/z$.

Hence show that f sends the circle described by |z-2i|=2 to the circle described by |8z+(6+11i)|=11.

- 12. Consider the Möbius transformations $f(z) = e^{2\pi i/n}z$ and g(z) = 1/z, for $n \geq 3$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is isomorphic to D_{2n} .
- 13. Let G be the subgroup of Möbius transformations that send the set $\{0,1,\infty\}$ to itself. List the elements of G. Identify G. Identify the group H of Möbius transformations that send the set $\{0,2,\infty\}$ to itself by relating H to G.

[Here, 'identify' means 'find a standard group that it is isomorphic to'.]

- 14. Prove or disprove each of the following statements:
 - (i) The Möbius group is generated by Möbius transformations of the form $\alpha_a: z \mapsto az$ and $\beta_b: z \mapsto z + b$.
 - (ii) The Möbius group is generated by Möbius transformations of the form $\alpha_a: z \mapsto az$ and $\gamma: z \mapsto 1/z$.
 - (iii) The Möbius group is generated by Möbius transformations of the form $\beta_b: z \mapsto z + b$ and $\gamma: z \mapsto 1/z$.
- 15. Determine under what conditions on $\lambda, \mu \in \mathbb{C} \setminus \{0\}$ the Möbius transformations $f(z) = \lambda z$ and $g(z) = \mu z$ are conjugate in \mathcal{M} .
- 16. What is the order of the Möbius transformation f(z) = iz? What are its fixed points? Construct a Möbius transformation of order 4 that fixes 1 and -1.