GROUPS – SHEET 4

Permutation groups

- 1. Show that if H is a subgroup of S_n containing an odd permutation then exactly half of the elements of H are odd.
- 2. (a) Show that A_4 has no subgroup of order 6.
 - (b) Show that S_4 has a subgroup of order d for each d dividing 24. For which d does S_4 have two non-isomorphic subgroups of order d?
- 3. Find the centre of each of S_n and A_n , for all n.
- 4. Let $\sigma \in A_n$. Show that the conjugacy class of σ in A_n is half of that in S_n if and only if the cycles (including singletons) in the disjoint cycle decomposition of σ have distinct odd lengths.
- 5. Determine the sizes of the conjugacy classes in A_6 . Deduce that A_6 is a simple group.
- 6. By using an action on left cosets, show that A_5 has no subgroup of index 2, 3 or 4, and that any subgroup of index 5 is isomorphic to A_4 .

Matrix groups

7. Let G be the set of all 3×3 real matrices of determinant 1 of the form

,

$$\begin{pmatrix} a & 0 & 0 \\ b & w & x \\ c & y & z \end{pmatrix}.$$

Show that G is a subgroup of $GL_3(\mathbb{R})$. Construct a surjective homomorphism from G to $GL_2(\mathbb{R})$, and find its kernel.

8. Let G be the set of all 3×3 real matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

Show that G is a subgroup of $GL_3(\mathbb{R})$. Let $H \subset G$ be the subset of those matrices with a = c = 0. Show that H is a normal subgroup of G, and identify the quotient group G/H.

- 9. Show that the only normal subgroup of O(2) containing a reflection is O(2) itself.
- 10. (a) Find a surjective homomorphism from O(3) to C_2 and another from O(3) to SO(3).
 - (b) Prove that O(3) is isomorphic to $SO(3) \times C_2$.
 - (c) Is O(4) isomorphic to $SO(4) \times C_2$?

- 11. For $A \in M_{n \times n}(\mathbb{C})$ with entries a_{ij} , let $A^{\dagger} \in M_{n \times n}(\mathbb{C})$ have entries $\overline{a_{ji}}$. The matrix A is called *unitary* if $AA^{\dagger} = I_n$. Show that the set U(n) of unitary matrices is a subgroup of $GL_n(\mathbb{C})$. Show that $SU(n) = \{A \in U(n) : \det A = 1\}$ is a normal subgroup of U(n) and that U(n)/SU(n) is isomorphic to S^1 .
- 12. Let $SL_2(\mathbb{R})$ act on \mathbb{C}_{∞} via Möbius transformations. Find the orbit and stabiliser of i and ∞ . By considering the orbit of i under the action of the stabiliser of ∞ , show that every $g \in SL_2(\mathbb{R})$ may be written as g = hk with h upper-triangular and $k \in SO(2)$. In how many ways can this be done?
- 13. Let p be prime, let $G = GL_2(\mathbb{Z}_p)$ be the group of invertible matrices modulo p, and let $X = \mathbb{Z}_p^2$ be the set of vectors of length 2 with entries in \mathbb{Z}_p .
 - (i) Show that G acts on X by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

Find the orbit and stabiliser of $\begin{pmatrix} 1\\ 0 \end{pmatrix}$, and hence find the order of G.

(ii) Let $g \in G$ have order p. Show that g fixes some non-zero vector in X, and deduce that g is conjugate in G to

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Optional extras

14. Let G be a finite non-trivial subgroup of SO(3). Let X be the set of points on the unit sphere in \mathbb{R}^3 which are fixed by at least one non-trivial rotation in G. Show that G acts on X and that there are either two or three orbits.

Identify G in the case when there are two orbits. When there are three orbits, what are their possible sizes?

- 15. Which of the following groups can occur as G/Z(G) for some group G: D_6, C_7, Q_8 ?
- 16. Does $GL_2(\mathbb{R})$ have a subgroup isomorphic to Q_8 ?