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Paper 1, Section II

40C Waves
(a) Starting from the equations governing sound waves linearized about a state with

density ρ0 and sound speed c0, derive the acoustic energy equation, giving expressions for
the kinetic energy density K, the potential energy density due to compression W and the
wave-energy flux I.

(b) The radius R(t) of a sphere oscillates according to

R(t) = a+ Re(εeiωt),

where ε and ω are real, with 0 < ε� a.

(i) Find an expression for the velocity potential φ(r, t) in the region outside the
sphere.

(ii) Show that for an appropriate time-average, which you should define care-
fully, the time-averaged rate of working by the surface of the sphere is

2πa2ρ0ω
2ε2c0

ω2a2

c20 + ω2a2
.

(iii) Calculate the value at r = a of the dimensionless ratio c0〈K + W 〉/|〈I〉|,
where angle brackets denote the time average used above.

(iv) Comment briefly on the limits c0 � ωa and c0 � ωa, explaining their
physical meaning and considering the relative magnitudes of the time-
averaged kinetic energy, potential energy and acoustic energy flux.

Paper 2, Section II

40C Waves
(a) A uniform elastic solid with wave speeds cP and cS (using the usual notation)

occupies the region z < 0. An SV-wave with unit amplitude displacement

uI = Re{(cos θ, 0,− sin θ)eikI(x sin θ+z cos θ)−iωt}

is incident from z < 0 on a rigid boundary at z = 0. Find the form and amplitudes of the
reflected waves.

(b) Derive a condition on the incident angle θ for the reflected P-wave to be
evanescent. Show by explicit calculation that if the P-wave is evanescent:

(i) the reflected SV-wave also has unit amplitude and

(ii) the P-wave has zero acoustic energy flux in the z-direction if time-averaged
in an appropriate way, which you should specify carefully.

Part II, Paper 1
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Paper 3, Section II

39C Waves
(a) The function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
+

1

9

∂9φ

∂x9
= 0,

where U > 0 is a constant.

(i) Find the dispersion relation for waves of frequency ω and wavenumber k.

(ii) Sketch both the phase velocity cp and the group velocity cg as functions of
k.

(iii) Do wave crests move faster or slower than a wave packet?

(b) Suppose that φ(x, 0) is real and given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikxdk.

(i) Use the method of stationary phase to obtain an approximation for φ(V t, t)
for fixed V > U and large t.

(ii) If the initial condition is now restricted further to be even, so that φ(x, 0) =
φ(−x, 0), deduce an approximation for the sequence of times at which
φ(V t, t) = 0.

(iii) What can be said about φ(V t, t) if V < U? [Detailed calculation is not
required in this case.]

[ Hint: You may assume that
∫∞
−∞ e

−au2 du =
√

π
a for Re(a) > 0, a 6= 0.]

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II

39C Waves
For adiabatic motion of an ideal gas, the pressure p is given in terms of the density

ρ by a relation of the form

p(ρ) = p0

(
ρ

ρ0

)γ

, (†)

where p0, ρ0 and γ are positive constants, with γ > 1. For such a gas, you are given that
the compressive internal energy per unit volume W can be expressed as

W (ρ) =
p(ρ)

γ − 1
.

(a) For one-dimensional motion with speed u, write down expressions for the mass
flux and the momentum flux. Using the expressions for the energy flux u(p+W + 1

2ρu
2)

and the mass flux, deduce that if the motion is steady then

γ

γ − 1

p

ρ
+

1

2
u2 = C, (?)

for some constant C.

(b) A one-dimensional shock wave propagates at constant speed along a tube
containing the gas. Upstream of the shock the gas is at rest with pressure p0 and density ρ0.
Downstream of the shock the pressure is maintained at the constant value p1 = (1 + β)p0
with β > 0. Show that

ρ1
ρ0

=
2γ + (γ + 1)β

2γ + (γ − 1)β
, (‡)

assuming that (?) holds throughout the flow.

(c) For small β, show that the density ratio (‡) from part (b) satisfies approximately
the adiabatic relation (†), correct to O(β2).

Part II, Paper 1

2023



109

Paper 1, Section II
40C Waves

(a) Starting from the equations for mass and momentum conservation and a suitable
equation of state, derive the linearised wave equation for perturbation pressure p̃(x, t) for
3-dimensional sound waves in a compressible gas with sound speed c0 and density ρ0.

(b) For a 1-dimensional wave of given frequency ω propagating in the x-direction,
the perturbation pressure p̃(x, t) may be written in the form <(p̂(x)eiωt). What is the form
of p̂ for a harmonic plane wave of frequency ω propagating in the positive x-direction?
Express the perturbation fluid speed ũ(x, t) in terms of p̃(x, t).

(c) The gas occupies the region x < L, with a rigid boundary at x = L. A thin
flexible membrane of mass m per unit area is located within the gas at equilibrium position
x = 0. A plane wave of unit amplitude of the form specified in part (b) is incident
from x = −∞. The combined effects of the membrane and the rigid boundary result in
a reflected wave of complex amplitude R, where R is the ratio between the individual
complex amplitudes at x = 0− of the reflected and incident waves.

(i) Show that

R =
cosβ + (α− i) sinβ

cosβ + (α+ i) sinβ
where α =

ωm

ρ0c0
and β =

ωL

c0
.

Deduce that |R| = 1 in general and briefly discuss this result physically.

(ii) Identify a condition on β so that the membrane is stationary and there is non-
trivial pressure perturbation in 0 < x < L. Briefly discuss this result physically.

(iii) Identify and interpret a limit for α in which the pressure perturbation in 0 < x < L
becomes very small relative to that in x < 0.

Part II, Paper 1 [TURN OVER]

2022
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Paper 2, Section II
40C Waves

Infinitesimal displacements u(x, t) in a uniform, linear isotropic elastic solid with
density ρ0 and Lamé moduli λ and µ satisfy the linearised Cauchy momentum equation:

ρ0
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u.

(a) Show that the dilatation ∇ · u and the rotation ∇× u satisfy wave equations,
and find the wave-speeds cP and cS .

(b) A plane harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle on the planar horizontal interface z = 0 between two elastic
solids with different densities and elastic moduli. Show in a diagram the directions of all
the reflected and transmitted waves, labelled with their polarisations, assuming that none
of these waves is evanescent. State the boundary conditions on components of u and the
stress tensor σ and explain why these are sufficient to determine the amplitudes. (You do
not need to calculate the directions or amplitudes explicitly.)

(c) Now consider a plane harmonic P-wave of unit amplitude, with k =
k(sin θ, 0, cos θ), incident from z < 0 on the interface z = 0 between two elastic (and
inviscid) liquids with modulus λ, density ρ and wave-speed cP in z < 0 and modulus λ′,
density ρ′ and wave-speed c′P in z > 0, with ρ′ 6= ρ.

(i) Under what conditions is there a propagating transmitted wave in z > 0?

(ii) Assume from here on that these conditions are met. Obtain solutions for the
reflected and transmitted waves.

(iii) Show that the amplitude of the reflected wave is

R =
λ′ sin 2θ − λ sin 2θ′

λ′ sin 2θ + λ sin 2θ′
,

where θ′ is the angle the wave vector of the transmitted wave makes with the
vertical.

(iv) Hence obtain an expression for θ in terms of the wave-speeds and densities of the
two liquids that implies no reflection (i.e. R = 0).

Part II, Paper 1

2022
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Paper 3, Section II
39C Waves

Waves propagating in a slowly-varying medium satisfy the local dispersion relation
ω = Ω(k;x, t) in the standard notation.

(a) Derive the ray-tracing equations:

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

governing the evolution of a wave packet specified by

φ(x, t) = A(x, t; ε) exp

(
iθ(x, t)

ε

)
,

where 0 < ε� 1. A rigorous derivation is not required, but assumptions should be clearly
stated and the meaning of the d/dt notation should be carefully explained.

(b) The dispersion relation for two-dimensional, small amplitude, internal gravity
waves of wavenumber vector k = (k, 0,m), relative to Cartesian coordinates (x, y, z) with
z vertical, propagating in an inviscid, incompressible, stratified fluid with a slowly-varying
mean flow U is

ω =
Nk√
k2 +m2

+ k ·U ,

where N is the buoyancy frequency. Consider the specific flow U = γ(x, 0,−z). N and γ
are positive constants.

(i) Calculate k(t) and m(t), applying the initial conditions k(0) = k0 > 0, m(0) = m0.

(ii) Consider a wave packet with initial wave vector (k0, 0,m0), released from (x0, 0, z0)
where x0 > 0 and z0 > 0. Show that the wave packet can initially propagate
upwards provided z0 < zm, where zm is a function of k0 and m0.

(iii) Demonstrate that such a wave packet eventually approaches z = 0, but takes an
infinite amount of time to do so. [Hint: It is not essential to solve for an explicit
expression for the position of the wave packet at arbitrary time t.]

Part II, Paper 1 [TURN OVER]

2022
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Paper 4, Section II
39C Waves

Consider finite amplitude, one-dimensional sound waves in a perfect gas with ratio
of specific heats γ.

(a) Show that the fluid speed u and local sound speed c satisfy

(
∂

∂t
+ (u± c)

∂

∂x

)
R± = 0 ,

where the Riemann invariants R±(x, t) should be defined carefully. Write down parametric
equations for the paths on which these quantities are actually invariant.

(b) At time t = 0 the gas occupies the region x > 0. It is at rest and has uniform
density ρ0, pressure p0 and sound speed c0. A piston initially at x = 0 starts moving
backwards at time t = 0 with displacement x = −εt(1 − t), where ε > 0 is constant.

(i) Show that prior to any shock forming c = c0 + 1
2(γ − 1)u.

(ii) For small ε, derive an expression for the relative pressure fluctuation δp/p0 =
p/p0 − 1 to second order in the relative sound speed fluctuation δc/c0 = c/c0 − 1.

(iii) Calculate the time average over the interval 0 6 t 6 1 of the relative pressure
fluctuation, measured on the piston, and briefly discuss your result physically.

Part II, Paper 1

2022



114

Paper 1, Section II

40A Waves
Compressible fluid of equilibrium density ρ0, pressure p0 and sound speed c0 is

contained in the region between an inner rigid sphere of radius R and an outer elastic
sphere of equilibrium radius 2R. The elastic sphere is made to oscillate radially in such
a way that it exerts a spherically symmetric, perturbation pressure p̃ = εp0 cosωt on the
fluid at r = 2R, where ε� 1 and the frequency ω is sufficiently small that

α ≡ ωR

c0
6 π

2
.

You may assume that the acoustic velocity potential satisfies the wave equation

∂2φ

∂t2
= c20∇2φ .

(a) Derive an expression for φ(r, t).

(b) Hence show that the net radial component of the acoustic intensity (wave-energy
flux) I = p̃u is zero when averaged appropriately in a way you should define. Interpret
this result physically.

(c) Briefly discuss the possible behaviour of the system if the forcing frequency ω is
allowed to increase to larger values.

[
For a spherically symmetric variable ψ(r, t), ∇2ψ =

1

r

∂2

∂r2
(rψ) .

]

Part II, 2021 List of Questions

2021
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Paper 2, Section II

40A Waves
A semi-infinite elastic medium with shear modulus µ and shear-wave speed cs lies

in z 6 0. Above it, there is a layer 0 6 z 6 h of a second elastic medium with shear
modulus µ and shear-wave speed cs < cs. The top boundary is stress-free. Consider
a monochromatic SH-wave propagating in the x-direction at speed c with wavenumber
k > 0.

(a) Derive the dispersion relation

tan
[
kh
√
c2/c2s − 1

]
=
µ

µ

√
1− c2/c2s√
c2/c2s − 1

for trapped modes with no disturbance as z → −∞.

(b) Show graphically that there is always a zeroth mode, and show that the other
modes have cut-off frequencies

ω(n)
c =

nπcscs

h
√
c2s − c2s

,

where n is a positive integer. Sketch a graph of frequency ω against k for the n = 1 mode
showing the behaviour near cut-off and for large k.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

39A Waves
Consider a two-dimensional stratified fluid of sufficiently slowly varying background

density ρb(z) that small-amplitude vertical-velocity perturbations w(x, z, t) can be as-
sumed to satisfy the linear equation

∇2

(
∂2w

∂t2

)
+N2(z)

∂2w

∂x2
= 0, where N2 =

−g
ρ0

dρb
dz

and ρ0 is a constant. The background density profile is such that N2 is piecewise constant
with N2 = N2

0 > 0 for |z| > L and with N2 = 0 in a layer |z| < L of uniform density ρ0.

A monochromatic internal wave of amplitude AI is incident on the intermediate
layer from z = −∞, and produces velocity perturbations of the form

w(x, z, t) = ŵ(z)ei(kx−ωt),

where k > 0 and 0 < ω < N0.

(a) Show that the vertical variations have the form

ŵ(z) =





AI exp
[
− im (z + L)

]
+AR exp

[
im
(
z + L

)]
for z < −L ,

BC cosh kz +BS sinh kz for |z| < L ,

AT exp
[
− im (z − L)

]
for z > L ,

where AR, BC , BS and AT are (in general) complex amplitudes and

m = k

√
N2

0

ω2
− 1 .

In particular, you should justify the choice of signs for the coefficients involving m.

(b) What are the appropriate boundary conditions to impose on ŵ at z = ±L to
determine the unknown amplitudes?

(c) Apply these boundary conditions to show that

AT
AI

=
2imk

2imk cosh 2α+ (k2 −m2) sinh 2α
,

where α = kL.

(d) Hence show that

∣∣∣∣
AT
AI

∣∣∣∣
2

=

[
1 +

(
sinh 2α

sin 2ψ

)2
]−1

,

where ψ is the angle between the incident wavevector and the downward vertical.

Part II, 2021 List of Questions

2021
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Paper 4, Section II

39A Waves
A plane shock is moving with speed U into a perfect gas. Ahead of the shock the

gas is at rest with pressure p1 and density ρ1, while behind the shock the velocity, pressure
and density of the gas are u2, p2 and ρ2 respectively.

(a) Write down the Rankine–Hugoniot relations across the shock, briefly explaining
how they arise.

(b) Show that

ρ1
ρ2

=
2c21 + (γ − 1)U2

(γ + 1)U2
,

where c21 = γp1/ρ1 and γ is the ratio of the specific heats of the gas.

(c) Now consider a change of frame such that the shock is stationary and the gas has
a component of velocity U parallel to the shock on both sides. Deduce that a stationary
shock inclined at a 45 degree angle to an incoming stream of Mach number M =

√
2U/c1

deflects the flow by an angle δ given by

tan δ =
M2 − 2

γM2 + 2
.

[
Note that tan(α− β) =

tanα− tanβ

1 + tanα tanβ
.
]

Part II, 2021 List of Questions

2021
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Paper 1, Section II

40B Waves
(a) Write down the linearised equations governing motion of an inviscid compressible

fluid at uniform entropy. Assuming that the velocity is irrotational, show that the velocity
potential φ(x, t) satisfies the wave equation and identify the wave speed c0. Obtain from
these linearised equations the energy-conservation equation

∂E

∂t
+∇ · I = 0,

and give expressions for the acoustic-energy density E and the acoustic-energy flux, or
intensity, I.

(b) Inviscid compressible fluid with density ρ0 and sound speed c0 occupies the
regions y < 0 and y > 0, which are separated by a thin elastic membrane at an undisturbed
position y = 0. The membrane has mass per unit area m and is under a constant tension
T . Small displacements of the membrane to y = η(x, t) are coupled to small acoustic
disturbances in the fluid with velocity potential φ(x, y, t).

(i) Write down the (linearised) kinematic and dynamic boundary conditions at the
membrane. [Hint: The elastic restoring force on the membrane is like that on a stretched
string.]

(ii) Show that the dispersion relation for waves proportional to cos(kx − ωt)
propagating along the membrane with |φ| → 0 as y → ±∞ is given by

{
m+

2ρ0(
k2 − ω2/c20

)1/2

}
ω2 = Tk2 .

Interpret this equation by explaining physically why all disturbances propagate with phase
speed c less than (T/m)1/2 and why c(k)→ 0 as k → 0.

(iii) Show that in such a wave the component 〈Iy〉 of mean acoustic intensity
perpendicular to the membrane is zero.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

39B Waves
Small displacements u(x, t) in a homogeneous elastic medium are governed by the

equation

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇ ∧ (∇ ∧ u) ,

where ρ is the density, and λ and µ are the Lamé constants.

(a) Show that the equation supports two types of harmonic plane-wave solutions,
u = A exp[i(k · x− ωt)], with distinct wavespeeds, cP and cS , and distinct polarizations.
Write down the direction of the displacement vector A for a P -wave, an SV -wave and an
SH-wave, in each case for the wavevector (k, 0,m).

(b) Given k and c, with c > cP (> cS), explain how to construct a superposition of
P -waves with wavenumbers (k, 0,mP ) and (k, 0,−mP ), such that

u(x, z, t) = eik(x−ct)
(
f1(z), 0, if3(z)

)
, (∗)

where f1(z) is an even function, and f1 and f3 are both real functions, to be determined.
Similarly, find a superposition of SV -waves with u again in the form (∗).

(c) An elastic waveguide consists of an elastic medium in −H < z < H with rigid
boundaries at z = ±H. Using your answers to part (b), show that the waveguide supports
propagating eigenmodes that are a mixture of P - and SV -waves, and have dispersion
relation c(k) given by

a tan(akH) = −tan(bkH)

b
, where a =

(
c2

c2P
− 1

)1/2

and b =

(
c2

c2S
− 1

)1/2

.

Sketch the two sides of the dispersion relationship as functions of c. Explain briefly why
there are infinitely many solutions.

Part II, 2020 List of Questions

2020
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Paper 3, Section II

39B Waves
The dispersion relation for capillary waves on the surface of deep water is

ω2 = S2|k|3 ,

where S = (T/ρ)1/2, ρ is the density and T is the coefficient of surface tension. The free
surface z = η(x, t) is undisturbed for t < 0, when it is suddenly impacted by an object,
giving the initial conditions at time t = 0:

η = 0 and
∂η

∂t
=

{
−W , |x| < ε ,

0 , |x| > ε ,

where W is a constant.

(i) Use Fourier analysis to find an integral expression for η(x, t) when t > 0.

(ii) Use the method of stationary phase to find the asymptotic behaviour of η(V t, t)
for fixed V > 0 as t→∞, for the case V � ε−1/2S. Show that the result can be written
in the form

η(x, t) ∼ WεS t2

x5/2
F

(
x3

S2t2

)
,

and determine the function F .

(iii) Give a brief physical interpretation of the link between the condition εV 2/S2 �
1 and the simple dependence on the product Wε.

[You are given that

∫ ∞

−∞
e±iau

2
du = (π/a)1/2 e±iπ/4 for a > 0. ]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

39B Waves
(a) Show that the equations for one-dimensional unsteady flow of an inviscid

compressible fluid at constant entropy can be put in the form

( ∂
∂t

+ (u± c)
∂

∂x

)
R± = 0 ,

where u and c are the fluid velocity and the local sound speed, respectively, and the
Riemann invariants R± are to be defined.

Such a fluid occupies a long narrow tube along the x-axis. For times t < 0 it is at
rest with uniform pressure p0, density ρ0 and sound speed c0. At t = 0 a finite segment,
0 6 x 6 L, is disturbed so that u = U(x) and c = c0 + C(x), with U = C = 0 for x 6 0
and x > L. Explain, with the aid of a carefully labelled sketch, how two independent
simple waves emerge after some time. You may assume that no shock waves form.

(b) A fluid has the adiabatic equation of state

p(ρ) = A− B2

ρ
,

where A and B are positive constants and ρ > B2/A.

(i) Calculate the Riemann invariants for this fluid, and express u± c in terms of R±
and c0. Deduce that in a simple wave with R− = 0 the velocity field translates, without
any nonlinear distortion, at the equilibrium sound speed c0.

(ii) At t = 0 this fluid occupies x > 0 and is at rest with uniform pressure,
density and sound speed. For t > 0 a piston initially at x = 0 executes simple harmonic
motion with position x(t) = a sinωt, where aω < c0. Show that u(x, t) = U(φ), where
φ = ω(t − x/c0), for some function U that is zero for φ < 0 and is 2π-periodic, but not
simple harmonic, for φ > 0. By approximately inverting the relationship between φ and
the time τ that a characteristic leaves the piston for the case ε = aω/c0 � 1, show that

U(φ) = aω
(

cosφ− ε sin2 φ− 3
2ε

2 sin2 φ cosφ+O(ε3)
)

for φ > 0 .

Part II, 2020 List of Questions

2020
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Paper 4, Section II

38A Waves
(a) Assuming a slowly-varying two-dimensional wave pattern of the form

ϕ(x, t) = A(x, t; ε) exp

[
i

ε
θ(x, t)

]
,

where 0 < ε≪ 1, and a local dispersion relation ω = Ω(k;x, t), derive the ray tracing
equations,

dxi
dt

=
∂Ω

∂ki
,

dω

dt
=
∂Ω

∂t
,

dki
dt

= − ∂Ω

∂xi
,

1

ε

dθ

dt
= −ω + kj

∂Ω

∂kj
,

for i, j = 1, 2, explaining carefully the meaning of the notation used.

(b) For a homogeneous, time-independent (but not necessarily isotropic) medium,
show that all rays are straight lines. When the waves have zero frequency, deduce that if
the point x lies on a ray emanating from the origin in the direction given by a unit vector
ĉg, then

θ(x) = θ(0) + ĉg · k |x| .

(c) Consider a stationary obstacle in a steadily moving homogeneous medium which
has the dispersion relation

Ω = α
(
k21 + k22

)1/4 − V k1 ,

where (V, 0) is the velocity of the medium and α > 0 is a constant. The obstacle generates
a steady wave system. Writing (k1, k2) = κ(cosφ, sinφ), with κ > 0, show that the wave
satisfies

κ =
α2

V 2 cos2 φ
, ĉg = (cosψ, sinψ) ,

where ψ is defined by

tanψ = − tan φ

1 + 2 tan2 φ

with 1
2π < ψ < 3

2π and −1
2π < φ < 1

2π. Deduce that the wave pattern occupies a wedge

of semi-angle tan−1
(
2−3/2

)
, extending in the negative x1-direction.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

38A Waves
The linearised equation of motion governing small disturbances in a homogeneous

elastic medium of density ρ is

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u ,

where u(x, t) is the displacement, and λ and µ are the Lamé moduli.

(a) The medium occupies the region between a rigid plane boundary at y = 0 and
a free surface at y = h. Show that SH waves can propagate in the x-direction within this
region, and find the dispersion relation for such waves.

(b) For each mode, deduce the cutoff frequency, the phase velocity and the group
velocity. Plot the latter two velocities as a function of wavenumber.

(c) Verify that in an average sense (to be made precise), the wave energy flux is
equal to the wave energy density multiplied by the group velocity.

[You may assume that the elastic energy per unit volume is given by

Ep =
1
2λeiiejj + µeijeij .]

Paper 3, Section II

39A Waves
(a) Derive the wave equation for perturbation pressure for linearised sound waves

in a compressible gas.

(b) For a single plane wave show that the perturbation pressure and the velocity are
linearly proportional and find the constant of proportionality, i.e. the acoustic impedance.

(c) Gas occupies a tube lying parallel to the x-axis. In the regions x < 0 and x > L
the gas has uniform density ρ0 and sound speed c0. For 0 < x < L the temperature of the
gas has been adjusted so that it has uniform density ρ1 and sound speed c1. A harmonic
plane wave with frequency ω and unit amplitude is incident from x = −∞. If T is the (in
general complex) amplitude of the wave transmitted into x > L, show that

|T | =
(
cos2 k1L+ 1

4

(
λ+ λ−1

)2
sin2 k1L

)− 1
2
,

where λ = ρ1c1/ρ0c0 and k1 = ω/c1. Discuss both of the limits λ≪ 1 and λ≫ 1.

Part II, 2019 List of Questions

2019
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Paper 1, Section II

39A Waves
The equation of state relating pressure p to density ρ for a perfect gas is given by

p

p0
=

(
ρ

ρ0

)γ
,

where p0 and ρ0 are constants, and γ > 1 is the specific heat ratio.

(a) Starting from the equations for one-dimensional unsteady flow of a perfect gas
of uniform entropy, show that the Riemann invariants,

R± = u± 2

γ − 1
(c− c0)

are constant on characteristics C± given by

dx

dt
= u± c ,

where u(x, t) is the velocity of the gas, c(x, t) is the local speed of sound, and c0 is a
constant.

(b) Such an ideal gas initially occupies the region x > 0 to the right of a piston in
an infinitely long tube. The gas and the piston are initially at rest. At time t = 0 the
piston starts moving to the left with path given by

x = Xp(t) , with Xp(0) = 0 .

(i) Solve for u(x, t) and ρ(x, t) in the region x > Xp(t) under the assumptions that
− 2c0
γ−1 < Ẋp < 0 and that |Ẋp| is monotonically increasing, where dot indicates

a time derivative.

[It is sufficient to leave the solution in implicit form, i.e. for given x, t you
should not attempt to solve the C+ characteristic equation explicitly.]

(ii) Briefly outline the behaviour of u and ρ for times t > tc, where tc is the solution
to Ẋp(tc) = − 2c0

γ−1 .

(iii) Now suppose,

Xp(t) = − t1+α

1 + α
,

where α > 0. For 0 < α ≪ 1, find a leading-order approximation to the
solution of the C+ characteristic equation when x = c0t−at, 0 < a < 1

2(γ+1)
and t = O(1).

[Hint: You may find it useful to consider the structure of the characteristics
in the limiting case when α = 0.]
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A physical system permits one-dimensional wave propagation in the x-direction

according to the equation

(
1− 2

∂2

∂x2
+

∂4

∂x4

)
∂2ϕ

∂t2
+
∂4ϕ

∂x4
= 0 .

Derive the corresponding dispersion relation and sketch graphs of frequency, phase velocity
and group velocity as functions of the wavenumber. Waves of what wavenumber are at
the front of a dispersing wave train arising from a localised initial disturbance? For waves
of what wavenumbers do wave crests move faster or slower than a packet of waves?

Find the solution of the above equation for the initial disturbance given by

ϕ(x, 0) =

∫ ∞

−∞
2A(k)eikxdk ,

∂ϕ

∂t
(x, 0) = 0 ,

where A∗(−k) = A(k), and A∗ is the complex conjugate of A. Let V = x/t be held
fixed. Use the method of stationary phase to obtain a leading-order approximation to this
solution for large t when 0 < V < Vm = (3

√
3)/8, where the solutions for the stationary

points should be left in implicit form.

Very briefly discuss the nature of the solutions for −Vm < V < 0 and |V | > Vm.

[Hint: You may quote the result that the large time behaviour of

Φ(x, t) =

∫ ∞

−∞
A(k)eikx−iω(k)tdk ,

due to a stationary point k = α, is given by

Φ(x, t) ∼
(

2π

|ω′′(α)| t

) 1
2

A(α) eiαx−iω(α)t+iσπ/4 ,

where σ = −sgn(ω′′(α)). ]
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A perfect gas occupies the region x > 0 of a tube that lies parallel to the x-axis.

The gas is initially at rest, with density ρ1, pressure p1, speed of sound c1 and specific heat
ratio γ. For times t > 0 a piston, initially at x = 0, is pushed into the gas at a constant
speed V . A shock wave propagates at constant speed U into the undisturbed gas ahead
of the piston. Show that the excess pressure in the gas next to the piston, p2 − p1 ≡ βp1,
is given implicitly by the expression

V 2 =
2β2

2γ + (γ + 1)β

p1
ρ1
.

Show also that
U2

c21
= 1 +

γ + 1

2γ
β ,

and interpret this result.

[Hint: You may assume for a perfect gas that the speed of sound is given by

c2 =
γp

ρ
,

and that the internal energy per unit mass is given by

e =
1

γ − 1

p

ρ
. ]
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Derive the wave equation governing the velocity potential for linearised sound waves

in a perfect gas. How is the pressure disturbance related to the velocity potential?

A high pressure gas with unperturbed density ρ0 is contained within a thin metal
spherical shell which makes small amplitude spherically symmetric vibrations. Let the
metal shell have radius a, mass m per unit surface area, and an elastic stiffness which tries
to restore the radius to its equilibrium value a0 with a force κ(a−a0) per unit surface area.
Assume that there is a vacuum outside the spherical shell. Show that the frequencies ω of
vibration satisfy

θ2
(
1 +

α

θ cot θ − 1

)
=
κa20
mc20

,

where θ = ωa0/c0, α = ρ0a0/m, and c0 is the speed of sound in the undisturbed gas.
Briefly comment on the existence of solutions.

[Hint: In terms of spherical polar coordinates you may assume that for a function
ψ ≡ ψ(r),

∇2ψ =
1

r

∂2

∂r2
(rψ) . ]
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Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

for wave propagation through a slowly-varying medium with local dispersion relation
ω = Ω(k;x, t), where ω and k are the frequency and wavevector respectively, t is time and
x = (x, y, z) are spatial coordinates. The meaning of the notation d/dt should be carefully
explained.

A slowly-varying medium has a dispersion relation Ω(k;x, t) = kc(z), where k = |k|.
State and prove Snell’s law relating the angle ψ between a ray and the z-axis to c.

Consider the case of a medium with wavespeed c = c0(1 + β2z2), where β and c0
are positive constants. Show that a ray that passes through the origin with wavevector
k(cosφ, 0, sin φ), remains in the region

|z| 6 zm ≡ 1

β

[
1

| cosφ| − 1

]1/2
.

By considering an approximation to the equation for a ray in the region |zm − z| ≪ β−1,
or otherwise, determine the path of a ray near zm, and hence sketch rays passing through
the origin for a few sample values of φ in the range 0 < φ < π/2.
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Show that, for a one-dimensional flow of a perfect gas (with γ > 1) at constant en-

tropy, the Riemann invariants R± = u±2(c−c0)/(γ−1) are constant along characteristics
dx/dt = u± c.

Define a simple wave. Show that in a right-propagating simple wave

∂u

∂t
+
(
c0 +

1
2(γ + 1)u

) ∂u
∂x

= 0 .

In some circumstances, dissipative effects may be modelled by

∂u

∂t
+
(
c0 +

1
2(γ + 1)u

) ∂u
∂x

= −αu ,

where α is a positive constant. Suppose also that u is prescribed at t = 0 for all x, say
u(x, 0) = u0(x). Demonstrate that, unless a shock develops, a solution of the form

u(x, t) = u0(ξ)e
−αt

can be found, where, for each x and t, ξ is determined implicitly as the solution of the
equation

x− c0t = ξ +
γ + 1

2α

(
1− e−αt

)
u0(ξ) .

Deduce that, despite the presence of dissipative effects, a shock will still form at some
(x, t) unless α > αc, where

αc =
1
2(γ + 1)maxu′

0<0 |u′0(ξ)| .
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Derive the wave equation governing the pressure disturbance p̃, for linearised,

constant entropy sound waves in a compressible inviscid fluid of density ρ0 and sound
speed c0, which is otherwise at rest.

Consider a harmonic acoustic plane wave with wavevector kI = kI(sin θ, cos θ, 0)
and unit-amplitude pressure disturbance. Determine the resulting velocity field u.

Consider such an acoustic wave incident from y < 0 on a thin elastic plate at y = 0.
The regions y < 0 and y > 0 are occupied by gases with densities ρ1 and ρ2, respectively,
and sound speeds c1 and c2, respectively. The kinematic boundary conditions at the
plate are those appropriate for an inviscid fluid, and the (linearised) dynamic boundary
condition is

m
∂2η

∂t2
+B

∂4η

∂x4
+ [p̃(x, 0, t)]+− = 0 ,

wherem andB are the mass and bending moment per unit area of the plate, and y = η(x, t)
(with |kIη| ≪ 1) is its perturbed position. Find the amplitudes of the reflected and
transmitted pressure perturbations, expressing your answers in terms of the dimensionless
parameter

β =
kI cos θ(mc

2
1 −Bk2I sin

4 θ)

ρ1c21
.

(i) If ρ1 = ρ2 = ρ0 and c1 = c2 = c0, under what condition is the incident wave perfectly
transmitted?

(ii) If ρ1c1 ≫ ρ2c2, comment on the reflection coefficient, and show that waves incident
at a sufficiently large angle are reflected as if from a pressure-release surface (i.e. an
interface where p̃ = 0), no matter how large the plate mass and bending moment
may be.
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Waves propagating in a slowly-varying medium satisfy the local dispersion relation

ω = Ω(k;x, t) in the standard notation. Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t

governing the evolution of a wave packet specified by ϕ(x, t) = A(x, t; ε)eiθ(x,t)/ε, where
0 < ε≪ 1. A formal justification is not required, but the meaning of the d/dt notation
should be carefully explained.

The dispersion relation for two-dimensional, small amplitude, internal waves of
wavenumber k = (k, 0,m), relative to Cartesian coordinates (x, y, z) with z vertical,
propagating in an inviscid, incompressible, stratified fluid that would otherwise be at
rest, is given by

ω2 =
N2k2

k2 +m2
,

where N is the Brunt–Väisälä frequency and where you may assume that k > 0 and
ω > 0. Derive the modified dispersion relation if the fluid is not at rest, and instead has
a slowly-varying mean flow (U(z), 0, 0).

In the case that U ′(z) > 0, U(0) = 0 and N is constant, show that a disturbance
with wavenumber k = (k, 0, 0) generated at z = 0 will propagate upwards but cannot go
higher than a critical level z = zc, where U(zc) is equal to the apparent wave speed in the
x-direction. Find expressions for the vertical wave number m as z → zc from below, and
show that it takes an infinite time for the wave to reach the critical level.
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Consider the Rossby-wave equation

∂

∂t

(
∂2

∂x2
− ℓ2

)
ϕ+ β

∂ϕ

∂x
= 0 ,

where ℓ > 0 and β > 0 are real constants. Find and sketch the dispersion relation for
waves with wavenumber k and frequency ω(k). Find and sketch the phase velocity c(k)
and the group velocity cg(k), and identify in which direction(s) the wave crests travel, and
the corresponding direction(s) of the group velocity.

Write down the solution with initial value

ϕ(x, 0) =

∫ ∞

−∞
A(k)eikxdk ,

where A(k) is real and A(−k) = A(k). Use the method of stationary phase to obtain
leading-order approximations to ϕ(x, t) for large t, with x/t having the constant value V ,
for

(i) 0 < V < β/8ℓ2,

(ii) −β/ℓ2 < V 6 0,

where the solutions for the stationary points should be left in implicit form. [It is helpful
to note that ω(−k) = −ω(k).]

Briefly discuss the nature of the solution for V > β/8ℓ2 and V < −β/ℓ2. [Detailed
calculations are not required.]

[Hint: You may assume that

∫ ∞

−∞
e±iγu2

du =

(
π

γ

) 1
2

e±iπ/4

for γ > 0.]
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A duck swims at a constant velocity (−V, 0), where V > 0, on the surface of infinitely

deep water. Surface tension can be neglected, and the dispersion relation for the linear
surface water waves (relative to fluid at rest) is ω2 = g|k|. Show that the wavevector k of
a plane harmonic wave that is steady in the duck’s frame, i.e. of the form

Re
[
Aei(k1x

′+k2y)
]
,

where x′ = x+ V t and y are horizontal coordinates relative to the duck, satisfies

(k1, k2) =
g

V 2

√
p2 + 1 (1, p) ,

where k̂ = (cosφ, sin φ) and p = tan φ. [You may assume that |φ| < π/2.]

Assume that the wave pattern behind the duck can be regarded as a Fourier
superposition of such steady waves, i.e., the surface elevation η at (x′, y) = R(cos θ, sin θ)
has the form

η = Re

∫ ∞

−∞
A(p) eiλh(p;θ) dp for |θ| < 1

2π ,

where

λ =
gR

V 2
, h(p; θ) =

√
p2 + 1 (cos θ + p sin θ) .

Show that, in the limit λ→ ∞ at fixed θ with 0 < θ < cot−1 (2
√
2),

η ∼
√

2π

λ
Re

{
A(p+)√
hpp(p+; θ)

ei
(
λh(p+;θ)+

1
4π
)

+
A(p−)√

−hpp(p−; θ)
ei
(
λh(p−;θ)−1

4π
)}

,

where
p± = −1

4 cot θ ± 1
4

√
cot2 θ − 8

and hpp denotes ∂2h/∂p2. Briefly interpret this result in terms of what is seen.

Without doing detailed calculations, briefly explain what is seen as λ→ ∞ at fixed
θ with cot−1 (2

√
2) < θ < π/2. Very briefly comment on the case θ = cot−1 (2

√
2).

[Hint: You may find the following results useful.

hp =
{
p cos θ + (2p2 + 1) sin θ

}
(p2 + 1)−1/2 ,

hpp = (cos θ + 4p sin θ) (p2 + 1)−1/2 −
{
p cos θ + (2p2 + 1) sin θ

}
p(p2 + 1)−3/2 .

]
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Starting from the equations for one-dimensional unsteady flow of a perfect gas at

constant entropy, show that the Riemann invariants

R± = u± 2(c − c0)

γ − 1

are constant on characteristics C± given by dx/dt = u ± c, where u(x, t) is the speed of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ > 1 is the exponent in
the adiabatic equation of state for p(ρ).

At time t = 0 the gas occupies x > 0 and is at rest at uniform density ρ0, pressure
p0 and sound speed c0. For t > 0, a piston initially at x = 0 has position x = X(t), where

X(t) = −U0 t
(
1− t

2t0

)

and U0 and t0 are positive constants. For the case 0 < U0 < 2c0/(γ− 1), sketch the piston
path x = X(t) and the C+ characteristics in x > X(t) in the (x, t)-plane, and find the
time and place at which a shock first forms in the gas.

Do likewise for the case U0 > 2c0/(γ − 1).
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Write down the linearised equations governing motion of an inviscid compressible

fluid at uniform entropy. Assuming that the velocity is irrotational, show that it may be
derived from a velocity potential φ(x, t) satisfying the wave equation

∂2φ

∂t2
= c20∇2φ ,

and identify the wave speed c0. Obtain from these linearised equations the energy-
conservation equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic-energy density E and the acoustic-energy flux I in
terms of φ.

Such a fluid occupies a semi-infinite waveguide x > 0 of square cross-section 0<y<a,
0<z<a bounded by rigid walls. An impenetrable membrane closing the end x = 0 makes
prescribed small displacements to

x = X(y, z, t) ≡ Re
[
e−iωtA(y, z)

]
,

where ω > 0 and |A| ≪ a, c0/ω. Show that the velocity potential is given by

φ = Re

[
e−iωt

∞∑

m=0

∞∑

n=0

cos
(mπy

a

)
cos
(nπz

a

)
fmn(x)

]
,

where the functions fmn(x), including their amplitudes, are to be determined, with the
sign of any square roots specified clearly.

If 0 < ω < πc0/a, what is the asymptotic behaviour of φ as x → +∞? Using this
behaviour and the energy-conservation equation averaged over both time and the cross-
section, or otherwise, determine the double-averaged energy flux along the waveguide,

〈
Ix
〉
(x) ≡ ω

2πa2

∫ 2π/ω

0

∫ a

0

∫ a

0
Ix(x, y, z, t) dy dz dt ,

explaining why this is independent of x.
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Small disturbances in a homogeneous elastic solid with density ρ and Lamé moduli

λ and µ are governed by the equation

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) ,

where u(x, t) is the displacement. Show that a harmonic plane-wave solution

u = Re
[
Aei(k·x−ωt)

]

must satisfy
ω2A = c2P k (k ·A)− c2S k× (k×A) ,

where the wavespeeds cP and cS are to be identified. Describe mathematically how such
plane-wave solutions can be classified into longitudinal P -waves and transverse SV - and
SH-waves (taking the y-direction as the vertical direction).

The half-space y < 0 is filled with the elastic solid described above, while the slab
0 < y < h is filled with a homogeneous elastic solid with Lamé moduli λ and µ, and
wavespeeds cP and cS . There is a rigid boundary at y = h. A harmonic plane SH-wave
propagates from y < 0 towards the interface y = 0, with displacement

Re
[
Aei(ℓx+my−ωt)

]
(0, 0, 1) . (∗)

How are ℓ, m and ω related? The total displacement in y < 0 is the sum of (∗) and that
of the reflected SH-wave,

Re
[
RAei(ℓx−my−ωt)

]
(0, 0, 1) .

Write down the form of the displacement in 0 < y < h, and determine the (complex)
reflection coefficient R. Verify that |R| = 1 regardless of the parameter values, and explain
this physically.
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The shallow-water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

describe one-dimensional flow over a horizontal boundary with depth h(x, t) and velocity
u(x, t), where g is the acceleration due to gravity.

Show that the Riemann invariants u ± 2(c − c0) are constant along characteristics
C± satisfying dx/dt = u±c, where c(h) is the linear wave speed and c0 denotes a reference
state.

An initially stationary pool of fluid of depth h0 is held between a stationary wall
at x = a > 0 and a removable barrier at x = 0. At t = 0 the barrier is instantaneously
removed allowing the fluid to flow into the region x < 0.

For 0 6 t 6 a/c0, find u(x, t) and c(x, t) in each of the regions

(i) c0t 6 x 6 a

(ii) −2c0t 6 x 6 c0t

explaining your argument carefully with a sketch of the characteristics in the (x, t) plane.

For t > a/c0, show that the solution in region (ii) above continues to hold in the
region −2c0t 6 x 6 3a(c0t/a)

1/3 − 2c0t. Explain why this solution does not hold in
3a(c0t/a)

1/3 − 2c0t < x < a.
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A uniform elastic solid with density ρ and Lamé moduli λ and µ occupies the region
between rigid plane boundaries z = 0 and z = h. Starting with the linear elastic wave
equation, show that SH waves can propagate in the x-direction within this waveguide, and
find the dispersion relation ω(k) for the various modes.

State the cut-off frequency for each mode. Find the corresponding phase velocity
c(k) and group velocity cg(k), and sketch these functions for k, ω > 0.

Define the time and cross-sectional average appropriate for a mode with frequency
ω. Show that for each mode the average kinetic energy is equal to the average elastic
energy. [You may assume that the elastic energy per unit volume is 1

2(λe
2
kk + 2µeijeij).]

An elastic displacement of the form u = (0, f(x, z), 0) is created in a region near
x = 0, and then released at t = 0. Explain briefly how the amplitude of the resulting
disturbance varies with time as t → ∞ at the moving position x = V t for each of the cases
0 < V 2 < µ/ρ and V 2 > µ/ρ. [You may quote without proof any generic results from the
method of stationary phase.]

Paper 3, Section II

37B Waves

Derive the ray-tracing equations for the quantities dki/dt, dω/dt and dxi/dt
during wave propagation through a slowly varying medium with local dispersion relation
ω = Ω(k,x, t), explaining the meaning of the notation d/dt.

The dispersion relation for water waves is Ω2 = gκ tanh(κh), where h is the water
depth, κ2 = k2 + l2, and k and l are the components of k in the horizontal x and y
directions. Water waves are incident from an ocean occupying x > 0, −∞ < y < ∞ onto
a beach at x = 0. The undisturbed water depth is h(x) = αxp, where α, p are positive
constants and α is sufficiently small that the depth can be assumed to be slowly varying.
Far from the beach, the waves are planar with frequency ω∞ and with crests making an
acute angle θ∞ with the shoreline.

Obtain a differential equation (with k defined implicitly) for a ray y = y(x) and
show that near the shore the ray satisfies

y − y0 ∼ Axq

where A and q should be found. Sketch the shape of the wavecrests near the shoreline for
the case p < 2.
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An acoustic plane wave (not necessarily harmonic) travels at speed c0 in the direction
k̂, where |k̂| = 1, through an inviscid, compressible fluid of unperturbed density ρ0. Show
that the velocity ũ is proportional to the perturbation pressure p̃, and find ũ/p̃. Define
the acoustic intensity I.

A harmonic acoustic plane wave with wavevector k = k(cos θ, sin θ, 0) and unit-
amplitude perturbation pressure is incident from x < 0 on a thin elastic membrane at
unperturbed position x = 0. The regions x < 0 and x > 0 are both occupied by gas with
density ρ0 and sound speed c0. The kinematic boundary conditions at the membrane are
those appropriate for an inviscid fluid, and the (linearized) dynamic boundary condition
is

m
∂2X

∂t2
− T

∂2X

∂y2
+

[
p̃(0, y, t)

]+
− = 0

where T and m are the tension and mass per unit area of the membrane, and x = X(y, t)
(with |kX| ≪ 1) is its perturbed position. Find the amplitudes of the reflected and
transmitted pressure perturbations, expressing your answers in terms of the dimensionless
parameter

α =
ρ0c

2
0

k cos θ(mc20 − T sin2 θ)
.

Hence show that the time-averaged energy flux in the x-direction is conserved across the
membrane.
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A one-dimensional shock wave propagates at a constant speed along a tube aligned

with the x-axis and containing a perfect gas. In the reference frame where the shock is at
rest at x = 0, the gas has speed U0, density ρ0 and pressure p0 in the region x < 0 and
speed U1, density ρ1 and pressure p1 in the region x > 0.

Write down equations of conservation of mass, momentum and energy across the
shock. Show that

γ

γ − 1

(
p1
ρ1

− p0
ρ0

)
=

p1 − p0
2

(
1

ρ1
+

1

ρ0

)
,

where γ is the ratio of specific heats.

From now on, assume γ = 2 and let P = p1/p0. Show that 1
3 < ρ1/ρ0 < 3.

The increase in entropy from x < 0 to x > 0 is given by ∆S = CV log(p1ρ
2
0/p0ρ

2
1),

where CV is a positive constant. Show that ∆S is a monotonic function of P .

If ∆S > 0, deduce that P > 1, ρ1/ρ0 > 1, (U0/c0)
2 > 1 and (U1/c1)

2 < 1, where
c0 and c1 are the sound speeds in x < 0 and x > 0, respectively. Given that ∆S must
have the same sign as U0 and U1, interpret these inequalities physically in terms of the
properties of the flow upstream and downstream of the shock.
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The function φ(x, t) satisfies the equation

∂2φ

∂t2
− ∂2φ

∂x2
=

∂4φ

∂x2∂t2
.

Derive the dispersion relation, and sketch graphs of frequency, phase velocity and group
velocity as functions of the wavenumber. In the case of a localised initial disturbance, will
it be the shortest or the longest waves that are to be found at the front of a dispersing
wave packet? Do the wave crests move faster or slower than the wave packet?

Give the solution to the initial-value problem for which at t = 0

φ =

∫ ∞

−∞
A(k)eikx dk and

∂φ

∂t
= 0 ,

and φ(x, 0) is real. Use the method of stationary phase to obtain an approximation for
φ(V t, t) for fixed 0 < V < 1 and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an
approximation for the sequence of times at which φ(V t, t) = 0.

You are given that φ(t, t) decreases like t−1/4 for large t. Give a brief physical
explanation why this rate of decay is slower than for 0 < V < 1. What can be said about
φ(V t, t) for large t if V > 1? [Detailed calculation is not required in these cases.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 3, Section II

39C Waves
The equations describing small-amplitude motions in a stably stratified, incompress-

ible, inviscid fluid are

∂ρ̃

∂t
+ w

dρ0
dz

= 0 , ρ0
∂u

∂t
= ρ̃g −∇p̃ , ∇ · u = 0 ,

where ρ0(z) is the background stratification, ρ̃(x, t) and p̃(x, t) are the perturbations about
an undisturbed hydrostatic state, u(x, t) = (u, v, w) is the velocity, and g = (0, 0,−g).

Show that [
∂2

∂t2
∇2 +N2

(
∇2 − ∂2

∂z2

)]
w = 0 ,

stating any approximation made, and define the Brunt–Väisälä frequency N .

Deduce the dispersion relation for plane harmonic waves with wavevector k =
(k, 0,m). Calculate the group velocity and verify that it is perpendicular to k.

Such a stably stratified fluid with a uniform value of N occupies the region
z > h(x, t) above a moving lower boundary z = h(x, t). Find the velocity field w(x, z, t)
generated by the boundary motion for the case h = ǫ sin[k(x − Ut)], where 0 < ǫk ≪ 1
and U > 0 is a constant.

For the case k2 < N2/U2, sketch the orientation of the wave crests, the direction of
propagation of the crests, and the direction of the group velocity.
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Paper 1, Section II

39C Waves
State the equations that relate strain to displacement and stress to strain in a

uniform, linear, isotropic elastic solid with Lamé moduli λ and µ. In the absence of body
forces, the Cauchy momentum equation for the infinitesimal displacements u(x, t) is

ρ
∂2u

∂t2
= ∇ · σ ,

where ρ is the density and σ the stress tensor. Show that both the dilatation ∇ · u and
the rotation ∇ ∧ u satisfy wave equations, and find the wave-speeds cP and cS .

A plane harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle on the planar interface z = 0 between two elastic solids
with different densities and elastic moduli. Show in a diagram the directions of all the
reflected and transmitted waves, labelled with their polarisations, assuming that none of
these waves are evanescent. State the boundary conditions on components of u and σ
that would, in principle, determine the amplitudes.

Now consider a plane harmonic P-wave of unit amplitude incident with k =
k(sin θ, 0, cos θ) on the interface z = 0 between two elastic (and inviscid) liquids with
wave-speed cP and modulus λ in z < 0 and wave-speed c′P and modulus λ′ in z > 0.
Obtain solutions for the reflected and transmitted waves. Show that the amplitude of the
reflected wave is zero if

sin2 θ =
Z ′2 − Z2

Z ′2 − (c′PZ/cP )
2
,

where Z = λ/cP and Z ′ = λ′/c′P .
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Paper 4, Section II

38C Waves
A wave disturbance satisfies the equation

∂2ψ

∂t2
− c2

∂2ψ

∂x2
+ c2ψ = 0 ,

where c is a positive constant. Find the dispersion relation, and write down the solution
to the initial-value problem for which ∂ψ/∂t(x, 0) = 0 for all x, and ψ(x, 0) is given in the
form

ψ(x, 0) =

∫ ∞

−∞
A(k)eikx dk ,

where A(k) is a real function with A(k) = A(−k), so that ψ(x, 0) is real and even.

Use the method of stationary phase to obtain an approximation to ψ(x, t) for large
t, with x/t taking the constant value V , and 0 6 V < c. Explain briefly why your answer
is inappropriate if V > c.

[You are given that

∫ ∞

−∞
exp(iu2) du = π1/2eiπ/4 . ]

Paper 2, Section II

38C Waves
Show that the equations governing linear elasticity have plane-wave solutions,

distinguishing between P, SV and SH waves.

A semi-infinite elastic medium in y < 0 (where y is the vertical coordinate) with
density ρ and Lamé moduli λ and µ is overlaid by a layer of thickness h (in 0 < y < h)
of a second elastic medium with density ρ′ and Lamé moduli λ′ and µ′. The top surface
at y = h is free, that is, the surface tractions vanish there. The speed of the S-waves
is lower in the layer, that is, c′S

2 = µ′/ρ′ < µ/ρ = cS
2. For a time-harmonic SH-wave

with horizontal wavenumber k and frequency ω, which oscillates in the slow top layer and
decays exponentially into the fast semi-infinite medium, derive the dispersion relation for
the apparent horizontal wave speed c(k) = ω/k:

tan

(
kh

√
(c2/c′S

2)− 1

)
=

µ
√

1− (c2/c2S)

µ′
√
(c2/c′S

2)− 1
. (∗)

Show graphically that for a given value of k there is always at least one real value of c
which satisfies equation (∗). Show further that there are one or more higher modes if√

c2S/c
′
S
2 − 1 > π/kh.
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Paper 3, Section II

39C Waves
The dispersion relation for sound waves of frequency ω in a stationary homogeneous

gas is ω = c0|k|, where c0 is the speed of sound and k is the wavenumber. Derive the
dispersion relation for sound waves of frequency ω in a uniform flow with velocity U.

For a slowly-varying medium with local dispersion relation ω = Ω(k,x, t), derive the
ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=

∂Ω

∂t
,

explaining carefully the meaning of the notation used.

Suppose that two-dimensional sound waves with initial wavenumber (k0, l0, 0) are
generated at the origin in a gas occupying the half-space y > 0. If the gas has a slowly-
varying mean velocity (γy, 0, 0), where γ > 0, show:

(a) that if k0 > 0 and l0 > 0 the waves reach a maximum height (which should be
identified), and then return to the level y = 0 in a finite time;

(b) that if k0 < 0 and l0 > 0 then there is no bound on the height to which the waves
propagate.

Comment briefly on the existence, or otherwise, of a quiet zone.
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Paper 1, Section II

39C Waves
Starting from the equations for the one-dimensional unsteady flow of a perfect gas

of uniform entropy, show that the Riemann invariants

R± = u± 2

γ − 1
(c− c0)

are constant on characteristics C± given by dx/dt = u± c, where u(x, t) is the velocity of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ is the ratio of specific
heats.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely
long tube. The gas and the piston are initially at rest with c = c0. At time t = 0 the
piston starts moving to the left at a constant velocity V . Find u(x, t) and c(x, t) in the
three regions

(i) c0t 6 x ,
(ii) at 6 x 6 c0t ,
(iii) −V t 6 x 6 at ,

where a = c0− 1
2(γ+1)V . What is the largest value of V for which c is positive throughout

region (iii)? What happens if V exceeds this value?

Part II, 2013 List of Questions

2013



102

Paper 4, Section II

38D Waves
The shallow-water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

describe one-dimensional flow in a channel with depth h(x, t) and velocity u(x, t), where
g is the acceleration due to gravity.

(i) Find the speed c(h) of linearized waves on fluid at rest and of uniform depth.

(ii) Show that the Riemann invariants u± 2c are constant on characteristic curves
C± of slope u± c in the (x, t)-plane.

(iii) Use the shallow-water equations to derive the equation of momentum conser-
vation

∂(hu)

∂t
+

∂I

∂x
= 0 ,

and identify the horizontal momentum flux I.

(iv) A hydraulic jump propagates at constant speed along a straight constant-width
channel. Ahead of the jump the fluid is at rest with uniform depth h0. Behind the jump
the fluid has uniform depth h1 = h0(1 + β), with β > 0. Determine both the speed V of
the jump and the fluid velocity u1 behind the jump.

Express V/c(h0) and (V − u1)/c(h1) as functions of β. Hence sketch the pattern of
characteristics in the frame of reference of the jump.

Paper 2, Section II

38D Waves
Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

for wave propagation through a slowly-varying medium with local dispersion relation
ω = Ω(k,x, t). The meaning of the notation d/dt should be carefully explained.

A non-dispersive slowly varying medium has a local wave speed c that depends only
on the z coordinate. State and prove Snell’s Law relating the angle ψ between a ray and
the z-axis to c.

Consider the case of a medium with wavespeed c = A cosh βz, where A and β
are positive constants. Find the equation of the ray that passes through the origin with
wavevector (k0, 0,m0), and show that it remains in the region β|z| 6 sinh−1(m0/k0).
Sketch several rays passing through the origin.
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Paper 3, Section II

39D Waves
The function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
+

1

5

∂5φ

∂x5
= 0 ,

where U > 0 is a constant. Find the dispersion relation for waves of frequency ω and
wavenumber k. Sketch a graph showing both the phase velocity c(k) and the group
velocity cg(k), and state whether wave crests move faster or slower than a wave packet.

Suppose that φ(x, 0) is real and given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikx dk .

Use the method of stationary phase to obtain an approximation for φ(V t, t) for fixed
V > U and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an approximation for the
sequence of times at which φ(V t, t) = 0.

What can be said about φ(V t, t) if V < U? [Detailed calculation is not required in
this case.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 1, Section II

39D Waves
Write down the linearized equations governing motion in an inviscid compressible

fluid and, assuming an adiabatic relationship p = p(ρ), derive the wave equation for the
velocity potential φ(x, t). Obtain from these linearized equations the energy equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic energy density E and the acoustic intensity, or energy-
flux vector, I.

An inviscid compressible fluid occupies the half-space y > 0, and is bounded by a
very thin flexible membrane of negligible mass at an undisturbed position y = 0. Small
acoustic disturbances with velocity potential φ(x, y, t) in the fluid cause the membrane to
be deflected to y = η(x, t). The membrane is supported by springs that, in the deflected
state, exert a restoring force Kη δx on an element δx of the membrane. Show that the
dispersion relation for waves proportional to exp(ikx − iωt) propagating freely along the
membrane is (

k2 − ω2

c20

)1/2

− ρ0ω
2

K
= 0 ,

where ρ0 is the density of the fluid and c0 is the sound speed. Show that in such a wave
the component 〈Iy〉 of mean acoustic intensity perpendicular to the membrane is zero.
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Paper 1, Section II

39B Waves
An inviscid fluid with sound speed c0 occupies the region 0 < y < πα, 0 < z < πβ

enclosed by the rigid boundaries of a rectangular waveguide. Starting with the acoustic
wave equation, find the dispersion relation ω(k) for the propagation of sound waves in the
x-direction.

Hence find the phase speed c(k) and the group velocity cg(k) of both the dispersive
modes and the nondispersive mode, and sketch the form of the results for k, ω > 0.

Define the time and cross-sectional average appropriate for a mode with frequency
ω. For each dispersive mode, show that the average kinetic energy is equal to the average
compressive energy.

A general multimode acoustic disturbance is created within the waveguide at t = 0
in a region around x = 0. Explain briefly how the amplitude of the disturbance varies
with time as t → ∞ at the moving position x = V t for each of the cases 0 < V < c0,
V = c0 and V > c0. [You may quote without proof any generic results from the method
of stationary phase.]

Paper 2, Section II

38B Waves
A uniform elastic solid with wavespeeds cP and cS occupies the region z < 0. An

S-wave with displacement

u = (cos θ, 0,− sin θ) eik(x sin θ+z cos θ)−iωt

is incident from z < 0 on a rigid boundary at z = 0. Find the form and amplitudes of the
reflected waves.

When is the reflected P -wave evanescent? Show that if the P -wave is evanescent
then the amplitude of the reflected S-wave has the same magnitude as the incident wave,
and interpret this result physically.
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Paper 3, Section II

38B Waves
The dispersion relation in a stationary medium is given by ω = Ω0(k), where Ω0 is

a known function. Show that, in the frame of reference where the medium has a uniform
velocity −U, the dispersion relation is given by ω = Ω0(k)−U · k.

An aircraft flies in a straight line with constant speed Mc0 through air with sound
speed c0. If M > 1 show that, in the reference frame of the aircraft, the steady waves lie
behind it on a cone of semi-angle sin−1(1/M). Show further that the unsteady waves are
confined to the interior of the cone.

A small insect swims with constant velocity U = (U, 0) over the surface of a pool of
water. The resultant capillary waves have dispersion relation ω2 = T |k|3/ρ on stationary
water, where T and ρ are constants. Show that, in the reference frame of the insect, steady
waves have group velocity

cg = U(32 cos
2 β − 1, 32 cos β sin β) ,

where k ∝ (cos β, sin β). Deduce that the steady wavefield extends in all directions around
the insect.

Paper 4, Section II

38B Waves
Show that, in the standard notation for one-dimensional flow of a perfect gas, the

Riemann invariants u± 2(c− c0)/(γ − 1) are constant on characteristics C± given by

dx

dt
= u± c .

Such a gas occupies the region x > X(t) in a semi-infinite tube to the right of a
piston at x = X(t). At time t = 0, the piston and the gas are at rest, X = 0, and the
gas is uniform with c = c0. For t > 0 the piston accelerates smoothly in the positive
x-direction. Show that, prior to the formation of a shock, the motion of the gas is given
parametrically by

u(x, t) = Ẋ(τ) on x = X(τ) +
[
c0 +

1
2(γ + 1)Ẋ(τ)

]
(t− τ) ,

in a region that should be specified.

For the case X(t) = 2
3c0t

3/T 2, where T > 0 is a constant, show that a shock first
forms in the gas when

t =
T

γ + 1
(3γ + 1)1/2 .
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Paper 1, Section II

38A Waves

Derive the wave equation governing the velocity potential φ for linearized sound

waves in a compressible inviscid fluid. How is the pressure disturbance related to the

velocity potential?

A semi-infinite straight tube of uniform cross-section is aligned along the positive

x-axis with its end at x = −L. The tube is filled with fluid of density ρ1 and sound speed

c1 in −L < x < 0 and with fluid of density ρ2 and sound speed c2 in x > 0 . A piston at

the end of the tube performs small oscillations such that its position is x = −L+ ǫ e iωt,

with ǫ ≪ L and ǫ ω ≪ c1, c2. Show that the complex amplitude of the velocity potential

in x > 0 is

−ǫ c1

(
c1
c2

cos
ωL

c1
+ i

ρ2
ρ1

sin
ωL

c1

)−1

.

Calculate the time-averaged acoustic energy flux in x > 0. Comment briefly on the

variation of this result with L for the particular case ρ2 ≪ ρ1 and c2 = O(c1).
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Paper 2, Section II

38A Waves
The equation of motion for small displacements u(x, t) in a homogeneous, isotropic,

elastic medium of density ρ is

ρ
∂2u

∂t2
=

(
λ+ µ

)∇(∇·u
)
+ µ∇2u ,

where λ and µ are the Lamé constants. Show that the dilatation ∇ ·u and rotation ∇∧u
each satisfy wave equations, and determine the corresponding wave speeds cP and cS .

Show also that a solution of the form u = A exp [i(k · x− ωt)] satisfies

ω2A = c 2P k (k ·A)− c 2S k ∧ (k ∧A) .

Deduce the dispersion relation and the direction of polarization relative to k for plane
harmonic P -waves and plane harmonic S-waves.

Now suppose the medium occupies the half-space z 6 0 and that the boundary
z = 0 is stress free. Show that it is possible to find a self-sustained combination of
evanescent P -waves and SV -waves (i.e. a Rayleigh wave), proportional to exp [ik(x− ct)]
and propagating along the boundary, provided the wavespeed c satisfies

(
2− c 2

c 2S

)2
= 4

(
1− c 2

c 2S

)1/2 (
1− c 2

c 2P

)1/2
.

[You are not required to show that this equation has a solution.]
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Paper 3, Section II

38A Waves

Consider the equation
∂2φ

∂t∂x
= −αφ ,

where α is a positive constant. Find the dispersion relation for waves of frequency ω and

wavenumber k . Sketch graphs of the phase velocity c(k) and the group velocity cg(k).

A disturbance localized near x = 0 at t = 0 evolves into a dispersing wave packet.

Will the wavelength and frequency of the waves passing a stationary observer located at

a large positive value of x increase or decrease for t > 0? In which direction do the crests

pass the observer?

Write down the solution φ(x, t) with initial value

φ(x, 0) =

∫ ∞

−∞
A(k) e ikx dk .

What can be said about A(−k) if φ is real?

Use the method of stationary phase to obtain an approximation for φ(V t, t) for fixed

V > 0 and large t. What can be said about the solution at x = −V t for large t?

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 4, Section II

38A Waves

Starting from the equations for one-dimensional unsteady flow of an inviscid

compressible fluid, show that it is possible to find Riemann invariants u ± Q that are

constant on characteristics C± given by

dx

dt
= u± c ,

where u(x, t) is the velocity of the fluid and c(x, t) is the local speed of sound. Show

that Q = 2(c − c0)/(γ − 1) for the case of a perfect gas with adiabatic equation of state

p = p0(ρ/ρ0)
γ , where p0 , ρ0 and γ are constants, γ > 1 and c = c0 when ρ = ρ0.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely

long tube. The gas is initially uniform and at rest with density ρ0 . At t = 0 the piston

starts moving to the left at a constant speed V . Assuming that the gas keeps up with

the piston, find u(x, t) and c(x, t) in each of the three distinct regions that are defined by

families of C+ characteristics.

Now assume that the gas does not keep up with the piston. Show that the gas

particle at x = x0 when t = 0 follows a trajectory given, for t > x0/c0, by

x(t) =
γ + 1

γ − 1

(
c0t

x0

)2/(γ+1)

x0 −
2 c0t

γ − 1
.

Deduce that the velocity of any given particle tends to −2 c0/(γ − 1) as t → ∞.
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Paper 1, Section II

38A Waves

The wave equation with spherical symmetry may be written

1

r

∂2

∂r2
(rp̃)− 1

c2
∂2

∂t2
p̃ = 0 .

Find the solution for the pressure disturbance p̃ in an outgoing wave, driven by a time-

varying source with mass outflow rate q(t) at the origin, in an infinite fluid.

A semi-infinite fluid of density ρ and sound speed c occupies the half space x > 0.

The plane x = 0 is occupied by a rigid wall, apart from a small square element of side h

that is centred on the point (0, y′, z′) and oscillates in and out with displacement f0e
iωt.

By modelling this element as a point source, show that the pressure field in x > 0 is given

by

p̃(t, x, y, z) = −2ρω2f0h
2

4πR
eiω(t−

R
c ),

where R = [x2+(y−y′)2+(z−z′)2]1/2, on the assumption that R ≫ c/ω ≫ f0, h. Explain

the factor 2 in the above formula.

Now suppose that the plane x = 0 is occupied by a loudspeaker whose displacement

is given by

x = f(y, z)eiωt ,

where f(y, z) = 0 for |y|, |z| > L. Write down an integral expression for the pressure in

x > 0. In the far field where r = (x2 + y2 + z2)1/2 ≫ L, ωL2/c, c/ω, show that

p̃(t, x, y, z) ≈ −ρω2

2πr
eiω(t−r/c)f̂(m,n),

where m = −ωy

rc
, n = −ωz

rc
and

f̂(m,n) =

∫ ∞

−∞

∫ ∞

−∞
f
(
y′, z′

)
e−i(my′+nz′)dy′dz′.

Evaluate this integral when f is given by

f(y, z) =

{
1, −a < y < a,−b < z < b,

0, otherwise,

and discuss the result in the case ωb/c is small but ωa/c is of order unity.
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Paper 2, Section II

38A Waves

An elastic solid of density ρ has Lamé moduli λ and µ. From the dynamic equation

for the displacement vector u, derive equations satisfied by the dilatational and shear

potentials φ and ψ. Show that two types of plane harmonic wave can propagate in the

solid, and explain the relationship between the displacement vector and the propagation

direction in each case.

A semi-infinite solid occupies the half-space y < 0 and is bounded by a traction-free

surface at y = 0. A plane P -wave is incident on the plane y = 0 with angle of incidence θ.

Describe the system of reflected waves, calculate the angles at which they propagate, and

show that there is no reflected P -wave if

4σ(1− σ)1/2(β − σ)1/2 = (1− 2σ)2,

where

σ = β sin2 θ and β =
µ

λ+ 2µ
.

Paper 3, Section II

38A Waves

Starting from the equations of motion for an inviscid, incompressible, stratified fluid

of density ρ0(z), where z is the vertical coordinate, derive the dispersion relation

ω2 =
N2

(
k2 + ℓ2

)

(k2 + ℓ2 +m2)

for small amplitude internal waves of wavenumber (k, ℓ,m), where N is the constant

Brunt–Väisälä frequency (which should be defined), explaining any approximations you

make. Describe the wave pattern that would be generated by a small body oscillating

about the origin with small amplitude and frequency ω, the fluid being otherwise at rest.

The body continues to oscillate when the fluid has a slowly-varying velocity

[U(z), 0, 0], where U ′(z) > 0. Show that a ray which has wavenumber (k0, 0,m0) with

m0 < 0 at z = 0 will propagate upwards, but cannot go higher than z = zc, where

U(zc)− U(0) = N
(
k20 +m2

0

)−1/2
.

Explain what happens to the disturbance as z approaches zc.

Part II, 2009 List of Questions

2009



97

Paper 4, Section II

38A Waves

A perfect gas occupies a tube that lies parallel to the x-axis. The gas is initially at

rest, with density ρ1, pressure p1 and specific heat ratio γ, and occupies the region x > 0.

For times t > 0 a piston, initially at x = 0, is pushed into the gas at a constant speed

V . A shock wave propagates at constant speed U into the undisturbed gas ahead of the

piston. Show that the pressure in the gas next to the piston, p2, is given by the expression

V 2 =
(p2 − p1)

2

ρ1

(
γ + 1

2
p2 +

γ − 1

2
p1

) .

[You may assume that the internal energy per unit mass of perfect gas is given by

E =
1

γ − 1

p

ρ
.

]
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1/II/37B Waves

Show that in an acoustic plane wave the velocity and perturbation pressure are
everywhere proportional and find the constant of proportionality.

Gas occupies a tube lying parallel to the x-axis. In the regions x < 0 and x > L the
gas has uniform density ρ0 and sound speed c0 . For 0 < x < L the gas is cooled so that
it has uniform density ρ1 and sound speed c1 . A harmonic plane wave with frequency ω
is incident from x = −∞ . Show that the amplitude of the wave transmitted into x > L
relative to that of the incident wave is

|T | =

[
cos2 k1L+

1

4

(
λ+ λ−1

)2
sin2 k1L

]−1/2

,

where λ = ρ1c1/ρ0c0 and k1 = ω/c1 .

What are the implications of this result if λ� 1?

2/II/37B Waves

Show that, in one-dimensional flow of a perfect gas at constant entropy, the
Riemann invariants u± 2(c− c0)/(γ− 1) are constant along characteristics dx/dt = u± c .

A perfect gas occupies a tube that lies parallel to the x-axis. The gas is initially at
rest and is in x > 0 . For times t > 0 a piston is pulled out of the gas so that its position
at time t is

x = X(t) = − 1

2
ft2,

where f > 0 is a constant. Sketch the characteristics of the resulting motion in the
(x, t) plane and explain why no shock forms in the gas.

Calculate the pressure exerted by the gas on the piston for times t > 0 , and show
that at a finite time tv a vacuum forms. What is the speed of the piston at t = tv?
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3/II/37B Waves

The real function φ(x, t) satisfies the Klein–Gordon equation

∂2φ

∂t2
=

∂2φ

∂x2
− φ , −∞ < x <∞, t > 0 .

Find the dispersion relation for disturbances of wavenumber k and deduce their phase and
group velocities.

Suppose that at t = 0

φ(x, 0) = 0 and
∂φ

∂t
(x, 0) = e−|x| .

Use Fourier transforms to find an integral expression for φ(x, t) when t > 0 .

Use the method of stationary phase to find φ(V t, t) for t→∞ for fixed 0 < V < 1 .
What can be said if V > 1?

[Hint: you may assume that

∫ ∞

−∞
e−ax

2

dx =

√
π

a
, Re(a) > 0 .]

4/II/38B Waves

A layer of rock of shear modulus µ̄ and shear wave speed c̄s occupies the region
0 6 y 6 h with a free surface at y = h . A second rock having shear modulus µ and shear
wave speed cs > c̄s occupies y 6 0 . Show that elastic SH waves of wavenumber k and
phase speed c can propagate in the layer with zero disturbance at y = −∞ if c̄s < c < cs
and c satisfies the dispersion relation

tan
[
kh
√
c2/c̄2s − 1

]
=

µ

µ̄

√
1− c2/c2s√
c2/c̄2s − 1

.

Show graphically, or otherwise, that this equation has at least one real solution for
any value of kh, and determine the smallest value of kh for which the equation has at least
two real solutions.
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1/II/37C Waves

A uniform elastic solid with density ρ and Lamé moduli λ and µ occupies the region
between rigid plane boundaries y = 0 and y = h. Show that SH waves can propagate in
the x direction within this layer, and find the dispersion relation for such waves.

Deduce for each mode (a) the cutoff frequency, (b) the phase velocity, and (c) the
group velocity.

Show also that for each mode the kinetic energy and elastic energy are equal in an
average sense to be made precise.

[You may assume that the elastic energy per unit volume W = 1
2 (λe

2
kk + 2µeijeij).]

2/II/37C Waves

Show that for a one-dimensional flow of a perfect gas at constant entropy the
Riemann invariants u ± 2(c−c0)/(γ−1) are constant along characteristics dx/dt = u±c.

Define a simple wave. Show that in a right-propagating simple wave

∂u

∂t
+

(
c0 +

γ + 1

2
u

)
∂u

∂x
= 0 .

Now suppose instead that, owing to dissipative effects,

∂u

∂t
+

(
c0 +

γ + 1

2
u

)
∂u

∂x
= −αu

where α is a positive constant. Suppose also that u is prescribed at t = 0 for all x, say
u(x, 0) = v(x). Demonstrate that, unless a shock forms,

u(x, t) = v(x0) e
−αt

where, for each x and t, x0 is determined implicitly as the solution of the equation

x− c0t = x0 +
γ + 1

2

(
1− e−αt

α

)
v(x0) .

Deduce that a shock will not form at any (x, t) if

α >
γ + 1

2
max
v′< 0

|v′(x0)| .
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3/II/37C Waves

Waves propagating in a slowly-varying medium satisfy the local dispersion relation

ω = Ω(k,x, t)

in the standard notation. Give a brief derivation of the ray-tracing equations for such
waves; a formal justification is not required.

An ocean occupies the region x > 0 , −∞ < y < ∞ . Water waves are incident
on a beach near x = 0. The undisturbed water depth is

h(x) = αxp

with α a small positive constant and p positive. The local dispersion relation is

Ω2 = gκ tanh(κh) where κ2 = k21 + k22

and where k1, k2 are the wavenumber components in the x, y directions. Far from the
beach, the waves are planar with frequency ω∞ and crests making an acute angle θ∞ with
the shoreline x = 0 . Obtain a differential equation (in implicit form) for a ray y = y(x) ,
and show that near the shore the ray satisfies

y − y0 ∼ Axq

where A and q should be found. Sketch the appearance of the wavecrests near the shoreline.

4/II/38C Waves

Show that, for a plane acoustic wave, the acoustic intensity p̃u may be written as
ρ0c0|u|2k̂ in the standard notation.

Derive the general spherically-symmetric solution of the wave equation. Use it to
find the velocity potential φ(r, t) for waves radiated into an unbounded fluid by a pulsating
sphere of radius

a (1 + ε eiωt) (ε� 1) .

By considering the far field, or otherwise, find the time-average rate at which energy
is radiated by the sphere.
[
You may assume that ∇2φ =

1

r2
∂

∂r

(
r2
∂φ

∂r

)
.

]
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1/II/37C Waves

An elastic solid occupies the region y < 0. The wave speeds in the solid are cp and
cs. A P-wave with dilatational potential

φ = exp{ik(x sin θ + y cos θ − cpt)}

is incident from y < 0 on a rigid barrier at y = 0. Obtain the reflected waves.

Are there circumstances where the reflected S-wave is evanescent? Give reasons for
your answer.

2/II/37C Waves

The dispersion relation for waves in deep water is

ω2 = g|k| .

At time t = 0 the water is at rest and the elevation of its free surface is ζ = ζ0 exp(−|x|/b)
where b is a positive constant. Use Fourier analysis to find an integral expression for ζ(x, t)
when t > 0.

Use the method of stationary phase to find ζ(V t, t) for fixed V > 0 and t→ ∞.

[∫ ∞

−∞
exp

(
ikx− |x|

b

)
dx =

2b

1 + k2b2
;

∫ ∞

−∞
exp(−ax2) dx =

√
π

a
(Re a > 0) .

]

3/II/37C Waves

An acoustic waveguide consists of a long straight tube z > 0 with square cross-
section 0<x<a, 0<y <a bounded by rigid walls. The sound speed of the gas in the
tube is c0. Find the dispersion relation for the propagation of sound waves along the tube.
Show that for every dispersive mode there is a cut-off frequency, and determine the lowest
cut-off frequency ωmin.

An acoustic disturbance is excited at z = 0 with a prescribed pressure perturbation
p̃(x, y, 0, t) = P̃ (x, y) exp(−iωt) with ω = 1

2ωmin. Find the pressure perturbation
p̃(x, y, z, t) at distances z � a along the tube.
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4/II/38C Waves

Obtain an expression for the compressive energyW (ρ) per unit volume for adiabatic
motion of a perfect gas, for which the pressure p is given in terms of the density ρ by a
relation of the form

p = p0(ρ/ρ0)
γ , (∗)

where p0, ρ0 and γ are positive constants.

For one-dimensional motion with speed u write down expressions for the mass flux
and the momentum flux. Deduce from the energy flux u

(
p+W + 1

2ρu
2
)
together with

the mass flux that if the motion is steady then

γ

γ − 1

p

ρ
+ 1

2u
2 = constant. (†)

A one-dimensional shock wave propagates at constant speed along a tube containing
the gas. Ahead of the shock the gas is at rest with pressure p0 and density ρ0. Behind the
shock the pressure is maintained at the constant value (1 + β)p0 with β > 0. Determine
the density ρ1 behind the shock, assuming that (†) holds throughout the flow.

For small β show that the changes in pressure and density across the shock satisfy
the adiabatic relation (∗) approximately, correect to order β2.
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1/II/37E Waves

An elastic solid with density ρ has Lamé moduli λ and µ. Write down equations
satisfied by the dilational and shear potentials φ and ψ.

For a two-dimensional disturbance give expressions for the displacement field
u = (ux, uy, 0) in terms of φ(x, y; t) and ψ = (0, 0, ψ(x, y; t)).

Suppose the solid occupies the region y < 0 and that the surface y = 0 is free of
traction. Find a combination of solutions for φ and ψ that represent a propagating surface
wave (a Rayleigh wave) near y = 0. Show that the wave is non-dispersive and obtain an
equation for the speed c. [You may assume without proof that this equation has a unique
positive root.]

2/II/37E Waves

Show that, in the standard notation for a one-dimensional flow of a perfect gas at
constant entropy, the quantity u+2(c− c0)/(γ−1) remains constant along characteristics
dx/dt = u+ c.

A perfect gas is initially at rest and occupies a tube in x > 0. A piston is pushed
into the gas so that its position at time t is x(t) = 1

2ft
2, where f > 0 is a constant. Find

the time and position at which a shock first forms in the gas.

3/II/37E Waves

The real function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
=
∂3φ

∂x3
,

where U > 0 is a constant. Find the dispersion relation for waves of wavenumber k and
deduce whether wave crests move faster or slower than a wave packet.

Suppose that φ(x, 0) is given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikxdk.

Use the method of stationary phase to find φ(V t, t) as t→ ∞ for fixed V > U .

[You may use the result that
∫∞
−∞ e−aξ2dξ = (π/a)1/2 if Re(a) > 0.]

What can be said if V < U? [Detailed calculation is not required in this case.]
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4/II/38E Waves

Starting from the equations of conservation of mass and momentum for an inviscid
compressible fluid, show that for small perturbations about a state of rest and uniform
density the velocity is irrotational and the velocity potential satisfies the wave equation.
Identify the sound speed c0.

Define the acoustic energy density and acoustic energy flux, and derive the equation
for conservation of acoustic energy.

Show that in any (not necessarily harmonic) acoustic plane wave of wavenumber
k the kinetic and potential energy densities are equal and that the acoustic energy is
transported with velocity c0k̂.

Calculate the kinetic and potential energy densities for a spherically symmetric
outgoing wave. Are they equal?

Part II 2005

2005


