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Paper 1, Section I

2F Topics In Analysis
(a) State and prove the theorem of Liouville on approximation of algebraic numbers.

(b) If u, v are coprime positive integers and p, q are coprime positive integers with
q > v, show that ∣∣∣∣

p

q
− u

v

∣∣∣∣ >
1

q2
.

(c) Show that, if aj ∈ Q, aj > 0 and
∑∞

j=1 aj converges, then we can find a strictly
increasing sequence of positive integers n(j) such that

∑∞
j=1 an(j) is transcendental.

Paper 2, Section I

2F Topics In Analysis
In this question we consider Γ, the collection of closed paths γ not passing through

0, that is to say, continuous functions γ : [0, 1] → C \ 0 with γ(0) = γ(1).

Define the winding number w(γ, 0) of γ ∈ Γ. If γ ∈ Γ, φ : [0, 1] → C is continuous
with φ(0) = φ(1) and |γ(t)| > |φ(t)| for all t ∈ [0, 1], what can we say about w(γ + φ, 0)?

Explain what it means to say that γ0, γ1 are homotopic by paths in Γ.

State a theorem on the winding number of homotopic paths and use it to prove the
fundamental theorem of algebra and the non-existence of retractions for discs.

Paper 3, Section I

2F Topics In Analysis
State Runge’s theorem on polynomial approximation.

Which of the following statements are true and which false? Give reasons.

(i) Let E = {x+ iy : x, y > 0} and Ω be an open set containing E. Then, if
f : Ω → C is analytic, we can find a sequence of polynomials converging
uniformly on E to f .

(ii) Let E = {x+ iy : x, y > 0} and Ω be an open set containing E. Then, if
f : Ω → C is analytic, we can find a sequence of polynomials converging
pointwise on E to f .

(iii) Suppose Ω is open, K1, K2 are compact subsets of Ω, f : Ω → C is analytic
and there exist polynomials Pj,n with Pj,n → f uniformly on Kj . Then
there exist polynomials Pn with Pn → f uniformly on K1 ∪K2.

(iv) Let I = {x + iy : 1 > x > 0, y = 0}. If f : I → C is continuous, then we
can find polynomials Pn such that Pn → f uniformly on I.

Part II, Paper 1 [TURN OVER]

2023
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Paper 4, Section I

2F Topics In Analysis
We say that a function f : X → X has a fixed point if there exists an x ∈ X with

f(x) = x.

(i) Use the intermediate value theorem to show that, if f : [0, 1] → [0, 1] is
continuous, it has a fixed point. Show also that, if 0, 1 ∈ f([0, 1]), then f
is surjective.

(ii) Suppose that A and B are homeomorphic subsets of R2. Show that, if
every continuous function g : A→ A has a fixed point, then so does every
continuous function f : B → B.

(iii) State Brouwer’s fixed point theorem for the closed unit disc D̄.

(iv) Show that the closed unit disc is not homeomorphic to the annulus

A = {(x, y) ∈ R2 : 1 6 x2 + y2 6 2}.

(v) Suppose that B is a subset of R2 containing at least two points. If every
continuous function g : B → B has a fixed point, does it follow that B is
homeomorphic to the closed unit disc? Give reasons.

Paper 2, Section II

11F Topics In Analysis
(a) State and prove the Baire Category Theorem.

(b) Consider the set C∞([0, 1]) of infinitely differentiable functions on [0, 1]. Show
that

d(f, g) =

∞∑

r=0

2−r min{1, ‖f (r) − g(r)‖∞}

is a well defined metric on C∞([0, 1]) and that it is complete.

(c) Show that, if we use this metric, then there is a set E of first category for which
the following is true. If f /∈ E, q ∈ (0, 1) is rational and M is a positive integer, then there
exists an m >M such that

|f (m)(q)| > m!×mm.

(d) If f /∈ E, show that the Taylor series for f has radius of convergence 0 at every
rational point q ∈ (0, 1). Explain briefly why this means that, for any point x ∈ [0, 1],
there is no Taylor series which converges to f in a neighbourhood of that point.

Part II, Paper 1

2023
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Paper 4, Section II

12F Topics In Analysis
Let C([0, 1]) denote the space of continuous real functions on [0, 1] equipped with

the uniform norm ‖ · ‖∞.

(a) Consider Rn+1 with the standard Euclidean norm ‖ · ‖, and let T be the map
T : Rn+1 → C([0, 1]) given by T (a) =

∑n
r=0 art

r. Let S be the map S : Rn+1 → R given
by S(a) = ‖Ta‖∞. Show that there exists a δ > 0 such that

|S(a)| > δ whenever ‖a‖ = 1.

Conclude that ‖T (a)‖∞ →∞ as ‖a‖ → ∞.

(b) If f ∈ C([0, 1]) and n > 0, show that there exists a (not necessarily unique)
‘best fit’ polynomial P of degree at most n such that

‖P − f‖∞ 6 ‖Q− f‖∞ whenever Q is a polynomial of degree at most n.

(c) State Chebychev’s equiripple criterion and show that it is a sufficient condition
for a polynomial to be best fit.

(d) Let g ∈ C([0, 1]), M = ‖g‖∞ and suppose that

0 = u0 < v0 < u1 < v1 < . . . < vm−1 < um < vm = 1

are such that

M > g(t) > −M for t ∈ [u2j , v2j ], (2j 6 m)

−M 6 g(t) < M for t ∈ [u2j+1, v2j+1], (2j + 1 6 m)

−M < g(t) < M for t ∈ [vj−1, uj ], (j 6 m).

Let wj = (vj−1 + uj)/2 and set Q(t) = (−1)m−1
∏m−1

j=1 (t − wj). Show that, if η > 0 is
sufficiently small, we have

‖ηQ− g‖∞ < M.

Deduce that Chebychev’s criterion is also a necessary condition for a polynomial to be
best fit.

Part II, Paper 1 [TURN OVER]

2023
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Paper 1, Section I
2G Topics in Analysis

Show that if a, A, B, C, D are non-negative integers and AD −BC = 1, then

a+
At+B

Ct+D
=
αt+ β

γt+ δ

for some α, β, γ, δ non-negative integers with αδ − βγ = 1.

If N, a1, a2, . . . are strictly positive integers with aN+k = ak for all k and

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

show that x is a root of a quadratic (or linear) equation with integer coefficients.

Give the quadratic equation explicitly in the case when N = 2, a1 = a, a2 = b.
Explain how you know which root gives the continued fraction.

Part II, Paper 1 [TURN OVER]

2022
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Paper 2, Section I
2G Topics in Analysis

In this question you should work in Rn with the usual Euclidean distance.

Define a set of first Baire category.

For each of the following statements, say whether it is true or false and give an
appropriate proof or counterexample.

(i) The countable union of sets of first category is of first category.

(ii) If A is of first category in R2 and y ∈ R, then

Cy = {x : (x, y) ∈ A}

is of first category in R.

(iii) If C is of first category in R, then

A = {(x, y) : x ∈ C, y ∈ R}

is of first category in R2.

(iv) If A and B are sets of first category in R2, then

A+B = {a + b : a ∈ A, b ∈ B}

is of first category.

[You may use results about complete metric spaces provided you state them pre-
cisely.]

Paper 3, Section I
2G Topics in Analysis

Let Ω be a non-empty bounded open subset of R2 with closure Cl Ω and boundary
∂Ω. We take φ : Cl Ω → R to be a continuous function which is twice differentiable on Ω.

If ∇2φ > 0 on Ω show that φ attains a maximum on ∂Ω.

By giving proofs or counterexamples establish which of the following are true and
which are false.

(i) If ∇2φ = 0 on Ω, then φ attains a maximum on ∂Ω.

(ii) If ∇2φ = 0 on Ω, then φ attains a minimum on ∂Ω.

(iii) If ∇2φ = f on Ω for some continuous function f : Cl Ω → R, then φ attains a
maximum on ∂Ω.

Part II, Paper 1

2022
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Paper 4, Section I
2G Topics in Analysis

Consider the continuous map f : [0, 1] → C given by f(t) = t − 1/2. Show that
there does not exist a continuous function φ : [0, 1]→ R with f(t) = |f(t)

∣∣ exp(iφ(t)
)
.

Show that, if g : [0, 1] → C \ {0} is continuous, there exists a continuous function
θ : [0, 1]→ R with g(t) = |g(t)

∣∣ exp(iθ(t)
)
. [You may assume that this result holds in the

special case when <g(t) > 0 for all t ∈ [0, 1].]

Show that r(g) = θ(1)− θ(0) is uniquely defined.

If u(t) = g(t2) and v(t) = g(t)2, find r(u) and r(v) in terms of r(g).

Give an example with g1, g2 : [0, 1] → C \ {0} continuous such that g1(0) = g2(0)
and g1(1) = g2(1), but r(g1) 6= r(g2).

Paper 2, Section II
11G Topics in Analysis

Suppose f : [0, 1]2 → R is continuous. Show, quoting carefully any theorems that
you use, that

n∑

j=0

n∑

k=0

(
n

j

)(
n

k

)
f(j/n, k/n)tj(1− t)n−jsk(1− s)n−k → f(t, s)

uniformly on [0, 1]2 as n→∞.

Deduce that

∫ 1

0

(∫ 1

0
f(s, t) ds

)
dt =

∫ 1

0

(∫ 1

0
f(s, t) dt

)
ds

whenever f : [0, 1]2 → R is continuous.

By giving proofs or counterexamples establish which of the following statements are
true and which are false. You may not use the Stone–Weierstrass theorem without proof.

(i) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

ntmf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(ii) Suppose a < b. If f : [a, b]2 → R is continuous and
∫ b
a

(∫ b
a s

ntmf(s, t) ds
)
dt =

0 for all integers n,m > 0, then f = 0.

(iii) If f : [−1, 1]2 → R is continuous and
∫ 1
−1

(∫ 1
−1 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

(iv) If f : [0, 1]2 → R is continuous and
∫ 1
0

(∫ 1
0 s

2nt2mf(s, t) ds
)
dt = 0 for all

integers n,m > 0, then f = 0.

Part II, Paper 1 [TURN OVER]

2022



108

Paper 4, Section II
12G Topics in Analysis

(a) State Brouwer’s fixed point theorem for the closed unit disc D. For which of
the following E ⊂ R2 is it the case that every continuous function f : E → E has a fixed
point? Give a proof or a counterexample.

(i) E is the union of two disjoint closed discs.

(ii) E = {(x, 0) : 0 < x < 1}.

(iii) E = {(x, 0) : 0 6 x 6 1}.

(iv) E = {x ∈ R2 : 1 6 |x| 6 2}.

(b) Show that if f : R2 → R2 is a continuous function with the property that
|f(x)| 6 1 whenever |x| = 1, then f has a fixed point.

[Hint: Consider T ◦ f where for x ∈ R2, Tx is the element of D closest to x.]

(c) Let

E = {(p1, p2, q1, q2) : 0 6 pi, qi 6 1 and p1 + p2 = 1, q1 + q2 = 1}

and suppose A, B : R2 × R2 → R are given by

A(p,q) =
2∑

i=1

2∑

j=1

aijpiqj and B(p,q) =
2∑

i=1

2∑

j=1

bijpiqj

with aij and bij constant. Let

u1(p,q) = max{0, A((1, 0),q)−A(p,q)} , u2(p,q) = max{0, A((0, 1),q)−A(p,q)} .

By considering (p′,q′) with

p′ =
p + u(p,q)

1 + u1(p,q) + u2(p,q)

and q′ defined appropriately, show that we can find a (p∗,q∗) ∈ E with

∀(p,q) ∈ E, A
(
p∗,q∗

)
> A

(
p,q∗

)
and B

(
p∗,q∗

)
> B

(
p∗,q

)
.

Carefully explain the result in terms of a two-person game.

Part II, Paper 1

2022
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Paper 1, Section I

2H Topics in Analysis
Write

P = {x ∈ Rn : xj > 0 for all 1 6 j 6 n}
and suppose that K is a non-empty, closed, convex and bounded subset of Rn with
K∩ IntP 6= ∅. By taking logarithms, or otherwise, show that there is a unique x∗ ∈ K∩P
such that

n∏

j=1

xj 6
n∏

j=1

x∗j

for all x ∈ K ∩ P .

Show that
n∑

j=1

xj
x∗j

6 n for all x ∈ K ∩ P .

Identify the point x∗ in the case that K has the property

(x1, x2, . . . , xn−1, xn) ∈ K ⇒ (x2, x3, . . . , xn, x1) ∈ K ,

and justify your answer.

Show that, given any a ∈ IntP , we can find a set K, as above, with x∗ = a.

Paper 2, Section I

2H Topics in Analysis
Let Ω be a non-empty bounded open set in R2 with closure Ω and boundary ∂Ω

and let φ : Ω → R be a continuous function. Give a proof or a counterexample for each of
the following assertions.

(i) If φ is twice differentiable on Ω with ∇2φ(x) > 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(ii) If φ is twice differentiable on Ω with ∇2φ(x) < 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iii) If φ is four times differentiable on Ω with

∂4φ

∂x4
(x) +

∂4φ

∂y4
(x) > 0

for all x ∈ Ω, then there exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

(iv) If φ is twice differentiable on Ω with ∇2φ(x) = 0 for all x ∈ Ω, then there
exists an x0 ∈ ∂Ω with φ(x0) > φ(x) for all x ∈ Ω.

Part II, 2021 List of Questions

2021
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Paper 3, Section I

2H Topics in Analysis
State Runge’s theorem on the approximation of analytic functions by polynomials.

Let Ω = {z ∈ C, Re z > 0, Im z > 0}. Establish whether the following statements
are true or false by giving a proof or a counterexample in each case.

(i) If f : Ω → C is the uniform limit of a sequence of polynomials Pn, then f is
a polynomial.

(ii) If f : Ω → C is analytic, then there exists a sequence of polynomials Pn such

that for each integer r > 0 and each z ∈ Ω we have P
(r)
n (z) → f (r)(z).

Paper 4, Section I

2H Topics in Analysis
(a) State Brouwer’s fixed-point theorem in 2 dimensions.

(b) State an equivalent theorem on retraction and explain (without detailed calcu-
lations) why it is equivalent.

(c) Suppose that A is a 3× 3 real matrix with strictly positive entries. By defining
an appropriate function f : 4→ 4, where

4 = {x ∈ R3 : x1 + x2 + x3 = 1, x1, x2, x3 > 0},

show that A has a strictly positive eigenvalue.

Part II, 2021 List of Questions [TURN OVER]
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Paper 2, Section II

11H Topics in Analysis
Let r : [−1, 1]→ R be a continuous function with r(x) > 0 for all but finitely many

values of x.

(a) Show that

〈u, v〉 =

∫ 1

−1
u(x)v(x)r(x) dx (∗)

defines an inner product on C([−1, 1]).

(b) Show that for each n there exists a polynomial Pn of degree exactly n which is
orthogonal, with respect to the inner product (∗), to all polynomials of lower degree.

(c) Show that Pn has n simple zeros ω1(n), ω2(n), . . . , ωn(n) on [−1, 1].

(d) Show that for each n there exist unique real numbers Aj(n), 1 6 j 6 n, such
that whenever Q is a polynomial of degree at most 2n− 1,

∫ 1

−1
Q(x)r(x) dx =

n∑

j=1

Aj(n)Q
(
ωj(n)

)
.

(e) Show that
n∑

j=1

Aj(n)f
(
ωj(n)

)
→
∫ 1

−1
f(x)r(x) dx

as n→∞ for all f ∈ C([−1, 1]).

(f) If R > 1, K > 0, am is real with |am| 6 KR−m and f(x) =
∞∑

m=1

amx
m, show

that ∣∣∣∣∣∣

∫ 1

−1
f(x)r(x) dx−

n∑

j=1

Aj(n)f
(
ωj(n)

)
∣∣∣∣∣∣
6 2KR−2n+1

R− 1

∫ 1

−1
r(x) dx.

(g) If r(x) = (1 − x2)1/2 and Pn(0) = 1, identify Pn (giving brief reasons) and the
ωj(n). [Hint: A change of variable may be useful.]

Part II, 2021 List of Questions
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Paper 4, Section II

12H Topics in Analysis
Let x be irrational with nth continued fraction convergent

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

an−1 +
1

an
.

Show that (
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)

and deduce that ∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

qnqn+1
.

[You may quote the result that x lies between pn/qn and pn+1/qn+1. ]

We say that y is a quadratic irrational if it is an irrational root of a quadratic
equation with integer coefficients. Show that if y is a quadratic irrational, we can find an
M > 0 such that ∣∣∣∣

p

q
− y

∣∣∣∣ >
M

q2

for all integers p and q with q > 0.

Using the hypotheses and notation of the first paragraph, show that if the sequence
(an) is unbounded, x cannot be a quadratic irrational.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

2H Topics in Analysis
Let γ : [0, 1] → C be a continuous map never taking the value 0 and satisfying

γ(0) = γ(1). Define the degree (or winding number) w(γ; 0) of γ about 0. Prove the
following.

(i) If δ : [0, 1] → C\{0} is a continuous map satisfying δ(0) = δ(1), then the winding
number of the product γδ is given by w(γδ; 0) = w(γ; 0) + w(δ; 0).

(ii) If σ : [0, 1] → C is continuous, σ(0) = σ(1) and |σ(t)| < |γ(t)| for each 0 6 t 6 1,
then w(γ + σ; 0) = w(γ; 0).

(iii) Let D = {z ∈ C : |z| 6 1} and let f : D → C be a continuous function
with f(z) 6= 0 whenever |z| = 1. Define α : [0, 1] → C by α(t) = f(e2πit). Then if
w(α; 0) 6= 0, there must exist some z ∈ D, such that f(z) = 0. [It may help to define
F (s, t) := f(se2πit). Homotopy invariance of the winding number may be assumed.]

Paper 2, Section I

2H Topics in Analysis
Show that every Legendre polynomial pn has n distinct roots in [−1, 1], where n is

the degree of pn.

Let x1, . . . , xn be distinct numbers in [−1, 1]. Show that there are unique real
numbers A1, . . . , An such that the formula

∫ 1

−1
P (t)dt =

n∑

i=1

AiP (xi)

holds for every polynomial P of degree less than n.

Now suppose that the above formula in fact holds for every polynomial P of degree
less than 2n. Show that then x1, . . . , xn are the roots of pn. Show also that

∑n
i=1Ai = 2

and that all Ai are positive.

Paper 3, Section I

2H Topics in Analysis
State Runge’s theorem about the uniform approximation of holomorphic functions

by polynomials.

Explicitly construct, with a brief justification, a sequence of polynomials which
converges uniformly to 1/z on the semicircle {z : |z| = 1, Re(z) 6 0}.

Does there exist a sequence of polynomials converging uniformly to 1/z on
{z : |z| = 1, z 6= 1}? Give a justification.

Part II, 2020 List of Questions

2020
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Paper 4, Section I

2H Topics in Analysis
Define what is meant by a nowhere dense set in a metric space. State a version of

the Baire Category theorem.

Let f : [1,∞) → R be a continuous function such that f(nx) → 0 as n → ∞ for
every fixed x > 1. Show that f(t) → 0 as t→ ∞.

Paper 2, Section II

11H Topics in Analysis
Let T be a (closed) triangle in R2 with edges I, J,K. Let A,B,C, be closed subsets

of T , such that I ⊂ A, J ⊂ B, K ⊂ C and T = A ∪ B ∪ C. Prove that A ∩ B ∩ C is
non-empty.

Deduce that there is no continuous map f : D → ∂D such that f(p) = p for
all p ∈ ∂D, where D = {(x, y) ∈ R2 : x2 + y2 6 1} is the closed unit disc and
∂D = {(x, y) ∈ R2 : x2 + y2 = 1} is its boundary.

Let now α, β, γ ⊂ ∂D be three closed arcs, each arc making an angle of 2π/3 (in
radians) in ∂D and α∪β∪γ = ∂D. Let P , Q and R be open subsets of D, such that α ⊂ P ,
β ⊂ Q and γ ⊂ R. Suppose that P ∪Q∪R = D. Show that P ∩Q∩R is non-empty. [You
may assume that for each closed bounded subset K ⊂ R2, d(x,K) = min{‖x−y‖ : y ∈ K}
defines a continuous function on R2.]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

12H Topics in Analysis
(a) State Liouville’s theorem on the approximation of algebraic numbers by ration-

als.

(b) Let (an)∞n=0 be a sequence of positive integers and let

α = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

be the value of the associated continued fraction.

(i) Prove that the nth convergent pn/qn satisfies

∣∣∣∣α− pn
qn

∣∣∣∣ 6
∣∣∣∣α− p

q

∣∣∣∣

for all the rational numbers
p

q
such that 0 < q 6 qn.

(ii) Show that if the sequence (an) is bounded, then one can choose c > 0 (depending

only on α), so that for every rational number
a

b
,

∣∣∣∣α− a

b

∣∣∣∣ >
c

b2
.

(iii) Show that if the sequence (an) is unbounded, then for each c > 0 there exist

infinitely many rational numbers
a

b
such that

∣∣∣∣α− a

b

∣∣∣∣ <
c

b2
.

[You may assume without proof the relation

(
pn+1 pn
qn+1 qn

)
=

(
pn pn−1
qn qn+1

)(
an+1 1

1 0

)
, n = 1, 2, . . . .]

Part II, 2020 List of Questions

2020



112

Paper 4, Section I

2H Topics in Analysis
Show that π is irrational. [Hint: consider the functions fn : [0, π] → R given by

fn(x) = xn(π − x)n sinx.]

Paper 3, Section I

2H Topics in Analysis
State Nash’s theorem for a non zero-sum game in the case of two players with two

choices.

The role playing game Tixerb involves two players. Before the game begins, each
player i chooses a pi with 0 6 pi 6 1 which they announce. They may change their choice
as many times as they wish, but, once the game begins, no further changes are allowed.
When the game starts, player i becomes a Dark Lord with probability pi and a harmless
peasant with probability 1− pi. If one player is a Dark Lord and the other a peasant the
Lord gets 2 points and the peasant −2. If both are peasants they get 1 point each, if both
Lords they get −U each. Show that there exists a U0, to be found, such that, if U > U0

there will be three choices of (p1, p2) for which neither player can increase the expected
value of their outcome by changing their choice unilaterally, but, if U0 > U , there will
only be one. Find the appropriate (p1, p2) in each case.

Part II, 2019 List of Questions
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Paper 2, Section I

2H Topics in Analysis
Let K be the collection of non-empty closed bounded subsets of Rn.

(a) Show that, if A, B ∈ K and we write

A+B = {a+ b : a ∈ A, b ∈ B},

then A+B ∈ K.

(b) Show that, if Kn ∈ K, and

K1 ⊇ K2 ⊇ K3 ⊇ . . .

then K :=
⋂∞
n=1Kn ∈ K.

(c) Assuming the result that

ρ(A,B) = sup
a∈A

inf
b∈B

|a− b|+ sup
b∈B

inf
a∈A

|a− b|

defines a metric on K (the Hausdorff metric), show that if Kn and K are as in part (b),
then ρ(Kn,K) → 0 as n→ ∞.

Paper 1, Section I

2H Topics in Analysis
Let Tn be the nth Chebychev polynomial. Suppose that γi > 0 for all i and that∑∞

i=1 γi converges. Explain why f =
∑∞

i=1 γiT3i is a well defined continuous function on
[−1, 1].

Show that, if we take Pn =
∑n

i=1 γiT3i , we can find points xk with

−1 6 x0 < x1 < . . . < x3n+1 6 1

such that f(xk)− Pn(xk) = (−1)k+1
∑∞

i=n+1 γi for each k = 0, 1, . . . , 3n+1.

Suppose that δn is a decreasing sequence of positive numbers and that δn → 0 as
n → ∞. Stating clearly any theorem that you use, show that there exists a continuous
function f with

sup
t∈[−1,1]

|f(t)− P (t)| > δn

for all polynomials P of degree at most n and all n > 1.
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Paper 2, Section II

11H Topics in Analysis
Throughout this question I denotes the closed interval [−1, 1].

(a) For n ∈ N, consider the 2n+1 points r/n ∈ I with r ∈ Z and −n 6 r 6 n. Show
that, if we colour them red or green in such a way that −1 and 1 are coloured differently,
there must be two neighbouring points of different colours.

(b) Deduce from part (a) that, if I = A ∪ B with A and B closed, −1 ∈ A and
1 ∈ B, then A ∩B 6= ∅.

(c) Deduce from part (b) that there does not exist a continuous function f : I → R
with f(t) ∈ {−1, 1} for all t ∈ I and f(−1) = −1, f(1) = 1.

(d) Deduce from part (c) that if f : I → I is continuous then there exists an x ∈ I
with f(x) = x.

(e) Deduce the conclusion of part (c) from the conclusion of part (d).

(f) Deduce the conclusion of part (b) from the conclusion of part (c).

(g) Suppose that we replace I wherever it occurs by the unit circle

C = {z ∈ C | |z| = 1}.

Which of the conclusions of parts (b), (c) and (d) remain true? Give reasons.

Paper 4, Section II

12H Topics in Analysis
(a) Suppose that K ⊂ C is a non-empty subset of the square {x+iy : x, y ∈ (−1, 1)}

and f is analytic in the larger square {x+ iy : x, y ∈ (−1− δ, 1+ δ)} for some δ > 0. Show
that f can be uniformly approximated on K by polynomials.

(b) Let K be a closed non-empty proper subset of C. Let Λ be the set of λ ∈ C \K
such that gλ(z) = (z − λ)−1 can be approximated uniformly on K by polynomials and let
Γ = C \ (K ∪ Λ). Show that Λ and Γ are open. Is it always true that Λ is non-empty? Is
it always true that, if K is bounded, then Γ is empty? Give reasons.

[No form of Runge’s theorem may be used without proof.]
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Paper 1, Section I

2F Topics in Analysis
State and prove Sperner’s lemma concerning colourings of points in a triangular

grid.

Suppose that △ is a non-degenerate closed triangle with closed edges α1, α2 and
α3. Show that we cannot find closed sets Aj with Aj ⊇ αj, for j = 1, 2, 3, such that

3⋃

j=1

Aj = △, but
3⋂

j=1

Aj = ∅.

Paper 2, Section I

2F Topics in Analysis
For x ∈ Rn we write x = (x1, x2, . . . , xn). Define

P := {x ∈ Rn : xj > 0 for 1 6 j 6 n}.

(a) Suppose that L is a convex subset of P , that (1, 1, . . . , 1) ∈ L and that∏n
j=1 xj 6 1 for all x ∈ L. Show that

∑n
j=1 xj 6 n for all x ∈ L.

(b) Suppose that K is a non-empty closed bounded convex subset of P . Show that
there is a u ∈ K such that

∏n
j=1 xj 6

∏n
j=1 uj for all x ∈ K. If uj 6= 0 for each j with

1 6 j 6 n, show that
n∑

j=1

xj
uj

6 n,

for all x ∈ K, and that u is unique.

Paper 3, Section I

2F Topics in Analysis
State a version of the Baire category theorem and use it to prove the following

result:

If f : C → C is analytic, but not a polynomial, then there exists a point z0 ∈ C
such that each coefficient of the Taylor series of f at z0 is non-zero.
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Paper 4, Section I

2F Topics in Analysis
Let 0 6 α < 1 and A > 0. If we have an infinite sequence of integers mn with

1 6 mn 6 Anα, show that
∞∑

n=1

mn

n!

is irrational.

Does the result remain true if the mn are not restricted to integer values? Justify
your answer.

Paper 2, Section II

11F Topics in Analysis
(a) Give Bernstein’s probabilistic proof of Weierstrass’s theorem.

(b) Are the following statements true or false? Justify your answer in each case.

(i) If f : R → R is continuous, then there exists a sequence of polynomials Pn

converging pointwise to f on R.

(ii) If f : R → R is continuous, then there exists a sequence of polynomials Pn

converging uniformly to f on R.

(iii) If f : (0, 1] → R is continuous and bounded, then there exists a sequence of
polynomials Pn converging uniformly to f on (0, 1].

(iv) If f : [0, 1] → R is continuous and x1, x2, . . . , xm are distinct points in
[0, 1], then there exists a sequence of polynomials Pn with Pn(xj) = f(xj),
for j = 1, . . . ,m, converging uniformly to f on [0, 1].

(v) If f : [0, 1] → R is m times continuously differentiable, then there exists a

sequence of polynomials Pn such that P
(r)
n → f (r) uniformly on [0, 1] for

each r = 0, . . . ,m.
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Paper 4, Section II

12F Topics in Analysis
We work in C. Consider

K = {z : |z − 2| 6 1} ∪ {z : |z + 2| 6 1}

and
Ω = {z : |z − 2| < 3/2} ∪ {z : |z + 2| < 3/2}.

Show that if f : Ω → C is analytic, then there is a sequence of polynomials pn such that
pn(z) → f(z) uniformly on K.

Show that there is a sequence of polynomials Pn such that Pn(z) → 0 uniformly for
|z − 2| 6 1 and Pn(z) → 1 uniformly for |z + 2| 6 1.

Give two disjoint non-empty bounded closed sets K1 and K2 such that there does
not exist a sequence of polynomials Qn with Qn(z) → 0 uniformly on K1 and Qn(z) → 1
uniformly on K2. Justify your answer.
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Paper 2, Section I

2F Topics In Analysis
Are the following statements true or false? Give reasons, quoting any theorems that

you need.

(i) There is a sequence of polynomials Pn with Pn(t) → sin t uniformly on R as n→ ∞.

(ii) If f : R → R is continuous, then there is a sequence of polynomials Qn with
Qn(t) → f(t) for each t ∈ R as n→ ∞.

(iii) If g : [1,∞) → R is continuous with g(t) → 0 as t→ ∞, then there is a sequence of
polynomials Rn with Rn(1/t) → g(t) uniformly on [1,∞) as n→ ∞.

Paper 4, Section I

2F Topics In Analysis
If x ∈ (0, 1], set

x =
1

N(x) + T (x)
,

where N(x) is an integer and 1 > T (x) > 0. Let N(0) = T (0) = 0.

If x is also irrational, write down the continued fraction expansion in terms of
NT j(x) (where NT 0(x) = N(x) ).

Let X be a random variable taking values in [0, 1] with probability density function

f(x) =
1

(log 2)(1 + x)
.

Show that T (X) has the same distribution as X.

Paper 1, Section I

2F Topics In Analysis
State Liouville’s theorem on the approximation of algebraic numbers by rationals.

Suppose that we have a sequence ζn with ζn ∈ {0, 1}. State and prove a necessary
and sufficient condition on the ζn for

∞∑

n=0

ζn 10
−n!

to be transcendental.
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Paper 3, Section I

2F Topics In Analysis

(a) Suppose that g : R2 → R2 is a continuous function such that there exists a K > 0
with ‖g(x) − x‖ 6 K for all x ∈ R2. By constructing a suitable map f from the
closed unit disc into itself, show that there exists a t ∈ R2 with g(t) = 0.

(b) Show that g is surjective.

(c) Show that the result of part (b) may be false if we drop the condition that g is
continuous.

Paper 2, Section II

10F Topics In Analysis
State and prove Baire’s category theorem for complete metric spaces. Give an

example to show that it may fail if the metric space is not complete.

Let fn : [0, 1] → R be a sequence of continuous functions such that fn(x) converges
for all x ∈ [0, 1]. Show that if ǫ > 0 is fixed we can find an N > 0 and a non-empty open
interval J ⊆ [0, 1] such that |fn(x)− fm(x)| 6 ǫ for all x ∈ J and all n, m > N .

Let g : [0, 1] → R be defined by

g(x) =

{
1 if x is rational,

0 if x is irrational.

Show that we cannot find continuous functions gn : [0, 1] → R with gn(x) → g(x) for each
x ∈ [0, 1] as n→ ∞.

Define a sequence of continuous functions hn : [0, 1] → R and a discontinuous
function h : [0, 1] → R with hn(x) → h(x) for each x ∈ [0, 1] as n→ ∞.
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Paper 4, Section II

11F Topics In Analysis

(a) Suppose that γ : [0, 1] → C is continuous with γ(0) = γ(1) and γ(t) 6= 0 for
all t ∈ [0, 1]. Show that if γ(0) = |γ(0)| exp(iθ0) (with θ0 real) we can define a
continuous function θ : [0, 1] → R such that θ(0) = θ0 and γ(t) = |γ(t)| exp

(
iθ(t)

)
.

Hence define the winding number w(γ) = w(0, γ) of γ around 0.

(b) Show that w(γ) can take any integer value.

(c) If γ1 and γ2 satisfy the requirements of the definition, and (γ1 × γ2)(t) = γ1(t)γ2(t),
show that

w(γ1 × γ2) = w(γ1) + w(γ2).

(d) If γ1 and γ2 satisfy the requirements of the definition and |γ1(t) − γ2(t)| < |γ1(t)|
for all t ∈ [0, 1], show that

w(γ1) = w(γ2).

(e) State and prove a theorem that says that winding number is unchanged under an
appropriate homotopy.
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Paper 1, Section I

2H Topics in Analysis
By considering the function Rn+1 → R defined by

R(a0, . . . , an) = sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣,

or otherwise, show that there exist Kn > 0 and δn > 0 such that

Kn

n∑

j=0

|aj | > sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣ > δn

n∑

j=0

|aj |

for all aj ∈ R, 0 6 j 6 n.

Show, quoting carefully any theorems you use, that we must have δn → 0 as n→ ∞.

Paper 2, Section I

2H Topics in Analysis
Define what it means for a subset E of Rn to be convex. Which of the following

statements about a convex set E in Rn (with the usual norm) are always true, and which
are sometimes false? Give proofs or counterexamples as appropriate.

(i) The closure of E is convex.

(ii) The interior of E is convex.

(iii) If α : Rn → Rn is linear, then α(E) is convex.

(iv) If f : Rn → Rn is continuous, then f(E) is convex.

Paper 3, Section I

2H Topics in Analysis
In the game of ‘Chicken’, A and B drive fast cars directly at each other. If they

both swerve, they both lose 10 status points; if neither swerves, they both lose 100 status
points. If one swerves and the other does not, the swerver loses 20 status points and the
non-swerver gains 40 status points. Find all the pairs of probabilistic strategies such that,
if one driver maintains their strategy, it is not in the interest of the other to change theirs.
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Paper 4, Section I

2H Topics in Analysis
Let a0, a1, a2, . . . be integers such that there exists an M with M > |an| for all n.

Show that, if infinitely many of the an are non-zero, then
∞∑

n=0

an
n!

is an irrational number.

Paper 2, Section II

10H Topics in Analysis
Prove Bernstein’s theorem, which states that if f : [0, 1] → R is continuous and

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r

then fm(t) → f(t) uniformly on [0, 1]. [Theorems from probability theory may be used
without proof provided they are clearly stated.]

Deduce Weierstrass’s theorem on polynomial approximation for any closed interval.

Proving any results on Chebyshev polynomials that you need, show that, if
g : [0, π] → R is continuous and ǫ > 0, then we can find an N > 0 and aj ∈ R, for
0 6 j 6 N , such that

∣∣∣ g(t)−
N∑

j=0

aj cos jt
∣∣∣ 6 ǫ

for all t ∈ [0, π]. Deduce that
∫ π
0 g(t) cos nt dt→ 0 as n→ ∞.
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Paper 4, Section II

11H Topics in Analysis
Explain briefly how a positive irrational number x gives rise to a continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

with the aj non-negative integers and aj > 1 for j > 1.

Show that, if we write

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1
1 0

)(
an 1
1 0

)
,

then
pn
qn

= a0 +
1

a1 +
1

a2 +
1

. . .

an−1 +
1

an

for n > 0.

Use the observation [which need not be proved] that x lies between pn/qn and
pn+1/qn+1 to show that

|pn/qn − x| 6 1/qnqn+1 .

Show that qn > Fn where Fn is the nth Fibonacci number (thus F0 = F1 = 1,
Fn+2 = Fn+1 + Fn), and conclude that

∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

FnFn+1
.
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Paper 4, Section I

2I Topics in Analysis

Let K be the set of all non-empty compact subsets ofm-dimensional Euclidean space
Rm. Define the Hausdorff metric on K, and prove that it is a metric.

Let K1 ⊇ K2 ⊇ . . . be a sequence in K. Show that K =

∞⋂

n=1

Kn is also in K and

that Kn → K as n → ∞ in the Hausdorff metric.

Paper 3, Section I

2I Topics in Analysis

Let K be a compact subset of C with path-connected complement. If w /∈ K and
ǫ > 0, show that there is a polynomial P such that

∣∣∣∣P (z)− 1

w − z

∣∣∣∣ 6 ǫ

for all z ∈ K.
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Paper 2, Section I

2I Topics in Analysis

Let x1, x2, . . . , xn be the roots of the Legendre polynomial of degree n. Let A1,
A2, . . . , An be chosen so that

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj)

for all polynomials p of degree n − 1 or less. Assuming any results about Legendre
polynomials that you need, prove the following results:

(i)

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj) for all polynomials p of degree 2n− 1 or less;

(ii) Aj > 0 for all 1 6 j 6 n;

(iii)
n∑

j=1

Aj = 2.

Now consider Qn(f) =
∑n

j=1Ajf(xj). Show that

Qn(f) →
∫ 1

−1
f(t) dt

as n → ∞ for all continuous functions f .

Paper 1, Section I

2I Topics in Analysis

Let Ω be a non-empty bounded open subset of R2 with closure Ω̄ and boundary ∂Ω.
Let φ : Ω̄ → R be continuous with φ twice differentiable on Ω.

(i) Why does φ have a maximum on Ω̄?

(ii) If ǫ > 0 and ∇2φ > ǫ on Ω, show that φ has a maximum on ∂Ω.

(iii) If ∇2φ > 0 on Ω, show that φ has a maximum on ∂Ω.

(iv) If ∇2φ = 0 on Ω and φ = 0 on ∂Ω, show that φ = 0 on Ω̄.
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Paper 2, Section II

9I Topics in Analysis

State and prove Sperner’s lemma concerning the colouring of triangles.

Deduce a theorem, to be stated clearly, on retractions to the boundary of a disc.

State Brouwer’s fixed point theorem for a disc and sketch a proof of it.

Let g : R2 → R2 be a continuous function such that for some K > 0 we have
‖g(x) − x‖ 6 K for all x ∈ R2. Show that g is surjective.

Paper 3, Section II

10I Topics in Analysis

Let α > 0. By considering the set Em consisting of those f ∈ C([0, 1]) for which
there exists an x ∈ [0, 1] with |f(x+ h)− f(x)| 6 m|h|α for all x+ h ∈ [0, 1], or otherwise,
give a Baire category proof of the existence of continuous functions f on [0, 1] such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

at each x ∈ [0, 1].

Are the following statements true? Give reasons.

(i) There exists an f ∈ C([0, 1]) such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

for each x ∈ [0, 1] and each α > 0.

(ii) There exists an f ∈ C([0, 1]) such that

lim sup
h→0

|h|−α|f(x+ h)− f(x)| = ∞

for each x ∈ [0, 1] and each α > 0.
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Paper 4, Section I

2G Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals.

Prove that the number

∞∑

n=0

1

2nn is transcendental.

Paper 3, Section I

2G Topics in Analysis
State Runge’s theorem about uniform approximation of holomorphic functions by

polynomials.

Let R+ ⊂ C be the subset of non-negative real numbers and let

∆ = {z ∈ C : |z| < 1}.

Prove that there is a sequence of complex polynomials which converges to the function
1/z uniformly on each compact subset of ∆ \R+.

Paper 2, Section I

2G Topics in Analysis
State Chebyshev’s equal ripple criterion.

Let

h(t) =

n∏

ℓ=1

(
t− cos

(2ℓ− 1)π

2n

)
.

Show that if q(t) =
∑n

j=0 ajt
j where a0, . . . , an are real constants with |an| > 1, then

sup
t∈[−1,1]

|h(t)| 6 sup
t∈[−1,1]

|q(t)|.

Paper 1, Section I

2G Topics in Analysis
(i) State Brouwer’s fixed point theorem in the plane and an equivalent theorem

concerning mapping a triangle T to its boundary ∂T .

(ii) Let A be a 3× 3 matrix with positive real entries. Use the theorems you stated
in (i) to prove that A has an eigenvector with positive entries.
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Paper 2, Section II

11G Topics in Analysis
Let γ : [0, 1] → C be a continuous map never taking the value 0 and satisfying

γ(0) = γ(1). Define the degree (or winding number) w(γ; 0) of γ about 0. Prove the
following:

(i) w(1/γ; 0) = w(γ−; 0), where γ−(t) = γ(1− t).

(ii) If σ : [0, 1] → C is continuous, σ(0) = σ(1) and |σ(t)| < |γ(t)| for each 0 6 t 6 1,
then w(γ + σ; 0) = w(γ; 0).

(iii) If γm : [0, 1] → C, m = 1, 2, . . ., are continuous maps with γm(0) = γm(1), which
converge to γ uniformly on [0, 1] as m → ∞, then w(γm; 0) = w(γ; 0) for sufficiently
large m.

Let α : [0, 1] → C \ {0} be a continuous map such that α(0) = α(1) and |α(t) − e2πit| 6 1
for each t ∈ [0, 1]. Deduce from the results of (ii) and (iii) that w(α; 0) = 1.

[You may not use homotopy invariance of the winding number without proof.]

Paper 3, Section II

12G Topics in Analysis
Define what is meant by a nowhere dense set in a metric space. State a version of

the Baire Category Theorem. Show that any complete non-empty metric space without
isolated points is uncountable.

Let A be the set of real numbers whose decimal expansion does not use the digit 6.
(A terminating decimal representation is used when it exists.) Show that there exists a
real number which cannot be written as a+ q with a ∈ A and q ∈ Q.
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Paper 4, Section I

2F Topics in Analysis
State the Baire Category Theorem. A set X ⊆ R is said to be a Gδ-set if it is the

intersection of countably many open sets. Show that the set Q of rationals is not a Gδ-set.

[You may assume that the rationals are countable and that R is complete.]

Paper 3, Section I

2F Topics in Analysis
State Brouwer’s fixed point theorem. Let f : R2 → R2 be a continuous function

with the property that |f(x)− x| 6 1 for all x. Show that f is surjective.

Paper 2, Section I

2F Topics in Analysis
(i) Show that for every ǫ > 0 there is a polynomial p : R → R such that | 1x−p(x)| 6 ǫ

for all x ∈ R satisfying 1
2 6 |x| 6 2.

[You may assume standard results provided they are stated clearly.]

(ii) Show that there is no polynomial p : C → C such that |1z − p(z)| < 1 for all
z ∈ C satisfying 1

2 6 |z| 6 2.

Paper 1, Section I

2F Topics in Analysis
Show that sin(1) is irrational. [The angle is measured in radians.]
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Paper 2, Section II

11F Topics in Analysis
(i) Let n > 4 be an integer. Show that

1 +
1

n+ 1
1+ 1

n+...

> 1 +
1

2n
.

(ii) Let us say that an irrational number α is badly approximable if there is some
constant c > 0 such that ∣∣∣∣α− p

q

∣∣∣∣ >
c

q2

for all q > 1 and for all integers p. Show that if the integers an in the continued fraction
expansion α = [a0, a1, a2, . . . ] are bounded then α is badly approximable.

Give, with proof, an example of an irrational number which is not badly approx-
imable.

[Standard facts about continued fractions may be used without proof provided they
are stated clearly.]

Paper 3, Section II

12F Topics in Analysis
Suppose that x0, x1, . . . , xn ∈ [−1, 1] are distinct points. Let f be an infinitely

differentiable real-valued function on an open interval containing [−1, 1]. Let p be the
unique polynomial of degree at most n such that f(xr) = p(xr) for r = 0, 1, . . . , n. Show
that for each x ∈ [−1, 1] there is some ξ ∈ (−1, 1) such that

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn) .

Now take xr = cos 2r+1
2n+2π. Show that

|f(x)− p(x)| 6 1

2n(n+ 1)!
sup

ξ∈[−1,1]
|f (n+1)(ξ)|

for all x ∈ [−1, 1]. Deduce that there is a polynomial p of degree at most n such that

∣∣∣∣
1

3 + x
− p(x)

∣∣∣∣ 6
1

4n+1

for all x ∈ [−1, 1].
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Paper 4, Section I

2F Topics in Analysis
Let A1, A2, . . . , An be real numbers and suppose that x1, x2, . . . , xn ∈ [−1, 1] are distinct.
Suppose that the formula ∫ 1

−1
p(x) dx =

n∑

j=1

Ajp(xj)

is valid for every polynomial p of degree 6 2n− 1. Prove the following:

(i) Aj > 0 for each j = 1, 2, . . . , n.

(ii)
∑n

j=1Aj = 2.

(iii) x1, x2, . . . , xn are the roots of the Legendre polynomial of degree n.

[You may assume standard orthogonality properties of the Legendre polynomials.]

Paper 3, Section I

2F Topics in Analysis
State and prove Liouville’s theorem concerning approximation of algebraic numbers by
rationals.

Paper 2, Section I

2F Topics in Analysis
(a) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1). Define the
winding number w(γ; 0) of γ about the origin. State precisely a theorem about homotopy
invariance of the winding number.

(b) Let f : C → C be a continuous map such that z−10f(z) is bounded as |z| → ∞. Prove
that there exists a complex number z0 such that

f(z0) = z110 .

Part II, 2012 List of Questions
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Paper 1, Section I

2F Topics in Analysis
State a version of the Baire category theorem for a complete metric space. Let T be the set
of real numbers x with the property that, for each positive integer n, there exist integers
p and q with q > 2 such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ <
1

qn
.

Is T an open subset of R? Is T a dense subset of R? Justify your answers.

Paper 2, Section II

11F Topics in Analysis

(a) State Runge’s theorem about uniform approximability of analytic functions by com-
plex polynomials.

(b) Let K be a compact subset of the complex plane.

(i) Let Σ be an unbounded, connected subset of C \K. Prove that for each ζ ∈ Σ,
the function f(z) = (z − ζ)−1 is uniformly approximable on K by a sequence of
complex polynomials.

[You may not use Runge’s theorem without proof.]

(ii) Let Γ be a bounded, connected component of C\K. Prove that there is no point
ζ ∈ Γ such that the function f(z) = (z − ζ)−1 is uniformly approximable on K
by a sequence of complex polynomials.

Paper 3, Section II

12F Topics in Analysis
State Brouwer’s fixed point theorem on the plane, and also an equivalent version of

it concerning continuous retractions. Prove the equivalence of the two statements.

Let f : R2 → R2 be a continuous map with the property that |f(x)| 6 1 whenever
|x| = 1. Show that f has a fixed point. [Hint. Compose f with the map that sends x to
the nearest point to x inside the closed unit disc.]

Part II, 2012 List of Questions [TURN OVER
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Paper 1, Section I

2F Topics in Analysis

(i) State the Baire Category Theorem for metric spaces in its closed sets version.

(ii) Let f : C → C be a complex analytic function which is not a polynomial. Prove
that there exists a point z0 ∈ C such that each coefficient of the Taylor series of f
at z0 is non-zero.

Paper 2, Section I

2F Topics in Analysis

(i) Let x1, x2, . . . , xn ∈ [−1, 1] be any set of n distinct numbers. Show that there exist
numbers A1, A2, . . . , An such that the formula

∫ 1

−1
p(x) dx =

n∑

j=1

Ajp(xj)

is valid for every polynomial p of degree 6 n− 1.

(ii) For n = 0, 1, 2, . . . , let pn be the Legendre polynomial, over [−1, 1], of degree n.
Suppose that x1, x2, . . . , xn ∈ [−1, 1] are the roots of pn, and A1, A2, . . . , An are the
numbers corresponding to x1, x2, . . . , xn as in (i).

[You may assume without proof that for n > 1, pn has n distinct roots in [−1, 1].]

Prove that the integration formula in (i) is now valid for any polynomial p of degree
6 2n− 1.

(iii) Is it possible to choose n distinct points x1, x2, . . . , xn ∈ [−1, 1] and corresponding
numbers A1, A2, . . . , An such that the integration formula in (i) is valid for any
polynomial p of degree 6 2n? Justify your answer.

Part II, 2011 List of Questions [TURN OVER
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Paper 3, Section I

2F Topics in Analysis
Let Γ = {z ∈ C : z 6= 1, |Re(z)|+ |Im(z)| = 1}.

(i) Prove that, for any ζ ∈ C with |Re(ζ)| + |Im(ζ)| > 1 and any ǫ > 0, there exists a
complex polynomial p such that

sup
z∈Γ

|p(z)− (z − ζ)−1| < ǫ .

(ii) Does there exist a sequence of polynomials pn such that pn(z) → (z−1)−1 for every
z ∈ Γ? Justify your answer.

Paper 4, Section I

2F Topics in Analysis

(a) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1). Define the
winding number w(γ; 0) of γ about the origin. State precisely a theorem about
homotopy invariance of the winding number.

(b) Let B = {z ∈ C : |z| 6 1} and let f : B → C be a continuous map satisfying

|f(z)− z| 6 1

for each z ∈ ∂B.

(i) For 0 6 t 6 1, let γ(t) = f(e2πit). If γ(t) 6= 0 for each t ∈ [0, 1], prove that
w(γ; 0) = 1.

[Hint: Consider a suitable homotopy between γ and the map γ1(t) = e2πit,
0 6 t 6 1.]

(ii) Deduce that f(z) = 0 for some z ∈ B.

Part II, 2011 List of Questions
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Paper 2, Section II

11F Topics in Analysis
Let C[0, 1] be the space of real continuous functions on the interval [0, 1]. A mapping
L : C[0, 1] → C[0, 1] is said to be positive if L(f) > 0 for each f ∈ C[0, 1] with f > 0, and
linear if L(af + bg) = aL(f)+ bL(g) for all functions f, g ∈ C[0, 1] and constants a, b ∈ R.

(i) Let Ln : C[0, 1] → C[0, 1] be a sequence of positive, linear mappings such that
Ln(f) → f uniformly on [0, 1] for the three functions f(x) = 1, x, x2. Prove that
Ln(f) → f uniformly on [0, 1] for every f ∈ C[0, 1].

(ii) Define Bn : C[0, 1] → C[0, 1] by

Bn(f)(x) =

n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
(
n
k

)
= n!

k!(n−k)! . Using the result of part (i), or otherwise, prove that Bn(f) → f

uniformly on [0, 1].

(iii) Let f ∈ C[0, 1] and suppose that

∫ 1

0
f(x)x4n dx = 0

for each n = 0, 1, . . . . Prove that f must be the zero function.

[You should not use the Stone–Weierstrass theorem without proof.]

Part II, 2011 List of Questions [TURN OVER
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Paper 3, Section II

12F Topics in Analysis
Let f : [0, 1] → R be continuous and let n be a positive integer. For g : [0, 1] → R

a continuous function, write ‖f − g‖L∞ = supx∈[0,1] |f(x)− g(x)|.

(i) Let p be a polynomial of degree at most n with the property that there are (n+ 2)
distinct points x1, x2, . . . , xn+2 ∈ [0, 1] with x1 < x2 < . . . < xn+2 such that

f(xj)− p(xj) = (−1)j‖f − p‖L∞

for each j = 1, 2, . . . , n+ 2. Prove that

‖f − p‖L∞ 6 ‖f − q‖L∞

for every polynomial q of degree at most n.

(ii) Prove that there exists a polynomial p of degree at most n such that

‖f − p‖L∞ 6 ‖f − q‖L∞

for every polynomial q of degree at most n.

[If you deduce this from a more general result about abstract normed spaces, you
must prove that result.]

(iii) Let Y = {y1, y2, . . . , yn+2} be any set of (n + 2) distinct points in [0, 1].

(a) For j = 1, 2, . . . , n+ 2, let

rj(x) =
n+2∏

k=1, k 6=j

x− yk
yj − yk

,

t(x) =
∑n+2

j=1 f(yj)rj(x) and r(x) =
∑n+2

j=1 (−1)jrj(x). Explain why there is
a unique number λ ∈ R such that the degree of the polynomial t − λr is at
most n.

(b) Let ‖f − g‖L∞(Y ) = supx∈Y |f(x) − g(x)|. Deduce from part (a) that there
exists a polynomial p of degree at most n such that

‖f − p‖L∞(Y ) 6 ‖f − q‖L∞(Y )

for every polynomial q of degree at most n.

Part II, 2011 List of Questions
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Paper 1, Section I

2F Topics in Analysis
Let (X, d) be a non-empty complete metric space with no isolated points, G an open

dense subset of X and E a countable dense subset of X.

(i) Stating clearly any standard theorem you use, prove that G\E is a dense subset of X.

(ii) If G is only assumed to be uncountable and dense in X, does it still follow that G \E
is dense in X? Justify your answer.

Paper 2, Section I

2F Topics in Analysis
(a) State the Weierstrass approximation theorem concerning continuous real func-

tions on the closed interval [0, 1].

(b) Let f : [0, 1] → R be continuous.

(i) If
∫ 1
0 f(x)xn dx = 0 for each n = 0, 1, 2, . . . , prove that f is the zero function.

(ii) If we only assume that
∫ 1
0 f(x)x 2n dx = 0 for each n = 0, 1, 2, . . . , prove that it still

follows that f is the zero function.

[If you use the Stone–Weierstrass theorem, you must prove it.]

(iii) If we only assume that
∫ 1
0 f(x)x 2n+1 dx = 0 for each n = 0, 1, 2, . . . , does it still

follow that f is the zero function? Justify your answer.

Part II, 2010 List of Questions [TURN OVER
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Paper 3, Section I

2F Topics in Analysis
Let A = {z ∈ C : 1/2 6 |z| 6 2} and suppose that f is complex analytic on an

open subset containing A.

(i) Give an example, with justification, to show that there need not exist a sequence of
complex polynomials converging to f uniformly on A.

(ii) Let R ⊂ C be the positive real axis and B = A\R . Prove that there exists a sequence
of complex polynomials p1, p2, p3, . . . such that pj → f uniformly on each compact subset
of B.

(iii) Let p1, p2, p3, . . . be the sequence of polynomials in (ii). If this sequence converges
uniformly on A, show that

∫
C f(z) dz = 0 , where C = {z ∈ C : |z| = 1} .

Paper 4, Section I

2F Topics in Analysis
Find explicitly a polynomial p of degree 6 3 such that

sup
x∈[−1,1]

|x4 − p(x)| 6 sup
x∈[−1,1]

|x4 − q(x)|

for every polynomial q of degree 6 3 . Justify your answer.

Part II, 2010 List of Questions

2010
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Paper 2, Section II

11F Topics in Analysis
Let

Br(0) = {(x, y) ∈ R2 : x 2 + y 2 < r 2} ,
B = B1(0), and

C = {(x, y) ∈ R2 : x 2 + y 2 = 1} .
Let D = B ∪C .

(i) State the Brouwer fixed point theorem on the plane.

(ii) Show that the Brouwer fixed point theorem on the plane is equivalent to the non-
existence of a continuous map F : D → C such that F (p) = p for each p ∈ C .

(iii) Let G : D → R2 be continuous, 0 < ǫ < 1 and suppose that

|p−G(p)| < ǫ

for each p ∈ C . Using the Brouwer fixed point theorem or otherwise, prove that

B 1−ǫ(0) ⊆ G(B) .

[Hint: argue by contradiction.]

(iv) Let q ∈ B . Does there exist a continuous map H : D → R2 \ {q} such that H(p) = p
for each p ∈ C? Justify your answer.

Part II, 2010 List of Questions [TURN OVER
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Paper 3, Section II

12F Topics in Analysis
(i) Let γ : [0, 1] → C \ {0} be a continuous map with γ(0) = γ(1). Define the

winding number w(γ; 0) of γ about the origin.

(ii) For j = 0, 1 , let γj : [0, 1] → C \ {0} be continuous with γj(0) = γj(1). Make
the following statement precise, and prove it: if γ0 can be continuously deformed into γ1
through a family of continuous curves missing the origin, then w(γ0; 0) = w(γ1; 0).

[You may use without proof the following fact: if γ, δ : [0, 1] → C\{0} are continuous with
γ(0) = γ(1), δ(0) = δ(1) and if |γ(t)| < |δ(t)| for each t ∈ [0, 1], then w(γ+δ; 0) = w(δ; 0).]

(iii) Let γ : [0, 1] → C \ {0} be continuous with γ(0) = γ(1). If γ(t) is not equal to
a negative real number for each t ∈ [0, 1], prove that w(γ; 0) = 0.

(iv) Let D = {z ∈ C : |z| 6 1} and C = {z ∈ C : |z| = 1} . If g : D → C is
continuous, prove that for each non-zero integer n, there is at least one point z ∈ C such
that z n + g(z) = 0 .

Part II, 2010 List of Questions
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Paper 1, Section I

2F Topics in Analysis
(i) Let n > 1 and let x1, . . . , xn be distinct points in [−1, 1]. Show that there exist

numbers A1, . . . , An such that

∫ 1

−1
P (x) dx =

n∑

j=1

AjP (xj) (∗)

for every polynomial P of degree 6 n− 1.

(ii) Explain, without proof, how one can choose the points x1, . . . , xn and the
numbers A1, . . . , An such that (∗) holds for all polynomials P of degree 6 2n− 1.

Paper 2, Section I

2F Topics in Analysis
(a) State Chebychev’s Equal Ripple Criterion.

(b) Let n be a positive integer, a0, a1, . . . , an−1 ∈ R and

p(x) = xn + an−1x
n−1 + . . .+ a1x+ a0.

Use Chebychev’s Equal Ripple Criterion to prove that

sup
x∈[−1,1]

|p(x)| > 21−n.

[You may use without proof that there is a polynomial Tn(x) in x of degree n, with the
coefficient of xn equal to 2n−1, such that Tn(cos θ) = cosnθ for all θ ∈ R.]

Paper 3, Section I

2F Topics in Analysis
(a) If f : (0, 1) → R is continuous, prove that there exists a sequence of polynomials

Pn such that Pn → f uniformly on compact subsets of (0, 1).

(b) If f : (0, 1) → R is continuous and bounded, prove that there exists a sequence
of polynomials Qn such that Qn are uniformly bounded on (0, 1) and Qn → f uniformly on
compact subsets of (0, 1).

Part II, 2009 List of Questions [TURN OVER
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Paper 4, Section I

2F Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals, and use it
to prove that the number

∞∑

n=0

1

10n!

is transcendental.

Paper 2, Section II

11F Topics in Analysis
(a) State Brouwer’s fixed point theorem in the plane.

(b) Let a, b, c be unit vectors in R2 making 120o angles with one another. Let T be the
triangle with vertices given by the points a, b and c and let I, J , K be the three sides of
T . Prove that the following two statements are equivalent:

(1) There exists no continuous function f : T → ∂ T with f(I) ⊆ I, f(J) ⊆ J and
f(K) ⊆ K.

(2) If A, B, C are closed subsets of R2 such that T ⊆ A ∪ B ∪ C, I ⊆ A, J ⊆ B and
K ⊆ C, then A ∩B ∩ C 6= ∅.

(c) Let f, g : R2 → R be continuous positive functions. Show that the system of equations

(1− x2)f2(x, y)− x2g2(x, y) = 0

(1− y2)g2(x, y)− y2f2(x, y) = 0

has four distinct solutions on the unit circle S1 = {(x, y) ∈ R2 : x2+y2 = 1}.

Paper 3, Section II

12F Topics in Analysis
(a) State Runge’s theorem on uniform approximation of analytic functions by

polynomials.

(b) Let Ω be an unbounded, connected, proper open subset of C. For any given
compact set K ⊂ C \ Ω and any ζ ∈ Ω, show that there exists a sequence of complex
polynomials converging uniformly on K to the function f(z) = (z − ζ)−1.

(c) Give an example, with justification, of a connected open subset Ω of C, a compact
subset K of C\Ω and a point ζ ∈ Ω such that there is no sequence of complex polynomials
converging uniformly on K to the function f(z) = (z − ζ)−1.

Part II, 2009 List of Questions
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1/I/2F Topics in Analysis

Let P0, P1, P2, . . . be non-zero orthogonal polynomials on an interval [a, b] such that
the degree of Pj is equal to j for every j = 0, 1, 2, . . . , where the orthogonality is with

respect to the inner product < f, g > =
∫ b
a
fg . If f is any continuous function on [a, b]

orthogonal to P0, P1, . . . , Pn−1 and not identically zero, prove that f must have at least
n distinct zeros in (a, b).

2/II/11F Topics in Analysis

Let L : C([0, 1])→ C([0, 1]) be an operator satisfying the conditions

(i) Lf > 0 for any f ∈ C([0, 1]) with f > 0,

(ii) L(af + bg) = aLf + bLg for any f, g ∈ C([0, 1]) and a, b ∈ R and

(iii) Zf ⊆ ZLf for any f ∈ C([0, 1]), where Zf denotes the set of zeros of f .

Prove that there exists a function h ∈ C([0, 1]) with h > 0 such that Lf = hf for
every f ∈ C([0, 1]).

2/I/2F Topics in Analysis

(a) State Brouwer’s fixed point theorem in the plane and prove that the statement is
equivalent to non-existence of a continuous retraction of the closed disk D to its boundary
∂D.

(b) Use Brouwer’s fixed point theorem to prove that there is a complex number z
in the closed unit disc such that z6 − z5 + 2z2 + 6z + 1 = 0.

Part II 2008
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3/II/12F Topics in Analysis

(a) State Liouville’s theorem on approximation of algebraic numbers by rationals.

(b) Consider the continued fraction expression

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

in which the coefficients an are all positive integers forming an unbounded set. Let pn
qn

be
the nth convergent. Prove that

∣∣∣∣x−
pn
qn

∣∣∣∣ 6
1

qnqn+1

and use this inequality together with Liouville’s theorem to deduce that x2 is irrational.

[ You may assume without proof that, for n = 1, 2, 3, . . .,
(
pn+1 pn
qn+1 qn

)
=

(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
.]

3/I/2F Topics in Analysis

(a) State the Baire category theorem in its closed sets version.

(b) Let fn : R → R be a continuous function for each n = 1, 2, 3, . . . and suppose
that there is a function f : R → R such that fn(x) → f(x) for each x ∈ R. Prove that
for each ε > 0, there exists an integer N0 and a non-empty open interval I ⊂ R such that
|fn(x)− f(x)| 6 ε for all n > N0 and x ∈ I.

[Hint: consider, for N = 1, 2, 3, . . ., the sets

QN = {x ∈ R : |fn(x)− fm(x)| 6 ε : ∀n,m > N}.]

4/I/2F Topics in Analysis

(a) State Runge’s theorem on uniform approximation of analytic functions by
polynomials.

(b) Suppose f is analytic on

Ω = {z ∈ C : |z| < 1} \ {z ∈ C : Im(z) = 0, Re(z) 6 0}.

Prove that there exists a sequence of polynomials which converges to f uniformly on
compact subsets of Ω.

Part II 2008
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1/I/2F Topics in Analysis

Let n be an integer with n > 1. Are the following statements true or false? Give
proofs.

(i) There exists a real polynomial Tn of degree n such that

Tn(cos t) = cosnt

for all real t.

(ii) There exists a real polynomial Rn of degree n such that

Rn(cosh t) = coshnt

for all real t.

(iii) There exists a real polynomial Sn of degree n such that

Sn(cos t) = sinnt

for all real t.

Part II 2007

2007
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2/II/12F Topics in Analysis

(i) Suppose that f : [0, 1] → R is continuous. Prove the theorem of Bernstein which
states that, if we write

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r,

for 0 6 t 6 1 , then fm → f uniformly as m→ ∞ .

(ii) Let n > 1 , a1,n, a2,n, . . . , an,n ∈ R and let x1,n, x2,n, . . . , xn,n be distinct points
in [0, 1] . We write

In(g) =
n∑

j=1

aj,ng(xj,n)

for every continuous function g : [0, 1] → R . Show that, if

In(P ) =

∫ 1

0

P (t) dt ,

for all polynomials P of degree 2n− 1 or less, then aj,n > 0 for all 1 6 j 6 n and∑n
j=1 aj,n = 1 .

(iii) If In satisfies the conditions set out in (ii), show that

In(f) →
∫ 1

0

f(t) dt

as n→ ∞ whenever f : [0, 1] → R is continuous.

2/I/2F Topics in Analysis

Write
P+ = {(x, y) ∈ R2 : x, y > 0}.

Suppose that K is a convex, compact subset of R2 with K ∩ P+ 6= ∅. Show that there is
a unique point (x0, y0) ∈ K ∩ P+ such that

xy 6 x0y0

for all (x, y) ∈ K ∩ P+.

Part II 2007
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3/II/12F Topics in Analysis

(i) State and prove Liouville’s theorem on approximation of algebraic numbers by
rationals.

(ii) Consider the continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

where the aj are strictly positive integers. You may assume the following algebraic
facts about the nth convergent pn/qn.

pnqn−1 − pn−1qn = (−1)n, qn = anqn−1 + qn−2.

Show that ∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

qnqn+1
.

Give explicit values for an so that x is transcendental and prove that you have done
so.

3/I/2F Topics in Analysis

State a version of Runge’s theorem and use it to prove the following theorem:

Let D = {z ∈ C : |z| < 1} and define f : D → C by the condition

f(reiθ) = r3/2e3iθ/2

for all 0 6 r < 1 and all 0 6 θ < 2π. (We take r1/2 to be the positive square root.) Then
there exists a sequence of analytic functions fn : D → C such that fn(z) → f(z) for each
z ∈ D as n→ ∞.

4/I/2F Topics in Analysis

State Brouwer’s fixed point theorem for a triangle in two dimensions.

Let A = (aij) be a 3 × 3 matrix with real positive entries and such that all its
columns are non-zero vectors. Show that A has an eigenvector with positive entries.

Part II 2007
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1/I/2G Topics in Analysis

State Brouwer’s fixed-point theorem, and also an equivalent version of the theorem
that concerns retractions of the disc. Prove that these two versions are equivalent.

1/II/11G Topics in Analysis

Let T = {z : |z| = 1} be the unit circle in C, and let φ : T → C be a continuous
function that never takes the value 0. Define the degree (or winding number) of φ about
0. [You need not prove that the degree is well-defined.]

Denote the degree of φ about 0 by w(φ). Prove the following facts.

(i) If φ1 and φ2 are two functions with the properties of φ above, then w(φ1.φ2) =
w(φ1) + w(φ2).

(ii) If ψ is any continuous function such that |ψ(z)| < |φ(z)| for every z ∈ T, then
w(φ+ ψ) = w(φ).

Using these facts, calculate the degree w(φ) when φ is given by the formula φ(z) =
(3z − 2)(z − 3)(2z + 1) + 1.

2/I/2G Topics in Analysis

(a) State Chebyshev’s equal ripple criterion.

(b) Let f : [−1, 1] → R be defined by

f(x) = cos 4πx ,

and let g be a polynomial of degree 7. Prove that there exists an x ∈ [−1, 1] such
that |f(x)− g(x)| > 1.

2/II/11G Topics in Analysis

(a) Let K be a closed subset of the unit disc in C. Let f : C → C be a rational
function with all its poles of modulus strictly greater than 1. Explain why f can
be approximated uniformly on K by polynomials.
[Standard results from complex analysis may be assumed.]

(b) With K as above, define Λ to be the set of all λ ∈ C \ K such that the function
(z − λ)−1 can be uniformly approximated on K by polynomials. If λ ∈ Λ, prove
that there is some δ > 0 such that µ ∈ Λ whenever |λ− µ| < δ.

Part II 2006
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3/I/2G Topics in Analysis

Let a0, a1, a2, . . . be positive integers and, for each n, let

pn
qn

= a0 +
1

a1 +
1

a2 + .. .
+

1

an

,

with (pn, qn) = 1.

Obtain an expression for the matrix

(
pn pn−1

qn qn−1

)
and use it to show that

pnqn−1 − qnpn−1 = (−1)n+1.

4/I/2G Topics in Analysis

(a) State the Baire category theorem, in its closed-sets version.

(b) For every n ∈ N let fn be a continuous function from R to R, and let g(x) = 1
when x is rational and 0 otherwise. For each N ∈ N, let

FN =
{
x ∈ R : ∀n > N fn(x) 6 1

3 or fn(x) > 2
3

}
.

By applying the Baire category theorem, prove that the functions fn cannot
converge pointwise to g. (That is, it is not the case that fn(x) → g(x) for every
x ∈ R.)

Part II 2006
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1/I/2F Topics in Analysis

Prove that cosh(1/2) is irrational.

1/II/11F Topics in Analysis

State and prove a discrete form of Brouwer’s theorem, concerning colourings of
points in triangular grids. Use it to deduce that there is no continuous retraction from a
disc to its boundary.

2/I/2F Topics in Analysis

(i) Let α be an algebraic number and let p and q be integers with q 6= 0. What
does Liouville’s theorem say about α and p/q?

(ii) Let p and q be integers with q 6= 0. Prove that

∣∣∣∣
√
2− p

q

∣∣∣∣ >
1

4q2
.

[In (ii), you may not use Liouville’s theorem unless you prove it.]

2/II/11F Topics in Analysis

(i) State the Baire category theorem. Deduce from it a statement about nowhere
dense sets.

(ii) Let X be the set of all real numbers with decimal expansions consisting of the
digits 4 and 5 only. Prove that there is a real number t that cannot be written in the form
x+ y with x ∈ X and y rational.
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3/I/2F Topics in Analysis

Let −1 6 x1 < x2 < . . . < xn 6 1 and let a1, a2, . . . , an be real numbers such that

∫ 1

−1

p(t) dt =
n∑

i=1

aip(xi)

for every polynomial p of degree less than 2n. Prove the following three facts.

(i) ai > 0 for every i.

(ii)
∑n

i=1 ai = 2.

(iii) The numbers x1, x2, . . . , xn are the roots of the Legendre polynomial of
degree n.

[You may assume standard orthogonality properties of the Legendre polynomials.]

4/I/2F Topics in Analysis

(i) Let D ⊂ C be a domain, let f : D → C be an analytic function and let z0 ∈ D.
What does Taylor’s theorem say about z0, f and D?

(ii) Let K be the square consisting of all complex numbers z such that

−1 6 Re(z) 6 1 and − 1 6 Im(z) 6 1 ,

and let w be a complex number not belonging to K. Prove that the function f(z) =
(z − w)−1 can be uniformly approximated on K by polynomials.
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