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Paper 1, Section II

36A Statistical Physics
(a) What is meant by the microcanonical, canonical and grand canonical ensembles?

Under what conditions is the choice of ensemble irrelevant?

(b) Consider a classical particle of mass m moving non-relativistically in two-
dimensional space enclosed inside a circle of radius R and attached by a spring to the
centre. The particle therefore moves in a potential

V (r) =

{
1
2κr

2 for r < R ,

∞ for r > R ,

where κ is the spring constant and r2 = x2+y2. The particle is coupled to a heat reservoir
at temperature T .

(i) Calculate the partition function for the particle.

(ii) Calculate the average energy 〈E〉 and the average potential energy 〈V 〉 of
the particle.

(iii) Compute 〈E〉 in the two limits 1
2κR

2 � kBT and 1
2κR

2 � kBT . How
do these two results compare with what is expected from equipartition of
energy?

(iv) Compute the partition function for a collection of N identical non-
interacting such particles.

Part II, Paper 1

2023
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Paper 2, Section II

37A Statistical Physics
A simple one-dimensional model of a rubber molecule consists of a chain of n links,

where n is fixed. Each link has a fixed length a and can be oriented in either the positive
or negative direction. A unique state i of the molecule is specified by giving the orientation
of each link and the molecule’s length in this state is li. If n+ links are oriented in the
positive direction and n− in the negative direction, then n = n+ + n− and the length of
the molecule is l = (n+ − n−)a. All configurations have the same energy.

(a) What is the range of possible values of l? What is the number of states of the
molecule for fixed n+ and n−?

(b) Now consider an ensemble with A � 1 copies of the molecule in which ai
members are in state i. Write down an expression for the mean length L. By introducing
Lagrange multipliers τ and α show that the most probable configuration for the {ai} with
given L is found by maximising

ln

(
A!∏
i ai!

)
+ τ

∑

i

ai li − α
∑

i

ai .

Hence show that the most probable configuration has

pi = eτli/Z ,

where pi is the probability for finding an ensemble member in state i and Z is the partition
function which should be defined.

(c) Show that Z can be expressed as

Z =
∑

l

g(l) eτl

where the meaning of g(l) should be explained. Hence show that

Z =
n∑

n+=0

n!

n+!n−!
(eτa)n+

(
e−τa

)n− , n+ + n− = n .

(d) Show that the free energy G = −kBT lnZ for the system is

G = −nkBT ln (2 cosh τa) ,

where kB is the Boltzmann constant and T is the temperature. Hence show that

L = − 1

kBT

(
∂G

∂τ

)
and tanh τa =

L

na
.

(e) Why is the tension f in the rubber molecule equal to kBTτ? [Here f and L
are analogous to, respectively, pressure p and volume V in three-dimensional systems, and
G is the Gibbs free energy because the setup corresponds to a system with fixed tension
rather than with a fixed length.]

(f) Now assume that na � L. Show that the chain satisfies Hooke’s law f ∝ L.
What happens if f is held constant and T is increased?

Part II, Paper 1 [TURN OVER]

2023
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Paper 3, Section II

35A Statistical Physics
(a) State the formula for the Bose-Einstein distribution for the mean occupation

numbers nr of discrete single-particle states r with energies Er > 0 in a gas of identical
ideal Bosons in terms of β = 1/kBT and the chemical potential µ. Write down expressions
for the total particle number N and the total energy E when the single-particle states can
be treated as continuous with energies E > 0 and density of states g(E).

(b) Consider the bosonic vibrational modes (phonons) in a two-dimensional crystal
with dispersion relation ω = C|k|α, where ω is the frequency, k is the wavevector, and
C > 0 and 0 < α < 2 are constants. The crystal is square with area A.

(i) Show that the density of states is

g(ω) = Bωb ,

where B and b are constants that you should determine. [You may assume
that the phonons have two polarizations.]

(ii) Calculate the Debye frequency ωD by identifying the number of single-
phonon states with the total number of degrees of freedom 2n, where n is
the number of atoms in the crystal. Find the Debye temperature TD.

(iii) Derive an expression for the total energy, leaving your answer in integral
form with the integral over x = β~ω.

(iv) Now consider the case α = 1/2. Calculate the heat capacity at constant
volume CV in the limit T � TD. Show that CV ∼ T d in the limit T � TD,
where d is a real number that you should determine. Comment on these
two results.

Part II, Paper 1

2023
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Paper 4, Section II

35A Statistical Physics
(a) Give Clausius’ statement of the second law of thermodynamics and Kelvin’s

statement of the second law of thermodynamics. Show that these two statements are
equivalent.

Throughout the rest of this question you should consider a classical ideal gas and
assume that the number of particles is fixed.

(b) Write down the equation of state for an ideal gas. Write down an expression for
its internal energy in terms of the heat capacity at constant volume CV .

(c) Describe the meaning of an adiabatic process. Using the first law of thermody-
namics, derive the relationship between p and V for an adiabatic process occurring in an
ideal gas.

(d) Consider a cycle involving an ideal gas and consisting of the following four
reversible steps:

A→ B: Adiabatic compression;

B → C: Expansion at constant pressure with heat in Q1;

C → D: Adiabatic expansion;

D → A: Cooling at constant volume with heat out Q2.

(i) Sketch this cycle in the (p, V )-plane and in the (T, S)-plane. Derive equations
for the curves DA and BC in the (T, S)-plane.

(ii) Derive an expression for the efficiency, η = W/Q1, where W is the work out, in
terms of the temperatures TA, TB, TC , TD at points A,B,C,D, respectively.

Part II, Paper 1 [TURN OVER]

2023
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Paper 1, Section II
36A Statistical Physics

(a) What systems are described by a grand canonical ensemble? If there are Nn

particles in microstate n each with energy En, write down an expression for the grand
canonical partition function Z in terms of the temperature T , the chemical potential µ
and the Boltzmann constant kB.

(b) Define the grand canonical potential Φ in terms of the average energy E, T , the
entropy S, µ, and the average number of particles 〈N〉. Write down the relation between
Φ and Z.

(c) Using scaling arguments, express Φ(T, V, µ) in terms of the pressure p and the
volume V .

(d) Consider the grand canonical ensemble for a classical ideal gas of non-relativistic
particles of mass m in a fixed 3-dimensional volume V .

(i) Compute Z and Φ.

(ii) Calculate 〈N〉 and ∆N/〈N〉, where (∆N)2 = 〈N2〉 − 〈N〉2. Comment on
the latter result.

(iii) Derive the equation of state for the gas.

[You may assume that

∫ ∞

−∞
e−a x

2
dx =

√
π/a for a > 0. ]

(e) Using the grand canonical ensemble and your results from part (d), derive
the equation of state for a classical ideal gas of relativistic particles with energies√
|p|2 c2 +m2c4. Compute ∆N/〈N〉.

Part II, Paper 1

2022
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Paper 2, Section II
37A Statistical Physics

(a) What systems are described by a microcanonical ensemble and which by a
canonical ensemble?

(b) Starting from the Gibbs formula for entropy, S = −kB
∑

n p(n) ln p(n), where
p(n) is the probability of being in microstate n and kB is the Boltzmann constant, show
how maximising entropy subject to appropriate constraints leads to the correct forms of
the probability distributions for (i) the microcanonical ensemble and (ii) the canonical
ensemble.

(c) Derive an expression for the entropy in the canonical ensemble in terms of the
partition function Z and temperature T .

(d) A system consists of N non-interacting particles fixed at points in a lattice in
thermal contact with a reservoir at temperature T . Each particle has three possible states
with energies −ε, 0, ε, where ε > 0 is a constant. Compute the average energy E and the
entropy S. Evaluate E and S in the limits T →∞ and T → 0.

(e) For the system in part (d), describe a configuration that would have negative
temperature. Justify your answer.

Part II, Paper 1 [TURN OVER]

2022
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Paper 3, Section II
35A Statistical Physics

(a) What distinguishes bosons from fermions? What are the implications for the
occupation number of states and for the ground state at low temperatures?

(b) Consider a gas of N non-interacting ultra-relativistic electrons in a large fixed
3-dimensional cubic volume V .

(i) Using the grand partition function, show that pV = AE, where p is the
pressure, E is the average energy and A is a constant that you should
determine.

(ii) Show that the Fermi energy, EF = D (N/V )1/3, where D is a constant that
you should determine.

(iii) Show that at zero temperature pV a = K, where a and K are constants
that you should determine. How does this compare to an ultra-relativistic
classical ideal gas?

(c) Now consider the same system as in part (b) with a magnetic field B, so the
energy of an electron is ±µBB depending on whether the spin is parallel or anti-parallel
to the magnetic field, and µB is a constant. Assuming that µBB � EF , show that at zero
temperature the total magnetic moment

M ≈ αµγBB
δg(EF ) ,

where g(EF ) is the density of states at energy EF and α, γ and δ are numerical constants
that you should find. Then find the magnetic susceptibility χ of the gas at zero
temperature. Comment on the result.

Part II, Paper 1

2022
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Paper 4, Section II
35A Statistical Physics

(a) State Carnot’s theorem. Show how it can be used to define a thermodynamic
temperature.

(b) Consider a solid body with heat capacity at constant volume CV . Assume that
the solid’s volume remains constant throughout the following three scenarios:

(i) If the temperature changes from Ti to Tf , show that the entropy change is
∆S = Sf − Si = CV ln (Tf/Ti).

(ii) Two identical such bodies (both with heat capacity CV ) with initial
temperatures T1 and T2 are brought into equilibrium in a reversible process.
What are the final temperatures of the bodies?

(iii) Now suppose that the two bodies are instead brought directly into thermal
contact (irreversibly). What are the final temperatures of the bodies?
Compute the entropy change and show that it is positive.

(c) The Gibbs free energy is given by G = E + pV − TS, where E is energy, p
is pressure, V is volume and S is entropy. Explain why G = µ(T, p)N , where µ is the
chemical potential and N is the number of particles.

(d) What is a first-order phase transition?

(e) Consider a system at constant pressure where phase I is stable for T > T0, phase
II is stable for T < T0, and there is a first-order phase transition at T = T0. Show that
in a transition from phase II to phase I, SI − SII > 0, where SI is the entropy in phase I
and SII is the entropy in phase II. [Hint: Consider S = −

(
∂G
∂T

)
p,N

for each phase.]

Part II, Paper 1 [TURN OVER]

2022
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Paper 1, Section II

36C Statistical Physics
Throughout this question you should consider a classical gas and assume that the

number of particles is fixed.

(a) Write down the equation of state for an ideal gas. Write down an expression for
the internal energy of an ideal gas in terms of the heat capacity at constant volume, CV .

(b) Starting from the first law of thermodynamics, find a relation between CV and
the heat capacity at constant pressure, Cp, for an ideal gas. Hence give an expression for
γ = Cp/CV .

(c) Describe the meaning of an adiabatic process. Using the first law of thermo-
dynamics, derive the equation for an adiabatic process in the (p, V )-plane for an ideal
gas.

(d) Consider a simplified Otto cycle (an idealised petrol engine) involving an ideal
gas and consisting of the following four reversible steps:

A→ B: Adiabatic compression from volume V1 to volume V2 < V1;

B → C: Heat Q1 injected at constant volume;

C → D: Adiabatic expansion from volume V2 to volume V1;

D → A: Heat Q2 extracted at constant volume.

Sketch the cycle in the (p, V )-plane and in the (T, S)-plane.

Derive an expression for the efficiency, η = W/Q1, where W is the work out, in
terms of the compression ratio r = V1/V2. How can the efficiency be maximized?

Part II, 2021 List of Questions

2021
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Paper 2, Section II

37C Statistical Physics
(a) What systems are described by microcanonical, canonical and grand canonical

ensembles? Under what conditions is the choice of ensemble irrelevant?

(b) In a simple model a meson consists of two quarks bound in a linear potential,
U(r) = α|r|, where r is the relative displacement of the two quarks and α is a positive
constant. You are given that the classical (non-relativistic) Hamiltonian for the meson is

H(P,R,p, r) =
|P|2
2M

+
|p|2
2µ

+ α|r| ,

where M = 2m is the total mass, µ = m/2 is the reduced mass, P is the total momentum,
p = µdr/dt is the internal momentum, and R is the centre of mass position.

(i) Show that the partition function for a single meson in thermal equilibrium at
temperature T in a three-dimensional volume V can be written as Z1 = ZtransZint, where

Ztrans =
V

(2π~)3

∫
d3P e−β|P|

2/(2M) , Zint =
1

(2π~)3

∫
d3r d3p e−β|p|

2/(2µ)e−βα|r|

and β = 1/(kBT ).

Evaluate Ztrans and evaluate Zint in the large-volume limit (βαV 1/3 � 1).

What is the average separation of the quarks within the meson at temperature T?
[
You may assume that

∫ ∞

−∞
e−c x

2
dx =

√
π/c for c > 0.

]

(ii) Now consider an ideal gas of N such mesons in a three-dimensional volume V .
Calculate the total partition function of the gas.

What is the heat capacity CV ?

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

35C Statistical Physics
(a) A gas of non-interacting particles with spin degeneracy gs has the energy–

momentum relationship E = A(~k)α, for constants A,α > 0. Show that the density
of states, g(E) dE, in a d-dimensional volume V with d > 2 is given by

g(E) dE = BV E(d−α)/αdE ,

where B is a constant that you should determine. [You may denote the surface area of a
unit (d−1)-dimensional sphere by Sd−1.]

(b) Write down the Bose–Einstein distribution for the average number of identical
bosons in a state with energy Er > 0 in terms of β = 1/kBT and the chemical potential
µ. Explain why µ < 0.

(c) Show that an ideal quantum Bose gas in a d-dimensional volume V , with
E = A(~k)α, as above, has

p V = DE ,

where p is the pressure and D is a constant that you should determine.

(d) For such a Bose gas, write down an expression for the number of particles that
do not occupy the ground state. Use this to determine the values of α for which there
exists a Bose–Einstein condensate at sufficiently low temperatures.

Part II, 2021 List of Questions

2021
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Paper 4, Section II

35C Statistical Physics
(a) Explain what is meant by a first-order phase transition and a second-order phase

transition.

(b) Explain why the (Helmholtz) free energy is the appropriate thermodynamic
potential to consider at fixed T , V and N .

(c) Consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where T is the temperature, m is the magnetization, and a, b, Tc > 0 are constants.

Find the equilibrium value of m at high and low temperatures. Hence, evaluate
the equilibrium thermodynamic free energy as a function of T and compute the entropy
and heat capacity. Determine the jump in the heat capacity and identify the order of the
phase transition.

(d) Now consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 +

c

6
m6 ,

where a, b, c, Tc are constants with a, c, Tc > 0, but b 6 0.

Find the equilibrium value of m at high and low temperatures. What is the order
of the phase transition?

For b = 0 determine the behaviour of the heat capacity at high and low temperat-
ures.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

36A Statistical Physics
Using the notion of entropy, show that two systems that can freely exchange energy

reach the same temperature. Show that the energy of a system increases with temperature.

A system consists of N distinguishable, non-interacting spin 1
2 atoms in a magnetic

field, where N is large. The energy of an atom is ε > 0 if the spin is up and −ε if the spin
is down. Find the entropy and energy if a fraction α of the atoms have spin up. Determine
α as a function of temperature, and deduce the allowed range of α. Verify that the energy
of the system increases with temperature in this range.

Paper 2, Section II

36A Statistical Physics
Using the Gibbs free energy G(T, P ) = E − TS + PV , derive the Maxwell relation

∂S

∂P

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
P

.

Define the notions of heat capacity at constant volume, CV , and heat capacity at
constant pressure, CP . Show that

CP − CV = T
∂V

∂T

∣∣∣∣
P

∂P

∂T

∣∣∣∣
V

.

Derive the Clausius-Clapeyron relation for dP
dT along the first-order phase transition

curve between a liquid and a gas. Find the simplified form of this relation, assuming the
gas has much larger volume than the liquid and that the gas is ideal. Assuming further
that the latent heat is a constant, determine the form of P as a function of T along the
phase transition curve. [You may assume there is no discontinuity in the Gibbs free energy
across the phase transition curve.]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

35A Statistical Physics
Starting with the density of electromagnetic radiation modes in k-space, determine

the energy E of black-body radiation in a box of volume V at temperature T .

Using the first law of thermodynamics show that

∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P.

By using this relation determine the pressure P of the black-body radiation.

[You are given the following:

(i) The mean number of photons in a radiation mode of frequency ω is
1

e~ω/T − 1
,

(ii) 1 +
1

24
+

1

34
+ · · · = π4

90
,

(iii) You may assume P vanishes with T more rapidly than linearly, as T → 0. ]

Paper 4, Section II

35A Statistical Physics
Consider a classical gas of N particles in volume V , where the total energy is

the standard kinetic energy plus a potential U(x1,x2, ...,xN ) depending on the relative
locations of the particles {xi : 1 6 i 6 N}.

(i) Starting from the partition function, show that the free energy of the gas is

F = Fideal − T log

{
1 +

1

V N

∫
(e−U/T − 1)d3Nx

}
, (∗)

where Fideal is the free energy when U ≡ 0.

(ii) Suppose now that the gas is fairly dilute and that the integral in (∗) is small
compared to V N and is dominated by two-particle interactions. Show that the free energy
simplifies to the form

F = Fideal +
N2T

V
B(T ), (†)

and find an integral expression for B(T ). Using (†) find the equation of state of the gas,
and verify that B(T ) is the second virial coefficient.

(iii) The equation of state for a Clausius gas is

P (V −Nb) = NT

for some constant b. Find the second virial coefficient for this gas. Evaluate b for a gas of
hard sphere atoms of radius r0.

Part II, 2020 List of Questions

2020
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Paper 4, Section II

34D Statistical Physics
Give an outline of the Landau theory of phase transitions for a system with one real

order parameter φ. Describe the phase transitions that can be modelled by the Landau
potentials

(i) G =
1

4
φ4 +

1

2
εφ2,

(ii) G =
1

6
φ6 +

1

4
gφ4 +

1

2
εφ2,

where ε and g are control parameters that depend on the temperature and pressure.

In case (ii), find the curve of first-order phase transitions in the (g, ε) plane. Find
the region where it is possible for superheating to occur. Find also the region where it is
possible for supercooling to occur.

Paper 3, Section II

35D Statistical Physics
What is meant by the chemical potential µ of a thermodynamic system? Derive

the Gibbs distribution for a system at temperature T and chemical potential µ (and fixed
volume) with variable particle number N .

Consider a non-interacting, two-dimensional gas of N fermionic particles in a region
of fixed area, at temperature T and chemical potential µ. Using the Gibbs distribution,
find the mean occupation number nF (ε) of a one-particle quantum state of energy ε. Show
that the density of states g(ε) is independent of ε and deduce that the mean number of
particles between energies ε and ε+ dε is very well approximated for T ≪ εF by

N

εF

dε

e(ε−εF )/T + 1
,

where εF is the Fermi energy. Show that, for T small, the heat capacity of the gas has a
power-law dependence on T , and find the power.

Part II, 2019 List of Questions

2019
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Paper 2, Section II

35D Statistical Physics
Using the classical statistical mechanics of a gas of molecules with negligible

interactions, derive the ideal gas law. Explain briefly to what extent this law is independent
of the molecule’s internal structure.

Calculate the entropy S of a monatomic gas of low density, with negligible interac-
tions. Deduce the equation relating the pressure P and volume V of the gas on a curve
in the PV -plane along which S is constant.

[You may use

∫ ∞

−∞
e−αx

2
dx =

(π
α

) 1
2
for α > 0 .]

Paper 1, Section II

35D Statistical Physics
(a) Explain, from a macroscopic and microscopic point of view, what is meant by

an adiabatic change. A system has access to heat baths at temperatures T1 and T2, with
T2 > T1. Show that the most effective method for repeatedly converting heat to work,
using this system, is by combining isothermal and adiabatic changes. Define the efficiency
and calculate it in terms of T1 and T2.

(b) A thermal system (of constant volume) undergoes a phase transition at temper-
ature Tc. The heat capacity of the system is measured to be

C =

{
αT for T < Tc

β for T > Tc,

where α, β are constants. A theoretical calculation of the entropy S for T > Tc leads to

S = β log T + γ.

How can the value of the theoretically-obtained constant γ be verified using macroscopi-
cally measurable quantities?

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

35A Statistical Physics
The one-dimensional Ising model consists of a set of N spins si with Hamiltonian

H = −J
N∑

i=1

sisi+1 −
B

2

N∑

i=1

(si + si+1),

where periodic boundary conditions are imposed so sN+1 = s1. Here J is a positive
coupling constant and B is an external magnetic field. Define a 2 × 2 matrix M with
elements

Mst = exp

[
βJst+

βB

2
(s+ t)

]
,

where indices s, t take values ±1 and β = (kT )−1 with k Boltzmann’s constant and T
temperature.

(a) Prove that the partition function of the Ising model can be written as

Z = Tr(MN ).

Calculate the eigenvalues ofM and hence determine the free energy in the thermodynamic
limit N → ∞. Explain why the Ising model does not exhibit a phase transition in one
dimension.

(b) Consider the case of zero magnetic field B = 0. The correlation function 〈sisj〉
is defined by

〈sisj〉 =
1

Z

∑

{sk}
sisje

−βH .

(i) Show that, for i > 1,

〈s1si〉 =
1

Z

∑

s,t

st(M i−1)st(MN−i+1)ts .

(ii) By diagonalizing M , or otherwise, calculate Mp for any positive integer p.
Hence show that

〈s1si〉 =
tanhi−1(βJ) + tanhN−i+1(βJ)

1 + tanhN (βJ)
.

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 1, Section II

35A Statistical Physics
(a) A macroscopic system has volume V and contains N particles. Let Ω(E,V,N ; δE)

denote the number of states of the system which have energy in the range (E,E + δE)
where δE ≪ E represents experimental uncertainty. Define the entropy S of the system
and explain why the dependence of S on δE is usually negligible. Define the temperature
and pressure of the system and hence obtain the fundamental thermodynamic relation.

(b) A one-dimensional model of rubber consists of a chain of N links, each of length
a. The chain lies along the x-axis with one end fixed at x = 0 and the other at x = L
where L < Na. The chain can “fold back” on itself so x may not increase monotonically
along the chain. Let N→ and N← denote the number of links along which x increases and
decreases, respectively. All links have the same energy.

(i) Show that N→ and N← are uniquely determined by L and N . Determine Ω(L,N),
the number of different arrangements of the chain, as a function of N→ and N←.
Hence show that, if N→ ≫ 1 and N← ≫ 1 then the entropy of the chain is

S(L,N) = kN

[
log 2− 1

2

(
1 +

L

Na

)
log

(
1 +

L

Na

)

−1

2

(
1− L

Na

)
log

(
1− L

Na

)]

where k is Boltzmann’s constant. [You may use Stirling’s approximation: n! ≈√
2πnn+1/2e−n for n≫ 1.]

(ii) Let f denote the force required to hold the end of the chain fixed at x = L. This
force does work fdL on the chain if the length is increased by dL. Write down
the fundamental thermodynamic relation for this system and hence calculate f as
a function of L and the temperature T .

Assume that Na ≫ L. Show that the chain satisfies Hooke’s law f ∝ L. What
happens if f is held constant and T is increased?

Part II, 2018 List of Questions

2018
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Paper 3, Section II

36A Statistical Physics
(a) A system of non-interacting bosons has single particle states |i〉 with energies

ǫi > 0. Show that the grand canonical partition function is

logZ = −
∑

i

log
(
1− e−β(ǫi−µ)

)

where β = 1/(kT ), k is Boltzmann’s constant, and µ is the chemical potential. What is
the maximum possible value for µ?

(b) A system of N ≫ 1 bosons has one energy level with zero energy and M ≫ 1
energy levels with energy ǫ > 0. The number of particles with energies 0, ǫ is N0, Nǫ

respectively.

(i) Write down expressions for 〈N0〉 and 〈Nǫ〉 in terms of µ and β.

(ii) At temperature T what is the maximum possible number Nmax
ǫ of bosons

in the state with energy ǫ? What happens for N > Nmax
ǫ ?

(iii) Calculate the temperature TB at which Bose condensation occurs.

(iv) For T > TB , show that µ = ǫ(TB − T )/TB . For T < TB show that

µ ≈ −kT
N

eǫ/(kT ) − 1

eǫ/(kT ) − eǫ/(kTB)
.

(v) Calculate the mean energy 〈E〉 for T > TB and for T < TB . Hence show
that the heat capacity of the system is

C ≈
{

1
kT 2

Mǫ2

(eβǫ−1)2 T < TB

0 T > TB
.

Part II, 2018 List of Questions [TURN OVER

2018



110

Paper 2, Section II

36A Statistical Physics
(a) Starting from the canonical ensemble, derive the Maxwell–Boltzmann distribu-

tion for the velocities of particles in a classical gas of atoms of mass m. Derive also the
distribution of speeds v of the particles. Calculate the most probable speed.

(b) A certain atom emits photons of frequency ω0. A gas of these atoms is contained
in a box. A small hole is cut in a wall of the box so that photons can escape in the positive
x-direction where they are received by a detector. The frequency of the photons received
is Doppler shifted according to the formula

ω = ω0

(
1 +

vx
c

)

where vx is the x-component of the velocity of the atom that emits the photon and c is
the speed of light. Let T be the temperature of the gas.

(i) Calculate the mean value 〈ω〉 of ω.

(ii) Calculate the standard deviation
√

〈(ω − 〈ω〉)2〉 .

(iii) Show that the relative number of photons received with frequency between ω and
ω + dω is I(ω)dω where

I(ω) ∝ exp(−a(ω − ω0)
2)

for some coefficient a to be determined. Hence explain how observations of the
radiation emitted by the gas can be used to measure its temperature.
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The van der Waals equation of state is

p =
kT

v − b
− a

v2
,

where p is the pressure, v = V/N is the volume divided by the number of particles, T is
the temperature, k is Boltzmann’s constant and a, b are positive constants.

(i) Prove that the Gibbs free energy G = E+pV −TS satisfies G = µN . Hence obtain
an expression for (∂µ/∂p)T,N and use it to explain the Maxwell construction for
determining the pressure at which the gas and liquid phases can coexist at a given
temperature.

(ii) Explain what is meant by the critical point and determine the values pc, vc, Tc
corresponding to this point.

(iii) By defining p̄ = p/pc, v̄ = v/vc and T̄ = T/Tc, derive the law of corresponding
states:

p̄ =
8T̄

3v̄ − 1
− 3

v̄2
.

(iv) To investigate the behaviour near the critical point, let T̄ = 1 + t and v̄ = 1 + φ,
where t and φ are small. Expand p̄ to cubic order in φ and hence show that

(
∂p̄

∂φ

)

t

= −9

2
φ2 +O(φ3) + t [−6 +O(φ)] .

At fixed small t, let φl(t) and φg(t) be the values of φ corresponding to the liquid
and gas phases on the co-existence curve. By changing the integration variable from
p to φ, use the Maxwell construction to show that φl(t) = −φg(t). Deduce that, as
the critical point is approached along the co-existence curve,

v̄gas − v̄liquid ∼ (Tc − T )1/2 .
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Explain what is meant by the microcanonical ensemble for a quantum system.

Sketch how to derive the probability distribution for the canonical ensemble from the
microcanonical ensemble. Under what physical conditions should each type of ensemble
be used?

A paramagnetic solid contains atoms with magnetic moment µ = µBJ, where µB is
a positive constant and J is the intrinsic angular momentum of the atom. In an applied
magnetic field B, the energy of an atom is −µ ·B. Consider B = (0, 0, B). Each atom has
total angular momentum J ∈ Z, so the possible values of Jz = m ∈ Z are −J 6 m 6 J .

Show that the partition function for a single atom is

Z1(T,B) =
sinh

(
x(J + 1

2)
)

sinh (x/2)
,

where x = µBB/kT .

Compute the average magnetic moment 〈µz〉 of the atom. Sketch 〈µz〉/J for J = 1,
J = 2 and J = 3 on the same graph.

The total magnetization is Mz = N〈µz〉, where N is the number of atoms. The
magnetic susceptibility is defined by

χ =

(
∂Mz

∂B

)

T

.

Show that the solid obeys Curie’s law at high temperatures. Compute the susceptibility
at low temperatures and give a physical explanation for the result.
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(a) The entropy of a thermodynamic ensemble is defined by the formula

S = −k
∑

n

p(n) log p(n) ,

where k is the Boltzmann constant. Explain what is meant by p(n) in this formula.
Write down an expression for p(n) in the grand canonical ensemble, defining any
variables you need. Hence show that the entropy S is related to the grand canonical
partition function Z(T, µ, V ) by

S = k

[
∂

∂T
(T logZ)

]

µ,V

.

(b) Consider a gas of non-interacting fermions with single-particle energy levels ǫi.

(i) Show that the grand canonical partition function Z is given by

logZ =
∑

i

log
(
1 + e−(ǫi−µ)/(kT )

)
.

(ii) Assume that the energy levels are continuous with density of states
g(ǫ) = AV ǫa, where A and a are positive constants. Prove that

logZ = V T bf(µ/T )

and give expressions for the constant b and the function f .

(iii) The gas is isolated and undergoes a reversible adiabatic change. By consid-
ering the ratio S/N , prove that µ/T remains constant. Deduce that V T c

and pV d remain constant in this process, where c and d are constants whose
values you should determine.
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(a) Describe the Carnot cycle using plots in the (p, V )-plane and the (T, S)-plane. In
which steps of the cycle is heat absorbed or emitted by the gas? In which steps is
work done on, or by, the gas?

(b) An ideal monatomic gas undergoes a reversible cycle described by a triangle in the
(p, V )-plane with vertices at the points A,B,C with coordinates (p0, V0), (2p0, V0)
and (p0, 2V0) respectively. The cycle is traversed in the order ABCA.

(i) Write down the equation of state and an expression for the internal energy of
the gas.

(ii) Derive an expression relating TdS to dp and dV . Use your expression to
calculate the heat supplied to, or emitted by, the gas along AB and CA.

(iii) Show that heat is supplied to the gas along part of the line BC, and is emitted
by the gas along the other part of the line.

(iv) Calculate the efficiency η = W/Q where W is the total work done by the
cycle and Q is the total heat supplied.
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33C Statistical Physics

Consider an ideal quantum gas with one-particle states |i〉 of energy ǫi. Let p
(ni)
i

denote the probability that state |i〉 is occupied by ni particles. Here, ni can take the
values 0 or 1 for fermions and any non-negative integer for bosons. The entropy of the gas
is given by

S = −kB
∑

i

∑

ni

p
(ni)
i ln p

(ni)
i .

(a) Write down the constraints that must be satisfied by the probabilities if the
average energy 〈E〉 and average particle number 〈N〉 are kept at fixed values.

Show that if S is maximised then

p
(ni)
i =

1

Zi
e−(βǫi+γ)ni ,

where β and γ are Lagrange multipliers. What is Zi?

(b) Insert these probabilities p
(ni)
i into the expression for S, and combine the result

with the first law of thermodynamics to find the meaning of β and γ.

(c) Calculate the average occupation number 〈ni〉 =
∑

ni
nip

(ni)
i for a gas of fermions.
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(a) Consider an ideal gas consisting of N identical classical particles of mass m

moving freely in a volume V with Hamiltonian H = |p|2/2m. Show that the partition
function of the gas has the form

Zideal =
V N

λ3NN !
,

and find λ as a function of the temperature T .

[You may assume that
∫∞
−∞ e−ax2

dx =
√
π/a for a > 0.]

(b) A monatomic gas of interacting particles is a modification of an ideal gas where
any pair of particles with separation r interact through a potential energy U(r). The
partition function for this gas can be written as

Z = Zideal

[
1 +

2πN

V

∫ ∞

0
f(r) r2dr

]N
,

where f(r) = e−βU(r) − 1 , β = 1/(kBT ). The virial expansion of the equation of state
for small densities N/V is

p

kBT
=
N

V
+B2(T )

N2

V 2
+O

(
N3

V 3

)
.

Using the free energy, show that

B2(T ) = −2π

∫ ∞

0
f(r) r2dr .

(c) The Lennard–Jones potential is

U(r) = ǫ

(
r120
r12

− 2
r60
r6

)
,

where ǫ and r0 are positive constants. Find the separation σ where U(σ) = 0 and the
separation rmin where U(r) has its minimum. Sketch the graph of U(r). Calculate B2(T )
for this potential using the approximations

f(r) = e−βU(r) − 1 ≃
{
−1 for r < σ

−βU(r) for r > σ .
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(a) State the first law of thermodynamics. Derive the Maxwell relation

(
∂S

∂V

)

T

=

(
∂p

∂T

)

V

.

(b) Consider a thermodynamic system whose energy E at constant temperature T
is volume independent, i.e. (

∂E

∂V

)

T

= 0 .

Show that this implies that the pressure has the form p(T, V ) = Tf(V ) for some function
f .

(c) For a photon gas inside a cavity of volume V , the energy E and pressure p are
given in terms of the energy density U , which depends only on the temperature T , by

E(T, V ) = U(T )V , p(T, V ) =
1

3
U(T ) .

Show that this implies U(T ) = σT 4 where σ is a constant. Show that the entropy is

S =
4

3
σT 3V ,

and calculate the energy E(S, V ) and free energy F (T, V ) in terms of their respective
fundamental variables.
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(a) What is meant by the canonical ensemble? Consider a system in the canonical

ensemble that can be in states |n〉 , n = 0, 1, 2, . . . with energies En. Write down the
partition function for this system and the probability p(n) that the system is in state |n〉.
Derive an expression for the average energy 〈E〉 in terms of the partition function.

(b) Consider an anharmonic oscillator with energy levels

~ω
[(
n+

1

2

)
+ δ
(
n+

1

2

)2 ]
, n = 0, 1, 2, . . . ,

where ω is a positive constant and 0 < δ ≪ 1 is a small constant. Let the oscillator be in
contact with a reservoir at temperature T . Show that, to linear order in δ, the partition
function Z1 for the oscillator is given by

Z1 =
c1

sinh x
2

[
1 + δ c2 x

(
1 +

2

sinh2 x
2

)]
, x =

~ω
kBT

,

where c1 and c2 are constants to be determined. Also show that, to linear order in δ, the
average energy of a system of N uncoupled oscillators of this type is given by

〈E〉 = N~ω
2

{
c3 coth

x

2
+ δ

[
c4 +

c5

sinh2 x
2

(
1− x coth

x

2

)]}
,

where c3, c4, c5 are constants to be determined.
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The Ising model consists of N particles, labelled by i, arranged on a D-dimensional
Euclidean lattice with periodic boundary conditions. Each particle has spin up si = +1,
or down si = −1, and the energy in the presence of a magnetic field B is

E = −B
∑

i

si − J
∑

〈i,j〉
si sj ,

where J > 0 is a constant and 〈i, j〉 indicates that the second sum is over each pair of
nearest neighbours (every particle has 2D nearest neighbours). Let β = 1/kBT , where T
is the temperature.

(i) Express the average spin per particle, m = (
∑

i〈si〉)/N , in terms of the canonical
partition function Z.

(ii) Show that in the mean-field approximation

Z = C [Z1(βBeff ) ]
N

where Z1 is a single-particle partition function, Beff is an effective magnetic field
which you should find in terms of B, J , D and m, and C is a prefactor which you
should also evaluate.

(iii) Deduce an equation that determines m for general values of B, J and temperature
T . Without attempting to solve for m explicitly, discuss how the behaviour of the
system depends on temperature when B = 0, deriving an expression for the critical
temperature Tc and explaining its significance.

(iv) Comment briefly on whether the results obtained using the mean-field approximation
for B = 0 are consistent with an expression for the free energy of the form

F (m,T ) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4

where a and b are positive constants.
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(a) A sample of gas has pressure p, volume V , temperature T and entropy S.

(i) Use the first law of thermodynamics to derive the Maxwell relation

(∂S
∂p

)
T
= −

(∂V
∂T

)
p
.

(ii) Define the heat capacity at constant pressure Cp and the enthalpy H and show
that Cp = (∂H/∂T )p.

(b) Consider a perfectly insulated pipe with a throttle valve, as shown.

p

V

p
2

V21

1

Gas initially occupying volume V1 on the left is forced slowly through the valve at
constant pressure p1. A constant pressure p2 is maintained on the right and the final
volume occupied by the gas after passing through the valve is V2.

(i) Show that the enthalpy H of the gas is unchanged by this process.

(ii) The Joule–Thomson coefficient is defined to be µ = (∂T/∂p)H . Show that

µ =
V

Cp

[
T

V

(∂V
∂T

)
p
− 1

]
.

[You may assume the identity (∂y/∂x)u = −(∂u/∂x)y
/
(∂u/∂y)x.]

(iii) Suppose that the gas obeys an equation of state

p = kBT

[
N

V
+B2(T )

N2

V 2

]

where N is the number of particles. Calculate µ to first order in N/V and

hence derive a condition on
d

dT

(B2(T )

T

)
for obtaining a positive Joule–Thomson

coefficient.
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(a) State the Bose–Einstein distribution formula for the mean occupation numbers ni

of discrete single-particle states i with energies Ei in a gas of bosons. Write down
expressions for the total particle number N and the total energy U when the single-
particle states can be treated as continuous, with energies E > 0 and density of states
g(E).

(b) Blackbody radiation at temperature T is equivalent to a gas of photons with

g(E) = AV E2

where V is the volume and A is a constant. What value of the chemical potential is
required when applying the Bose–Einstein distribution to photons? Show that the heat
capacity at constant volume satisfies CV ∝ Tα for some constant α, to be determined.

(c) Consider a system of bosonic particles of fixed total number N ≫ 1. The particles
are trapped in a potential which has ground state energy zero and which gives rise
to a density of states g(E) = BE2, where B is a constant. Explain, for this system,
what is meant by Bose–Einstein condensation and show that the critical temperature
satisfies Tc ∝ N1/3. If N0 is the number of particles in the ground state, show that
for T just below Tc

N0/N ≈ 1− (T/Tc)
γ

for some constant γ, to be determined.

(d) Would you expect photons to exhibit Bose–Einstein condensation? Explain your
answer very briefly.
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(a) Define the canonical partition function Z for a system with energy levels En, where n
labels states, given that the system is in contact with a heat reservoir at temperature
T . What is the probability p(n) that the system occupies state n ? Starting from an
expression for the entropy S = kB ∂ (T lnZ) / ∂T , deduce that

S = −kB
∑

n

p(n) ln p(n) . (∗)

(b) Consider an ensemble consisting of W copies of the system in part (a) with W very
large, so that there are Wp(n) members of the ensemble in state n. Starting from an
expression for the number of ways in which this can occur, find the entropy SW of the
ensemble and hence re-derive the expression (∗). [You may assume Stirling’s formula
lnX! ≈ X lnX −X for X large.]

(c) Consider a system of N non-interacting particles at temperature T . Each particle has
q internal states with energies

0 , E , 2E , . . . , (q−1)E .

Assuming that the internal states are the only relevant degrees of freedom, calculate
the total entropy of the system. Find the limiting values of the entropy as T → 0 and
T → ∞ and comment briefly on your answers.
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The Dieterici equation of state of a gas is

P =
kBT

v − b
exp

(
− a

kBTv

)
,

where P is the pressure, v = V/N is the volume divided by the number of particles, T is
the temperature, and kB is the Boltzmann constant. Provide a physical interpretation for
the constants a and b.

Briefly explain how the Dieterici equation captures the liquid–gas phase transition.
What is the maximum temperature at which such a phase transition can occur?

The Gibbs free energy is given by

G = E + PV − TS ,

where E is the energy and S is the entropy. Explain why the Gibbs free energy is
proportional to the number of particles in the system.

On either side of a first-order phase transition the Gibbs free energies are equal.
Use this fact to derive the Clausius–Clapeyron equation for a line along which there is a
first-order liquid–gas phase transition,

dP

dT
=

L

T (Vgas − Vliquid)
, (∗)

where L is the latent heat which you should define.

Assume that the volume of liquid is negligible compared to the volume of gas and
that the latent heat is constant. Further assume that the gas can be well approximated
by the ideal gas law. Solve (∗) to obtain an equation for the phase-transition line in the
(P, T ) plane.
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In the grand canonical ensemble, at temperature T and chemical potential µ, what

is the probability of finding a system in a state with energy E and particle number N?

A particle with spin degeneracy gs and mass m moves in d > 2 spatial dimensions
with dispersion relation E = ~2k2/2m. Compute the density of states g(E). [You may
denote the area of a unit (d− 1)-dimensional sphere as Sd−1.]

Treating the particles as non-interacting fermions, determine the energy E of a gas
in terms of the pressure P and volume V .

Derive an expression for the Fermi energy in terms of the number density of particles.
Compute the degeneracy pressure at zero temperature in terms of the number of particles
and the Fermi energy.

Show that at high temperatures the gas obeys the ideal gas law (up to small
corrections which you need not compute).

Paper 2, Section II

35E Statistical Physics
Briefly describe the microcanonical, canonical and grand canonical ensembles. Why

do they agree in the thermodynamic limit?

A harmonic oscillator in one spatial dimension has Hamiltonian

H =
p2

2m
+

m

2
ω2x2.

Here p and x are the momentum and position of the oscillator, m is its mass and ω its
frequency. The harmonic oscillator is placed in contact with a heat bath at temperature
T . What is the relevant ensemble?

Treating the harmonic oscillator classically, compute the mean energy 〈E〉, the
energy fluctuation ∆E2 and the heat capacity C.

Treating the harmonic oscillator quantum mechanically, compute the mean energy
〈E〉, the energy fluctuation ∆E2 and the heat capacity C.

In what limit of temperature do the classical and quantum results agree? Explain
why they differ away from this limit. Describe an experiment for which this difference has
implications.
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Write down the equation of state and the internal energy of a monatomic ideal gas.

Describe the meaning of an adiabatic process. Derive the equation for an adiabatic
process in the pressure–volume (P, V ) plane for a monatomic ideal gas.

Briefly describe the Carnot cycle. Sketch the Carnot cycle in the (P, V ) plane and
in the temperature–entropy (T, S) plane.

The Diesel cycle is an idealised version of the process realised in the Diesel engine.
It consists of the following four reversible steps:

A → B: Adiabatic compression
B → C: Expansion at constant pressure
C → D: Adiabatic expansion
D → A: Cooling at constant volume.

Sketch the Diesel cycle for a monatomic gas in the (P, V ) plane and the (T, S) plane.
Determine the equations for the curves B → C and D → A in the (T, S) plane.

The efficiency η of the cycle is defined as

η = 1− Qout

Qin
,

where Qin is the heat entering the gas in step B → C and Qout is the heat leaving the gas
in step D → A. Calculate η as a function of the temperatures at points A, B, C and D.
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A classical particle of mass m moving non-relativistically in two-dimensional space is
enclosed inside a circle of radius R and attached by a spring with constant κ to the centre
of the circle. The particle thus moves in a potential

V (r) =

{
1
2κr

2 for r < R ,

∞ for r > R ,

where r2 = x2 + y2. Let the particle be coupled to a heat reservoir at temperature T .

(i) Which of the ensembles of statistical physics should be used to model the system?

(ii) Calculate the partition function for the particle.

(iii) Calculate the average energy 〈E〉 and the average potential energy 〈V 〉 of the particle.
(iv) What is the average energy in:

(a) the limit 1
2κR

2 ≫ kBT (strong coupling)?

(b) the limit 1
2κR

2 ≪ kBT (weak coupling)?

Compare the two results with the values expected from equipartition of energy.
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(i) Briefly describe the microcanonical ensemble.

(ii) For quantum mechanical systems the energy levels are discrete. Explain why we can
write the probability distribution in this case as

p({ni}) =
{
const > 0 for E 6 E({ni}) < E +∆E ,

0 otherwise.

What assumption do we make for the energy interval ∆E?

Consider N independent linear harmonic oscillators of equal frequency ω. Their
total energy is given by

E({ni}) =
N∑

i=1

~ω
(
ni +

1

2

)
= M~ω +

N

2
~ω with M =

N∑

i=1

ni .

Here ni = 0, 1, 2, . . . is the excitation number of oscillator i.

(iii) Show that, for fixed N and M , the number gN (M) of possibilities to distribute the
M excitations over N oscillators (i.e. the number of different choices {ni} consistent with
M) is given by

gN (M) =
(M +N − 1)!

M ! (N − 1)!
.

[Hint: You may wish to consider the set of N oscillators plus M−1 “additional” excitations
and what it means to choose M objects from this set.]

(iv) Using the probability distribution of part (ii), calculate the probability distribution
p(E1) for the “first” oscillator as a function of its energy E1 = n1~ω + 1

2~ω.

(v) If ∆E = ~ω ≪ E then exactly one value of M will correspond to a total energy inside
the interval (E,E +∆E). In this case, show that

p(E1) ≈
gN−1(M − n1)

gN (M)
.

Approximate this result in the limit N ≫ 1, M ≫ n1.
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(i) The first law of thermodynamics is dE = TdS − pdV + µdN , where µ is the chemical
potential. Briefly describe its meaning.

(ii) What is equipartition of energy? Under which conditions is it valid? Write down the
heat capacity CV at constant volume for a monatomic ideal gas.

(iii) Starting from the first law of thermodynamics, and using the fact that for an ideal
gas (∂E/∂V )T = 0, show that the entropy of an ideal gas containing N particles can be
written as

S(T, V ) = N

(∫
cV (T )

T
dT + kB ln

V

N
+ const

)
,

where T and V are temperature and volume of the gas, kB is the Boltzmann constant,
and we define the heat capacity per particle as cV = CV /N .

(iv) The Gibbs free energy G is defined as G = E + pV − TS. Verify that it is a function
of temperature T , pressure p and particle number N . Explain why G depends on the
particle number N through G = µ(T, p)N .

(v) Calculate the chemical potential µ for an ideal gas with heat capacity per particle
cV (T ). Calculate µ for the special case of a monatomic gas.
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(i) What is the occupation number of a state i with energy Ei according to the Fermi–Dirac
statistics for a given chemical potential µ?

(ii) Assuming that the energy E is spin independent, what is the number gs of electrons
which can occupy an energy level?

(iii) Consider a semi-infinite metal slab occupying z 6 0 (and idealized to have infinite
extent in the xy plane) and a vacuum environment at z > 0. An electron with momentum
(px, py, pz) inside the slab will escape the metal in the +z direction if it has a sufficiently
large momentum pz to overcome a potential barrier V0 relative to the Fermi energy ǫF,
i.e. if

p2z
2m

> ǫF + V0 ,

where m is the electron mass.

At fixed temperature T , some fraction of electrons will satisfy this condition, which
results in a current density jz in the +z direction (an electron having escaped the metal
once is considered lost, never to return). Each electron escaping provides a contribution
δjz = −evz to this current density, where vz is the velocity and e the elementary charge.

(a) Briefly describe the Fermi–Dirac distribution as a function of energy in the limit
kBT ≪ ǫF, where kB is the Boltzmann constant. What is the chemical potential µ in this
limit?

(b) Assume that the electrons behave like an ideal, non-relativistic Fermi gas and that
kBT ≪ V0 and kBT ≪ ǫF. Calculate the current density jz associated with the electrons
escaping the metal in the +z direction. How could we easily increase the strength of the
current?
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Non-relativistic electrons of mass m are confined to move in a two-dimensional plane

of area A. Each electron has two spin states. Compute the density of states g(E) and
show that it is constant.

Write down expressions for the number of particles N and the average energy 〈E〉
of a gas of fermions in terms of the temperature T and chemical potential µ. Find an
expression for the Fermi Energy EF in terms of N .

For kBT ≪ EF , you may assume that the chemical potential does not change with
temperature. Compute the low temperature heat capacity of a gas of fermions. [You may
use the approximation that, for large z,

∫ ∞

0

xndx

z−1ex + 1
≈ 1

n+ 1
(log z)n+1 +

π2n

6
(log z)n−1 .]

Paper 3, Section II

35C Statistical Physics
A ferromagnet has magnetization order parameter m and is at temperature T . The

free energy is given by

F (T ;m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where a, b and Tc are positive constants. Find the equilibrium value of the magnetization
at both high and low temperatures.

Evaluate the free energy of the ground state as a function of temperature. Hence
compute the entropy and heat capacity. Determine the jump in the heat capacity and
identify the order of the phase transition.

After imposing a background magnetic field B, the free energy becomes

F (T ;m) = F0(T ) +Bm+
a

2
(T − Tc)m

2 +
b

4
m4 .

Explain graphically why the system undergoes a first-order phase transition at low
temperatures as B changes sign.

The spinodal point occurs when the meta-stable vacuum ceases to exist. Determine
the temperature T of the spinodal point as a function of Tc, a, b and B.

Part II, 2012 List of Questions [TURN OVER
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Paper 2, Section II

35C Statistical Physics
Explain what is meant by an isothermal expansion and an adiabatic expansion of a

gas.

By first establishing a suitable Maxwell relation, show that

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p

and
∂CV

∂V

∣∣∣∣
T

= T
∂2p

∂T 2

∣∣∣∣
V

.

The energy in a gas of blackbody radiation is given by E = aV T 4, where a is a constant.
Derive an expression for the pressure p(V, T ).

Show that if the radiation expands adiabatically, V T 3 is constant.

Paper 1, Section II

35C Statistical Physics
A meson consists of two quarks, attracted by a linear potential energy

V = αx ,

where x is the separation between the quarks and α is a constant. Treating the quarks
classically, compute the vibrational partition function that arises from the separation of
quarks. What is the average separation of the quarks at temperature T ?

Consider an ideal gas of these mesons that have the orientation of the quarks fixed
so the mesons do not rotate. Compute the total partition function of the gas. What is its
heat capacity CV ?

[Note:
∫ +∞
−∞ dx e−ax2

=
√

π/a.]
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Paper 1, Section II

35D Statistical Physics
Describe the physical relevance of the microcanonical, canonical and grand canonical

ensembles. Explain briefly the circumstances under which all ensembles are equivalent.

The Gibbs entropy for a probability distribution p(n) over states is

S = −kB
∑

n

p(n) log p(n) .

By imposing suitable constraints on p(n), show how maximising the entropy gives rise to
the probability distributions for the microcanonical and canonical ensembles.

A system consists of N non-interacting particles fixed at points in a lattice. Each
particle has three states with energies E = −ǫ, 0,+ǫ. If the system is at a fixed temperature
T , determine the average energy E and the heat capacity C. Evaluate each in the limits
T → ∞ and T → 0.

Describe a configuration of the system that would have negative temperature. Does
this system obey the third law of thermodynamics?

Paper 2, Section II

35D Statistical Physics
Write down the partition function for a single classical non-relativistic particle of

mass m moving in three dimensions in a potential U(x) and in equilibrium with a heat
bath at temperature T .

A system of N non-interacting classical non-relativistic particles, in equilibrium at
temperature T , is placed in a potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer. Using the partition function, show that the free energy is

F = −NkBT

(
log V +

3

2

n+ 1

n
log kBT + log In + const

)
, (∗)

where

In =
( m

2π~2
)3/2

∫ ∞

0
4πu2 exp(−u2n) du .

Explain the physical relevance of the constant term in the expression (∗).
Viewing V as an external parameter, akin to volume, compute the conjugate

pressure p and show that the equation of state coincides with that of an ideal gas.

Compute the energy E, heat capacity CV and entropy S of the gas. Determine the
local particle number density as a function of |x|.
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Paper 3, Section II

35D Statistical Physics
A gas of non-interacting particles has energy-momentum relationship E = A(~k)α

for some constants A and α. Determine the density of states g(E) dE in a three-
dimensional volume V .

Explain why the chemical potential µ satisfies µ < 0 for the Bose–Einstein
distribution.

Show that an ideal quantum Bose gas with the energy-momentum relationship above
has

pV =
αE

3
.

If the particles are bosons at fixed temperature T and chemical potential µ, write
down an expression for the number of particles that do not occupy the ground state. Use
this to determine the values of α for which there exists a Bose–Einstein condensate at
sufficiently low temperatures.

Discuss whether a gas of photons can undergo Bose–Einstein condensation.

Part II, 2011 List of Questions [TURN OVER
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Paper 4, Section II

34D Statistical Physics

(i) Define the Gibbs free energy for a gas of N particles with pressure p at a temperature
T . Explain why it is necessarily proportional to the number of particles N in the
system. Given volume V and chemical potential µ, prove that

∂µ

∂p

∣∣∣∣
T

=
V

N
.

(ii) The van der Waals equation of state is

(
p+

aN2

V 2

)
(V −Nb) = NkBT .

Explain the physical significance of the terms with constants a and b. Sketch the
isotherms of the van der Waals equation. Show that the critical point lies at

kBTc =
8a

27b
, Vc = 3bN , pc =

a

27b2
.

(iii) Describe the Maxwell construction to determine the condition for phase equilibrium.
Hence sketch the regions of the van der Waals isotherm at T < Tc that correspond
to metastable and unstable states. Sketch those regions that correspond to stable
liquids and stable gases.

(iv) Show that, as the critical point is approached along the co-existence curve,

Vgas − Vliquid ∼ (Tc − T )1/2 .

Show that, as the critical point is approached along an isotherm,

p− pc ∼ (V − Vc)
3 .
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Paper 2, Section II

35C Statistical Physics
Consider a 3-dimensional gas of N non-interacting particles in a box of size L where

the allowed momenta are {pi}. Assuming the particles have an energy ǫ(|p|), ǫ′(p) > 0,
calculate the density of states g(ǫ)dǫ as L → ∞.

Treating the particles as classical explain why the partition function is

Z =
zN

N !
, z =

∫ ∞

0
dǫ g(ǫ) e−ǫ/kT .

Obtain an expression for the total energy E.

Why is pi ∝ 1/L? By considering the dependence of the energies on the volume V
show that the pressure P is given by

PV =
N

3z

∫ ∞

0
dǫ g(ǫ) p ǫ′(p) e−ǫ/kT .

What are the results for the pressure for non-relativistic particles and also for
relativistic particles when their mass can be neglected?

What is the thermal wavelength for non-relativistic particles? Why are the
classical results correct if the thermal wavelength is much smaller than the mean particle
separation?
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Paper 3, Section II

35C Statistical Physics

(i) Given the following density of states for a particle in 3 dimensions

g(ε) = KV ε 1/2

write down the partition function for a gas of N such non-interacting particles,
assuming they can be treated classically. From this expression, calculate the energy
E of the system and the heat capacities CV and CP . You may take it as given that
PV = 2

3 E.

[Hint: The formula
∫∞
0 dy y2 e−y2 =

√
π/4 may be useful.]

(ii) Using thermodynamic relations obtain the relation between heat capacities and
compressibilities

CP

CV
=

κT
κS

where the isothermal and adiabatic compressibilities are given by

κ = − 1

V

∂V

∂P
,

derivatives taken at constant temperature and entropy, respectively.

(iii) Find κT and κS for the ideal gas considered above.
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Paper 4, Section II

34C Statistical Physics

(i) Let ρi be the probability that a system is in a state labelled by i with Ni particles
and energy Ei. Define

s(ρi) = −k
∑

i

ρi log ρi .

s(ρi) has a maximum, consistent with a fixed mean total number of particles N ,
mean total energy E and

∑
i ρi = 1, when ρi = ρ̄i. Let S(E,N) = s(ρ̄i) and show

that
∂S

∂E
=

1

T
,

∂S

∂N
= −µ

T
,

where T may be identified with the temperature and µ with the chemical potential.

(ii) For two weakly coupled systems 1,2 then ρi,j = ρ1,i ρ2,j and Ei,j = E1,i + E2,j,
Ni,j = N1,i+N2,j. Show that S(E,N) = S1(E1, N1)+S2(E2, N2) where, if S(E,N)
is stationary under variations in E1, E2 and N1, N2 for E = E1 +E2, N = N1 +N2

fixed, we must have T1 = T2, µ1 = µ2.

(iii) Define the grand partition function Z(T, µ) for the system in (i) and show that

k logZ = S − 1

T
E +

µ

T
N , S =

∂

∂T

(
kT logZ

)
.

(iv) For a system with single particle energy levels ǫr the possible states are labelled by
i = {nr : nr = 0, 1}, where Ni =

∑
r nr, Ei =

∑
r nrǫr and

∑
i =

∏
r

∑
nr=0,1. Show

that

ρ̄i =
∏

r

e−nr(ǫr−µ)/kT

1 + e−(ǫr−µ)/kT
.

Calculate n̄r. How is this related to a free fermion gas?
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Paper 2, Section II

35D Statistical Physics
The Van der Waals equation of state for a non-ideal gas is

(
p+

aN2

V 2

)
(V − bN) = NkT,

where a and b are constants.

(i) Briefly explain the physical motivation for differences between the Van der Waals
and ideal gas equations of state.

(ii) Find the volume dependence (at constant temperature) of the internal energy
E and the heat capacity CV of a Van der Waals gas.

(iii) A Van der Waals gas is initially at temperature T1 in an insulated container
with volume V1. A small opening is then made so that the gas can expand freely into an
empty container, occupying both the old and new containers. The final result is that the
gas now occupies a volume V2 > V1. Calculate the final temperature T2 assuming CV is
temperature independent. You may assume the process happens quasistatically.

Paper 3, Section II

35D Statistical Physics
Consider an ideal Bose gas in an external potential such that the resulting density

of single particle states is given by

g(ε) = B ε7/2,

where B is a positive constant.

(i) Derive an expression for the critical temperature for Bose–Einstein condensation
of a gas of N of these atoms.

[Recall

1

Γ(n)

∫ ∞

0

xn−1 dx

z−1ex − 1
=

∞∑

ℓ=1

zℓ

ℓn
.

]

(ii) What is the internal energy E of the gas in the condensed state as a function
of N and T ?

(iii) Now consider the high temperature, classical limit instead. How does the
internal energy E depend on N and T ?
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Paper 4, Section II

34D Statistical Physics
Briefly state the ergodic hypothesis and explain its importance.

Consider an ideal, classical, monatomic gas in the presence of a uniform gravitational
field in the negative z-direction. For convenience, assume the gas is in an arbitrarily large
cubic box.

(i) Compute the internal energy E of the gas.

(ii) Explain your result for E in relation to the equipartition theorem.

(iii) What is the probability that an atom is located at a height between z and
z + dz?

(iv) What is the most probable speed of an atom of this gas?
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2/II/34E Statistical Physics

Prove that energy fluctuations in a canonical distribution are given by

〈
(E − 〈E〉)2

〉
= kBT

2CV

where T is the absolute temperature, CV = ∂〈E〉
∂T |V is the heat capacity at constant volume,

and kB is Boltzmann’s constant.

Prove the following relation in a similar manner:

〈
(E − 〈E〉)3

〉
= k2

B

[
T 4 ∂CV

∂T

∣∣∣∣
V

+ 2T 3CV

]
.

Show that, for an ideal gas of N monatomic molecules where 〈E〉 = 3
2NkBT , these

equations can be reduced to

1

〈E〉2
〈

(E − 〈E〉)2
〉

=
2

3N
and

1

〈E〉3
〈

(E − 〈E〉)3
〉

=
8

9N2
.
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3/II/34E Statistical Physics

Derive the following two relations:

T dS = Cp dT − T
∂V

∂T

∣∣∣∣
p

dp

and

T dS = CV dT + T
∂p

∂T

∣∣∣∣
V

dV.

[You may use any standard Maxwell relation without proving it.]

Experimentalists very seldom measure CV directly; they measure Cp and use
thermodynamics to extract CV . Use your results from the first part of this question
to find a formula for Cp − CV in terms of the easily measured quantities

α =
1

V

∂V

∂T

∣∣∣∣
p

(the volume coefficient of expansion) and

κ = − 1

V

∂V

∂p

∣∣∣∣
T

(the isothermal compressibility).

4/II/34D Statistical Physics

Show that the Fermi momentum pF of a gas of N non-interacting electrons in
volume V is

pF =

(
3π2~3N

V

)1/3

.

Consider the electrons to be effectively massless, so that an electron of momentum p has
(relativistic) energy cp. Show that the mean energy per electron at zero temperature is
3cpF /4.

When a constant external magnetic field of strength B is applied to the electron gas,
each electron gets an energy contribution ±µB depending on whether its spin is parallel or
antiparallel to the field. Here µ is the magnitude of the magnetic moment of an electron.
Calculate the total magnetic moment of the electron gas at zero temperature, assuming
µB is much less than cpF .

Part II 2008
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2/II/34D Statistical Physics

Derive the Maxwell relation

(
∂S

∂p

)

T

= −
(
∂V

∂T

)

p

.

The diagram below illustrates the Joule–Thomson throttling process for a porous
barrier. A gas of volume V1, initially on the left-hand side of a thermally insulated pipe,
is forced by a piston to go through the barrier using constant pressure p1. As a result the
gas flows to the right-hand side, resisted by a piston which applies a constant pressure p2
(with p2 < p1). Eventually all of the gas occupies a volume V2 on the right-hand side.
Show that this process conserves enthalpy.

The Joule–Thomson coefficient µJT is the change in temperature with respect to
a change in pressure during a process that conserves enthalpy H. Express the Joule–

Thomson coefficient, µJT ≡
(
∂T

∂p

)

H

, in terms of T , V , the heat capacity at constant

pressure Cp, and the volume coefficient of expansion α ≡ 1

V

(
∂V

∂T

)

p

.

What is µJT for an ideal gas?

If one wishes to use the Joule–Thomson process to cool a real (non-ideal) gas, what
must the sign of µJT be?

Before

p1 V1
p2

After

p1 V2
p2

Key: insulated pipe

porous barrier

sliding pistons

Part II 2007
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3/II/34D Statistical Physics

For a 2-dimensional gas of N nonrelativistic, non-interacting, spinless bosons,
find the density of states g(ε) in the neighbourhood of energy ε. [Hint: consider the gas in
a box of size L×L which has periodic boundary conditions. Work in the thermodynamic
limit N → ∞, L→ ∞, with N/L2 held finite.]

Calculate the number of particles per unit area at a given temperature and chemical
potential.

Explain why Bose–Einstein condensation does not occur in this gas at any temper-
ature.

[Recall that

1

Γ(n)

∫ ∞

0

xn−1dx

z−1ex − 1
=

∞∑

`=1

z`

`n
.

]

4/II/34D Statistical Physics

Consider a classical gas of diatomic molecules whose orientation is fixed by a strong
magnetic field. The molecules are not free to rotate, but they are free to vibrate. Assuming
that the vibrations are approximately harmonic, calculate the contribution to the partition
function due to vibrations.

Evaluate the free energy F = −kT lnZ, where Z is the total partition function for
the gas, and hence calculate the entropy.

[Note that
∫∞
−∞ exp(−au2)du =

√
π/a and

∫∞
0
u2 exp(−au2)du =

√
π/4a3/2. You may

approximate lnN ! by N lnN −N .]
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2/II/34D Statistical Physics

What is meant by the heat capacity CV of a thermodynamic system? By
establishing a suitable Maxwell identity, show that

∂CV

∂V

∣∣∣
T
= T

∂2P

∂T 2

∣∣∣
V
. (∗)

In a certain model of N interacting particles in a volume V and at temperature T ,
the partition function is

Z =
1

N !
(V − aN)N (bT )3N/2 ,

where a and b are constants. Find the equation of state and the entropy for this gas of
particles. Find the energy and hence the heat capacity CV of the gas, and verify that the
relation (∗) is satisfied.

3/II/34D Statistical Physics

What is meant by the chemical potential of a thermodynamic system? Derive the
Gibbs distribution with variable particle number N , for a system at temperature T and
chemical potential µ. (You may assume that the volume does not vary.)

Consider a non-interacting gas of fermions in a box of fixed volume, at temperature
T and chemical potential µ. Use the Gibbs distribution to find the mean occupation
number of a one-particle quantum state of energy ε. Assuming that the density of states
is Cε1/2, for some constant C, deduce that the mean number of particles with energies
between ε and ε+ dε is

Cε
1
2 dε

e(ε−µ)/T + 1
.

Why can µ be identified with the Fermi energy εF when T = 0? Estimate the
number of particles with energies greater than εF when T is small but non-zero.

4/II/34D Statistical Physics

Two examples of phenomenological temperature measurements are (i) the mark
reached along the length of a liquid-in-glass thermometer; and (ii) the wavelength of the
brightest colour of electromagnetic radiation emitted by a hot body (used, for example,
to measure the surface temperature of a star).

Give the definition of temperature in statistical physics, and explain how the
analysis of ideal gases and black body radiation is used to calibrate and improve
phenomenological temperature measurements like those mentioned above. You should
give brief derivations of any key results that you use.
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2/II/34D Statistical Physics

Write down the first law of thermodynamics in differential form applied to an
infinitesimal reversible change.

Explain what is meant by an adiabatic change.

Starting with the first law in differential form, derive the Maxwell relation

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

.

Hence show that (
∂E

∂V

)

T

= T

(
∂P

∂T

)

V

− P .

For radiation in thermal equilibrium at temperature T in volume V , it is given that
E = V e(T ) and P = e(T )/3. Hence deduce Stefan’s Law,

E = aV T 4 ,

where a is a constant.

The radiation is allowed to expand adiabatically. Show that V T 3 is constant during
the expansion.
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3/II/34D Statistical Physics

A free spinless particle moving in two dimensions is confined to a square box of
side L. By imposing periodic boundary conditions show that the number of states in the
energy range ε→ ε+ dε is g(ε)dε, where

g(ε) =
mL2

2π~2
.

If, instead, the particle is an electron with magnetic moment µ moving in a constant
external magnetic field H, show that

g(ε) =





mL2

2π~2
, −µH < ε < µH

mL2

π~2
, µH < ε .

Let there be N electrons in the box. Explain briefly how to construct the ground state of
the system. Let ε be the Fermi energy. Show that when ε > µH

N =
mL2

π~2
ε .

Show also that the magnetic moment M of the system in its ground state is given by

M =
µ2mL2

π~2
H ,

and that the ground state energy is

1

2

π~2

mL2
N2 − 1

2
MH .
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4/II/34D Statistical Physics

Write down an expression for the partition function of a classical particle of mass
m moving in three dimensions in a potential U(x) and in equilibrium with a heat bath at
temperature T .

A system of N non-interacting classical particles is placed in the potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer. The gas is in equilibrium at temperature T . Using a suitable
rescaling of variables, show that the free energy F is given by

F

N
= −kT

(
log V +

3

2

n+ 1

n
log kT + log In

)
,

where

In =

(
2mπ

h2

)3/2 ∫ ∞

0

4πu2e−u2n

du .

Regarding V as an external parameter, find the thermodynamic force P , conjugate to V ,
exerted by this system. Find the equation of state and compare with that of an ideal gas
confined in a volume V .

Derive expressions for the entropy S, the internal energy E and the total heat
capacity CV at constant V .

Show that for all n the total heat capacity at constant P is given by

CP = CV +Nk .

[Note that

∫ ∞

0

u2e−u2/2 du =

√
π

2
. ]
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