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Paper 1, Section I

5J Statistical Modelling
Consider a possibly biased coin. Suppose the probability of flipping a head is

0 < p < 1 and p is unknown. Let r > 0 be given. In a sequence of flips, let X be
the total number of tails when r heads are reached. Show that

P(X = x) =

(
x+ r − 1

x

)
(1 − p)xpr, x = 0, 1, . . . .

Show that this is a one-parameter exponential family. Find its natural parameter, sufficient
statistic, and cumulant function, and compute the mean and variance of X in terms of p.

Paper 2, Section I

5J Statistical Modelling
Explain the following R commands in words, then write down the model that is

being fitted.

> n <- 100

> p <- 2

> X <- matrix(rnorm(n * p), nrow = n, ncol = p)

> Y <- rbinom(n, size = 1, prob = 0.5)

> sum(Y)

[1] 48

> fit1 <- glm(Y ~ X, family = binomial)

> sum(predict(fit1, type = "response"))

[1] 48

Explain why the output of the last command should be exactly the same as the
output of sum(Y) by writing down the likelihood function of the model.

Do you expect the following command to output exactly 48, too? If not, do you
expect it to be very different from 48? Justify your answers.

> fit2 <- glm(Y ~ X, family = binomial(probit))

> sum(predict(fit2, type = "response"))
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Paper 3, Section I

5J Statistical Modelling
Write down the density function of a one-parameter exponential family with natural

parameter θ and sufficient statistic Y . Define the deviance D(θ1, θ2) from θ1 to θ2, and
show that it is equal to

D(θ1, θ2) = 2{(θ1 − θ2)µ1 −K(θ1) +K(θ2)},

where µ1 is the mean parameter corresponding to θ1 and K(·) is the cumulant function of
the exponential family.

Derive the deviance from the Poisson distribution with mean µ1 to the Poisson
distribution with mean µ2, and find the second order Taylor approximation of the deviance
as µ2 → µ1. [Hint: Recall that if Y follows a Poisson distribution with mean µ, then
P(Y = k) = µke−µ/k!, k = 0, 1, . . . .]
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Paper 4, Section I

5J Statistical Modelling
Below is a simplified 1993 dataset of US cars. The columns list make, model, price

(in $1000), miles per gallon, number of passengers, length and width in inches, and weight
(in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

... ... ...

91 Volkswagen Corrado 23.3 25 4 159 66 2810

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes are independent. How would you
instruct R to model the logarithm of the price as a linear combination of an error term
and

(i) an intercept;

(ii) an intercept and all other quantitative properties of the cars;

(iii) an intercept, all other quantitative properties of the cars, and the make of the cars?

Suppose the fitted models are assigned to objects fit1, fit2, and fit3, respectively.
Suppose R provides the following analysis of variance table for these models:

> anova(fit1, fit2, fit3)

[...]

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 8584.0

2 87 3349.1 5 5234.9 69.7334 < 2.2e-16 ***

3 56 840.8 31 2508.3 5.3891 2.541e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

What are your conclusions about the statistical models in fit1, fit2 and fit3 based
on this table? Explain how you can determine the number of unique car manufacturers
in this dataset from this table.
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Paper 1, Section II

13J Statistical Modelling
Let X be a fixed n × p design matrix with full column rank. Let H be the

projection matrix onto the column space of X. Suppose the n-vector of response Y
satisfies Y ∼ N(µ, σ2In) where the n-vector µ is fixed but unknown. Let Y ∗ ∼ N(µ, σ2In)
be another random vector that has the same distribution as Y but is independent of Y .

(i) Show that
E(‖HY − Y ∗‖2) = ‖(I −H)µ‖2 + (n+ p)σ2.

Explain why the above identity is an example of the bias-variance tradeoff. [You
may use without proof the fact that H is a projection matrix with rank p.]

(ii) Suppose σ2 is known. Show that Mallows’ Cp, given by

Cp = ‖Y −HY ‖2 + 2pσ2,

is an unbiased estimator of E(‖HY − Y ∗‖2).

For the rest of this question, suppose µ = Xβ for some unknown p-vector β and σ2

is unknown.

(iii) Write down the (1− α)-level confidence ellipsoid for β.

(iv) Recall Cook’s distance for the observation (Xi, Yi) (where XT
i is the ith row of X) is

a measure of the influence of (Xi, Yi) on the fitted values. Give the precise definition
of Cook’s distance and give its interpretation in terms of the confidence ellipsoid for
β.

(v) In the model above with n = 100 and p = 4, you notice that one observation
has Cook’s distance 3.1. Would you be concerned about the influence of this
observation? Justify your answer.

[Hint: You may find some of the following facts useful:

1. If Z ∼ χ2
4, then P(Z 6 1.06) = 0.1, P(Z 6 7.78) = 0.9.

2. If Z ∼ F4,96, then P(Z 6 0.26) = 0.1, P(Z 6 2.00) = 0.9.

3. If Z ∼ F96,4, then P(Z 6 0.50) = 0.1, P(Z 6 3.78) = 0.9.]
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Paper 4, Section II

13J Statistical Modelling
The data frame worldcup22 contains information about the matches played in a

sports competition, including for each team in the match the starting formations (indicated
by letters A-L), the expected goals (xg) and the actual goals. In the questions below we
will assume that the match results are independent.

> worldcup22

team1 team2 team1_xg team2_xg team1_form team2_form team1_goal team2_goal

1 Qatar Ecuador 0.3 1.2 I H 0 2

2 England IR Iran 2.1 1.4 E J 6 2

... ... ...

63 Croatia Morocco 0.7 1.2 E F 2 1

64 Japan France 3.3 2.2 F E 3 3

> fit1 <- glm(team1_goal ~ team1_form + team2_form, worldcup22,

family = poisson)

(i) Let Y denote the response vector and X denote the design matrix for fit1. Write
down the likelihood function that is maximized by the command above. [Recall
that if Y follows a Poisson distribution with mean µ, then P(Y = k) = µke−µ/k!,
k = 0, 1, . . . .]

(ii) Comment on the following abbreviated summary of fit1. Is there enough informa-
tion to conclude that the formation of team1 does not affect its goals? If not, what
is the name of the statistical procedure you can use to test this hypothesis?

> summary(fit1)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.890 0.581 3.3 0.001 **

team1_formB -0.672 0.595 -1.1 0.259

team1_formC -17.865 2446.075 0.0 0.994

team1_formD 0.595 1.293 0.5 0.645

team1_formE -0.361 0.441 -0.8 0.413

team1_formF -0.098 0.414 -0.2 0.812

team1_formG -1.120 1.089 -1.0 0.304

team1_formH -0.332 0.490 -0.7 0.498

team1_formI -1.855 1.104 -1.7 0.093 .

team1_formJ 0.285 0.830 0.3 0.731

team2_formK -18.831 3467.859 0.0 0.996

team2_formB -1.199 0.565 -2.1 0.034 *

team2_formC -1.792 1.080 -1.7 0.097 .

team2_formL -0.905 0.558 -1.6 0.105

team2_formE -1.482 0.478 -3.1 0.002 **

team2_formF -1.464 0.504 -2.9 0.004 **

team2_formH -0.728 0.494 -1.5 0.140

team2_formI -0.980 0.588 -1.7 0.095 .

team2_formJ -0.143 0.612 -0.2 0.816

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[QUESTION CONTINUES ON THE NEXT PAGE]
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(iii) Expected goals (xg) is a new metric in sports analytics that computes the number
of goals a team should have scored based on the quality of the chances created.
State the following two hypotheses mathematically: (a) H1: team1 goal has
mean team1 xg; (b) H2: team1 goal follows a Poisson distribution with mean
team1 xg. Then name the result in probability theory that suggests team1 goal

should approximately follow a Poisson distribution.

(iv) An analyst fitted the following model to test H1. Does the model fit suggest evidence
against H1? Give one reason why we should be skeptical about the standard errors
in the table.

> fit2 <- lm(team1_goal ~ team1_xg - 1, worldcup22)

> summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

team1_xg 1.15790 0.08643 13.4 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(v) The analyst then fitted the following model and computed the 95% confidence
interval for the coefficients. Explain why the observation that the confidence interval
for log(team1 xg) contains 1 does not directly imply that H2 cannot be rejected
at the 5% significance level.

> fit3 <- glm(team1_goal ~ log(team1_xg), worldcup22, family = poisson)

> confint(fit3)

2.5 % 97.5 %

(Intercept) -0.1387542 0.3836497

log(team1_xg) 0.6691166 1.3395731
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Paper 1, Section I
5J Statistical Modelling

Let Yµ be the Poisson distribution with mean µ. Show that the transformation
g(y) = 2

√
y is “variance stabilising” for Yµ in the sense that the variance of g(Yµ) is

approximately 1 when µ is large.

Suppose we fit a linear model to the transformed response
√
Y . How does this differ

from using the square root link in the Poisson regression?

Paper 2, Section I
5J Statistical Modelling

(a) Give the definition of an exponential family of probability distributions. [You
may assume the natural parameter is one-dimensional.]

(b) Suppose Y1, . . . , Yn
i.i.d.∼ f(y; θ) where f(y; θ) is the density function of an

exponential family with natural parameter θ and sufficient statistic Y . Show that
Ȳ =

∑n
i=1 Yi/n is a sufficient statistic for θ.

(c) In the setting above, show that the maximum likelihood estimator of θ is given
by setting the theoretical mean µ(θ) = Eθ(Y1) to the empirical mean Ȳ .

Paper 3, Section I
5J Statistical Modelling

The density function of the Laplace distribution Laplace(µ, σ) with mean µ and
scale parameter σ is given by

f(y;µ, σ) = (2σ)−1 exp

{
−|y − µ|

σ

}
.

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.

Consider the linear model where (Xi, Yi), i = 1, . . . , n are assumed independent and

Yi | Xi ∼ Laplace(XT
i β, σ) .

Show that the maximum likelihood estimator β̂ of β is obtained by minimising

S(β) =
n∑

i=1

|Yi −XT
i β| .

Obtain the maximum likelihood estimator of σ in terms of S(β̂).
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Paper 4, Section I
5J Statistical Modelling

The Boston dataset records medv (median house value), age (average age of houses),
lstat (percent of households with low socioeconomic status), and other covariates for 506
census tracts in Boston.

> head(Boston[, c("medv", "age", "lstat")])

medv age lstat

1 24.0 65.2 4.98

2 21.6 78.9 9.14

3 34.7 61.1 4.03

4 33.4 45.8 2.94

5 36.2 54.2 5.33

6 28.7 58.7 5.21

Describe the mathematical model fitted in the R code below and give three
observations from the output of the code that you think are the most noteworthy.

> summary(fit <- lm(medv ~ lstat * age , data = Boston))

Residuals:

Min 1Q Median 3Q Max

-15.806 -4.045 -1.333 2.085 27.552

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***

lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***

age -0.0007209 0.0198792 -0.036 0.9711

lstat:age 0.0041560 0.0018518 2.244 0.0252 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.149 on 502 degrees of freedom

Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

>

> par(mfrow = c(2, 2))

> plot(fit)

[QUESTION CONTINUES ON THE NEXT PAGE]
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Paper 1, Section II
13J Statistical Modelling

The following dataset contains information about some of the passengers on RMS
Titanic when it sank on 15th April, 1912.

> head(titanic)

Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked

1 0 3 male 22 1 0 7.2500 <NA> S

2 1 1 female 38 1 0 71.2833 C85 C

3 1 3 female 26 0 0 7.9250 <NA> S

4 1 1 female 35 1 0 53.1000 C123 S

5 0 3 male 35 0 0 8.0500 <NA> S

6 0 3 male NA 0 0 8.4583 <NA> Q

> nrow(titanic)

[1] 889

We would like to predict which passengers were more likely to survive (Survived,
0 = No, 1 = Yes) using the other covariates, including ticket class (Pclass, 1 = 1st, 2 =
2nd, 3 = 3rd), sex (Sex), age (Age), number of siblings/spouses aboard (SibSp), number
of parents/children aboard (Parch), passenger fare (Fare), cabin number (Cabin), port of
embarkation (Embarked, C = Cherbourg, Q = Queenstown, S = Southampton).

(a) Describe what the following chunk of R code does.

> apply(titanic, 2, function(x) sum(is.na(x)))

Survived Pclass Sex Age SibSp Parch Fare Cabin

0 0 0 177 0 0 0 687

Embarked

0

> titanic$Cabin <- NULL

> titanic$Age[is.na(titanic$Age)] <- mean(titanic$Age, na.rm = TRUE)

(b) Write down the generalised linear model fitted (including the likelihood function
maximised) by the code below. Define Akaike’s information criterion (AIC) and explain,
in words, how you can use the backward stepwise algorithm and AIC to select a model.

> summary(fit <- glm(Survived ~ ., family = binomial, data = titanic))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.6445 -0.5907 -0.4227 0.6214 2.4432

[QUESTION CONTINUES ON THE NEXT PAGE]
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.284055 0.564696 9.357 < 2e-16 ***

Pclass -1.100033 0.143530 -7.664 1.80e-14 ***

Sexmale -2.718736 0.200779 -13.541 < 2e-16 ***

Age -0.039885 0.007855 -5.078 3.82e-07 ***

SibSp -0.325732 0.109368 -2.978 0.0029 **

Parch -0.092470 0.118702 -0.779 0.4360

Fare 0.001919 0.002376 0.808 0.4192

EmbarkedQ -0.035043 0.381920 -0.092 0.9269

EmbarkedS -0.418564 0.236788 -1.768 0.0771 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom

Residual deviance: 784.21 on 880 degrees of freedom

AIC: 802.21

Number of Fisher Scoring iterations: 5

(c) The model summary above says “Dispersion parameter for binomial family taken
to be 1”. Do you think that is reasonable based on the model summary? Justify your
answer. You might find the following information useful.

> qnorm(0.25) # 25th-percentile of the standard normal distribution

[1] -0.6744898

(d) Give an estimator of the dispersion parameter in this model when it is not fixed
at 1.

Part II, Paper 1
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Paper 4, Section II
13J Statistical Modelling

Consider the following R code:

> n <- 1000000

> sigma_z <- 1; sigma_x1 <- 0.5; sigma_x2 <- 1; sigma_y <- 2; beta <- 2

> Z <- sigma_z * rnorm(n)

> X1 <- Z + sigma_x1 * rnorm(n)

> X2 <- Z + sigma_x2 * rnorm(n)

> Y <- beta * Z + sigma_y * rnorm(n)

> lm(Y ~ Z)

Call:

lm(formula = Y ~ Z)

Coefficients:

(Intercept) Z

-0.003089 1.999780

> lm(Y ~ X1)

Call:

lm(formula = Y ~ X1)

Coefficients:

(Intercept) X1

-0.002904 1.600521

> lm(Y ~ X2)

Call:

lm(formula = Y ~ X2)

Coefficients:

(Intercept) X2

-0.002672 0.997499

Describe the phenomenon you see in the output above, then give a mathematical
explanation for this phenomenon. Do you expect the slope coefficient in the second model
to be generally smaller than that in the first model? Do you think modifying (for example,
doubling) the value of sigma y will substantially alter the slope coefficient in the second
model? Justify your answer.
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Paper 1, Section I

5J Statistical Modelling
Let µ > 0. The probability density function of the inverse Gaussian distribution

(with the shape parameter equal to 1) is given by

f(x;µ) =
1√
2πx3

exp

[
−(x− µ)2

2µ2x

]
.

Show that this is a one-parameter exponential family. What is its natural parameter?
Show that this distribution has mean µ and variance µ3.

Paper 2, Section I

5J Statistical Modelling
Define a generalised linear model for a sample Y1, . . . , Yn of independent random

variables. Define further the concept of the link function. Define the binomial regression
model (without the dispersion parameter) with logistic and probit link functions. Which
of these is the canonical link function?

Paper 3, Section I

5J Statistical Modelling
Consider the normal linear model Y | X ∼ N(Xβ, σ2I), where X is a n× p design

matrix, Y is a vector of responses, I is the n× n identity matrix, and β, σ2 are unknown
parameters.

Derive the maximum likelihood estimator of the pair β and σ2. What is the
distribution of the estimator of σ2? Use it to construct a (1− α)-level confidence interval
of σ2. [You may use without proof the fact that the “hat matrix” H = X(XTX)−1XT is
a projection matrix.]
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Paper 4, Section I

5J Statistical Modelling
The data frame data contains the daily number of new avian influenza cases in a

large poultry farm.

> rbind(head(data, 2), tail(data, 2))

Day Count

1 1 4

2 2 6

13 13 42

14 14 42

Write down the model being fitted by the R code below. Does the model seem to
provide a satisfactory fit to the data? Justify your answer.

The owner of the farm estimated that the size of the epidemic was initially doubling
every 7 days. Is that estimate supported by the analysis below? [You may need
log 2 ≈ 0.69.]

> fit <- glm(Count ~ Day, family = poisson, data)

> summary(fit)

Call:

glm(formula = Count ~ Day, family = poisson, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7298 -0.6639 0.0897 0.4473 1.4466

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5624 0.1759 8.883 <2e-16 ***

Day 0.1658 0.0166 9.988 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 122.9660 on 13 degrees of freedom

Residual deviance: 9.9014 on 12 degrees of freedom

> pchisq(9.9014, 12, lower.tail = FALSE)

[1] 0.6246105

> plot(Count ~ Day, data)

> lines(data$Day, predict(fit, data, type = "response"))

[QUESTION CONTINUES ON THE NEXT PAGE]
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Paper 1, Section II

13J Statistical Modelling
The following data were obtained in a randomised controlled trial for a drug. Due

to a manufacturing error, a subset of trial participants received a low dose (LD) instead
of a standard dose (SD) of the drug.

> data

treatment outcome count

1 Control Better 5728

2 Control Worse 101

3 LD Better 1364

4 LD Worse 3

5 SD Better 4413

6 SD Worse 27

(a) Below we analyse the data using Poisson regression:

> fit1 <- glm(count ~ treatment + outcome, family = poisson, data)

> fit2 <- glm(count ~ treatment * outcome, family = poisson, data)

> anova(fit1, fit2, test = "LRT")

Analysis of Deviance Table

Model 1: count ~ treatment + outcome

Model 2: count ~ treatment * outcome

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 44.48

2 0 0.00 2 44.48 2.194e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(i) After introducing necessary notation, write down the Poisson models being
fitted above.

(ii) Write down the corresponding multinomial models, then state the key the-
oretical result (the “Poisson trick”) that allows you to fit the multinomial
models using Poisson regression. [You do not need to prove this theoretical
result.]

(iii) Explain why the number of degrees of freedom in the likelihood ratio test is
2 in the analysis of deviance table. What can you conclude about the drug?

(b) Below is the summary table of the second model:

[QUESTION CONTINUES ON THE NEXT PAGE]

Part II, 2021 List of Questions [TURN OVER]

2021



100

> summary(fit2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.65312 0.01321 654.899 < 2e-16 ***

treatmentLD -1.43494 0.03013 -47.628 < 2e-16 ***

treatmentSD -0.26081 0.02003 -13.021 < 2e-16 ***

outcomeWorse -4.03800 0.10038 -40.228 < 2e-16 ***

treatmentLD:outcomeWorse -2.08156 0.58664 -3.548 0.000388 ***

treatmentSD:outcomeWorse -1.05847 0.21758 -4.865 1.15e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(i) Drug efficacy is defined as one minus the ratio of the probability of worsening
in the treated group to the probability of worsening in the control group. By
using a more sophisticated method, a published analysis estimated that the
drug efficacy is 90.0% for the LD treatment and 62.1% for the SD treatment.
Are these numbers similar to what is obtained by Poisson regression? [Hint:
e−1 ≈ 0.37, e−2 ≈ 0.14, and e−3 ≈ 0.05, where e is the base of the natural
logarithm.]

(ii) Explain why the information in the summary table is not enough to test the
hypothesis that the LD drug and the SD drug have the same efficacy. Then
describe how you can test this hypothesis using analysis of deviance in R.
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Paper 4, Section II

13J Statistical Modelling
Let X be an n × p non-random design matrix and Y be a n-vector of random

responses. Suppose Y ∼ N(µ, σ2I), where µ is an unknown vector and σ2 > 0 is known.

(a) Let λ > 0 be a constant. Consider the ridge regression problem

β̂λ = arg min
β
‖Y −Xβ‖2 + λ‖β‖2 .

Let µ̂λ = Xβ̂λ be the fitted values. Show that µ̂λ = HλY , where

Hλ = X(XTX + λI)−1XT .

(b) Show that

E(‖Y − µ̂λ‖2) = ‖(I −Hλ)µ‖2 +
{
n− 2 trace(Hλ) + trace(H2

λ)
}
σ2.

(c) Let Y ∗ = µ + ε∗, where ε∗ ∼ N(0, σ2I) is independent of Y . Show that
‖Y − µ̂λ‖2 + 2σ2trace(Hλ) is an unbiased estimator of E(‖Y ∗ − µ̂λ‖2).

(d) Describe the behaviour (monotonicity and limits) of E(‖Y ∗− µ̂λ‖2) as a function
of λ when p = n and X = I. What is the minimum value of E(‖Y ∗ − µ̂λ‖2)?
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Paper 1, Section I

5J Statistical Modelling
Consider a generalised linear model with full column rank design matrix X ∈ Rn×p,

output variables Y = (Y1, . . . , Yn) ∈ Rn, link function g, mean parameters µ = (µ1, . . . , µn)
and known dispersion parameters σ2i = aiσ

2, i = 1, . . . , n. Denote its variance function by
V and recall that g(µi) = xTi β, i = 1, . . . , n, where β ∈ Rp and xTi is the ith row of X.

(a) Define the score function in terms of the log-likelihood function and the Fisher
information matrix, and define the update of the Fisher scoring algorithm.

(b) Let W ∈ Rn×n be a diagonal matrix with positive entries. Note that XTWX is
invertible. Show that

argminb∈Rp

{
n∑

i=1

Wii(Yi − xTi b)2
}

= (XTWX)−1XTWY.

[Hint: you may use that argminb∈Rp

{
‖Y −XT b‖2

}
= (XTX)−1XTY.]

(c) Recall that the score function and the Fisher information matrix have entries

Uj(β) =
n∑

i=1

(Yi − µi)Xij

aiσ2V (µi)g′(µi)
j = 1, . . . , p,

ijk(β) =
n∑

i=1

XijXik

aiσ2V (µi){g′(µi)}2
j, k = 1, . . . , p.

Justify, performing the necessary calculations and using part (b), why the Fisher scoring
algorithm is also known as the iterative reweighted least squares algorithm.
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Paper 2, Section I

5J Statistical Modelling
The data frame WCG contains data from a study started in 1960 about heart disease.

The study used 3154 adult men, all free of heart disease at the start, and eight and a
half years later it recorded into variable chd whether they suffered from heart disease (1
if the respective man did and 0 otherwise) along with their height and average number of
cigarettes smoked per day. Consider the R code below and its abbreviated output.

> data.glm <- glm(chd~height+cigs, family = binomial, data = WCG)

> summary(data.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.50161 1.84186 -2.444 0.0145

height 0.02521 0.02633 0.957 0.3383

cigs 0.02313 0.00404 5.724 1.04e-08

...

(a) Write down the model fitted by the code above.

(b) Interpret the effect on heart disease of a man smoking an average of two packs
of cigarettes per day if each pack contains 20 cigarettes.

(c) Give an alternative latent logistic-variable representation of the model. [Hint: if
F is the cumulative distribution function of a logistic random variable, its inverse function
is the logit function.]
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Paper 3, Section I

5J Statistical Modelling
Suppose we have data (Y1, x

T
1 ), . . . , (Yn, x

T
n ), where the Yi are independent condi-

tional on the design matrix X whose rows are the xTi , i = 1, . . . , n. Suppose that given
xi, the true probability density function of Yi is fxi , so that the data is generated from an
element of a model F := {(fxi(· ; θ))ni=1 , θ ∈ Θ} for some Θ ⊆ Rq and q ∈ N.

(a) Define the log-likelihood function for F , the maximum likelihood estimator of θ
and Akaike’s Information Criterion (AIC) for F .

From now on let F be the normal linear model, i.e. Y := (Y1, . . . , Yn)T = Xβ + ε,
where X ∈ Rn×p has full column rank and ε ∼ Nn(0, σ2I).

(b) Let σ̂2 denote the maximum likelihood estimator of σ2. Show that the AIC of
F is

n(1 + log(2πσ̂2)) + 2(p+ 1).

(c) Let χ2
n−p be a chi-squared distribution on n− p degrees of freedom. Using any

results from the course, show that the distribution of the AIC of F is

n log(χ2
n−p) + n(log(2πσ2/n) + 1) + 2(p+ 1).

[Hint: σ̂2 := n−1‖Y −Xβ̂‖2 = n−1‖(I − P )ε‖2, where β̂ is the maximum likelihood
estimator of β and P is the projection matrix onto the column space of X.]
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Paper 4, Section I

5J Statistical Modelling
Suppose you have a data frame with variables response, covar1, and covar2. You

run the following commands on R.

model <- lm(response ~ covar1 + covar2)

summary(model)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.1024 0.1157 -18.164 <2e-16

covar1 1.6329 2.6557 0.615 0.542

covar2 0.3755 2.5978 0.145 0.886

...

(a) Consider the following three scenarios:

(i) All the output you have is the abbreviated output of summary(model) above.

(ii) You have the abbreviated output of summary(model) above together with

Residual standard error: 0.8097 on 47 degrees of freedom

Multiple R-squared: 0.8126, Adjusted R-squared: 0.8046

F-statistic: 101.9 on 2 and 47 DF, p-value: < 2.2e-16

(iii) You have the abbreviated output of summary(model) above together with

Residual standard error: 0.9184 on 47 degrees of freedom

Multiple R-squared: 0.000712, Adjusted R-squared: -0.04181

F-statistic: 0.01674 on 2 and 47 DF, p-value: 0.9834

What conclusion can you draw about which variables explain the response in each
of the three scenarios? Explain.

(b) Assume now that you have the abbreviated output of summary(model) above
together with

anova(lm(response ~ 1), lm(response ~ covar1), model)

...

Res.Df RSS Df Sum of Sq F Pr(>F)

1 49 164.448

2 ? 30.831 ? 133.618 ? <2e-16

3 ? 30.817 ? 0.014 ? ?

...

What are the values of the entries with a question mark? [You may express your answers
as arithmetic expressions if necessary].
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Paper 1, Section II

13J Statistical Modelling
We consider a subset of the data on car insurance claims from Hallin and Ingenbleek

(1983). For each customer, the dataset includes total payments made per policy-year, the
amount of kilometres driven, the bonus from not having made previous claims, and the
brand of the car. The amount of kilometres driven is a factor taking values 1, 2, 3, 4, or 5,
where a car in level i+ 1 has driven a larger number of kilometres than a car in level i for
any i = 1, 2, 3, 4. A statistician from an insurance company fits the following model on R.

> model1 <- lm(Paymentperpolicyyr ~ as.numeric(Kilometres) + Brand + Bonus)

(i) Why do you think the statistician transformed variable Kilometres from a factor
to a numerical variable?

(ii) To check the quality of the model, the statistician applies a function to model1

which returns the following figure:
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What does the plot represent? Does it suggest that model1 is a good model?
Explain. If not, write down a model which the plot suggests could be better.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(iii) The statistician fits the model suggested by the graph and calls it model2.
Consider the following abbreviated output:

> summary(model2)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.514035 0.186339 34.958 < 2e-16 ***

as.numeric(Kilometres) 0.057132 0.032654 1.750 0.08126 .

Brand2 0.363869 0.186857 1.947 0.05248 .

...

Brand9 0.125446 0.186857 0.671 0.50254

Bonus -0.178061 0.022540 -7.900 6.17e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7817 on 284 degrees of freedom

...

Using the output, write down a 95% prediction interval for the ratio between the
total payments per policy year for two cars of the same brand and with the same value of
Bonus, one of which has a Kilometres value one higher than the other. You may express
your answer as a function of quantiles of a common distribution, which you should specify.

(iv) Write down a generalised linear model for Paymentperpolicyyr which may be
a better model than model1 and give two reasons. You must specify the link function.
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Paper 4, Section II

13J Statistical Modelling
(a) Define a generalised linear model (GLM) with design matrix X ∈ Rn×p,

output variables Y := (Y1, . . . , Yn)T and parameters µ := (µ1, . . . , µn)T , β ∈ Rp and
σ2i := aiσ

2 ∈ (0,∞), i = 1, . . . , n. Derive the moment generating function of Y , i.e. give
an expression for E

[
exp

(
tTY

)]
, t ∈ Rn, wherever it is well-defined.

Assume from now on that the GLM satisfies the usual regularity assumptions, X
has full column rank, and σ2 is known and satisfies 1/σ2 ∈ N.

(b) Let Ỹ :=
(
Ỹ1, . . . , Ỹn/σ2

)T
be the output variables of a GLM from the same

family as that of part (a) and parameters µ̃ := (µ̃1, . . . , µ̃n/σ2)T and σ̃2 := (σ̃21, . . . , σ̃
2
n/σ2).

Suppose the output variables may be split into n blocks of size 1/σ2 with constant
parameters. To be precise, for each block i = 1, . . . , n, if j ∈ {(i − 1)/σ2 + 1, . . . , i/σ2}
then

µ̃j = µi and σ̃2j = ai

with µi = µi(β) and ai defined as in part (a). Let Ȳ := (Ȳ1, . . . , Ȳn)T , where Ȳi :=

σ2
∑1/σ2

k=1 Ỹ(i−1)/σ2+k.

(i) Show that Ȳ is equal to Y in distribution. [Hint: you may use without proof that
moment generating functions uniquely determine distributions from exponential dispersion
families.]

(ii) For any ỹ ∈ Rn/σ2
, let ȳ = (ȳ1, . . . , ȳn)T , where ȳi := σ2

∑1/σ2

k=1 ỹ(i−1)/σ2+k. Show

that the model function of Ỹ satisfies

f
(
ỹ; µ̃, σ̃2

)
= g1

(
ȳ; µ̃, σ̃2

)
× g2

(
ỹ; σ̃2

)

for some functions g1, g2, and conclude that Ȳ is a sufficient statistic for β from Ỹ .

(iii) For the model and data from part (a), let µ̂ be the maximum likelihood
estimator for µ and let D(Y ;µ) be the deviance at µ. Using (i) and (ii), show that

D(Y ; µ̂)

σ2
=d 2 log

{
sup

µ̃′∈M̃1
f(Ỹ ; µ̃′, σ̃2)

sup
µ̃′∈M̃0

f(Ỹ ; µ̃′, σ̃2)

}
,

where =d means equality in distribution and M̃0 and M̃1 are nested subspaces of Rn/σ2

which you should specify. Argue that dim(M̃1) = n and dim(M̃0) = p, and, assuming
the usual regularity assumptions, conclude that

D(Y ; µ̂)

σ2
→d χ2

n−p as σ2 → 0,

stating the name of the result from class that you use.
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Paper 4, Section I

5J Statistical Modelling
In a normal linear model with design matrix X ∈ Rn×p, output variables y ∈ Rn

and parameters β ∈ Rp and σ2 > 0, define a (1 − α)-level prediction interval for a new
observation with input variables x∗ ∈ Rp. Derive an explicit formula for the interval,
proving that it satisfies the properties required by the definition.

[You may assume that the maximum likelihood estimator β̂ is independent of
σ−2‖y −Xβ̂‖22, which has a χ2

n−p distribution.]

Paper 3, Section I

5J Statistical Modelling
(a) For a given model with likelihood L(β), β ∈ Rp, define the Fisher information

matrix in terms of the Hessian of the log-likelihood.

Consider a generalised linear model with design matrix X ∈ Rn×p, output variables
y ∈ Rn, a bijective link function, mean parameters µ = (µ1, . . . , µn) and dispersion
parameters σ21 = · · · = σ2n = σ2 > 0. Assume σ2 is known.

(b) State the form of the log-likelihood.

(c) For the canonical link, show that the Fisher information matrix is equal to

σ−2XTWX,

for a diagonal matrix W depending on the means µ. Compute the entries of W in terms
of µ.
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5J Statistical Modelling
The cycling data frame contains the results of a study on the effects of cycling to

work among 1,000 participants with asthma, a respiratory illness. Half of the participants,
chosen uniformly at random, received a monetary incentive to cycle to work, and the other
half did not. The variables in the data frame are:

• miles: the average number of miles cycled per week

• episodes: the number of asthma episodes experienced during the study

• incentive: whether or not a monetary incentive to cycle was given

• history: the number of asthma episodes in the year preceding the study

Consider the R code below and its abbreviated output.

> lm.1 = lm(episodes ~ miles + history, data=cycling)

> summary(lm.1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.66937 0.07965 8.404 < 2e-16 ***

miles -0.04917 0.01839 -2.674 0.00761 **

history 1.48954 0.04818 30.918 < 2e-16 ***

> lm.2 = lm(episodes ~ incentive + history, data=cycling)

> summary(lm.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09539 0.06960 1.371 0.171

incentiveYes 0.91387 0.06504 14.051 <2e-16 ***

history 1.46806 0.04346 33.782 <2e-16 ***

> lm.3 = lm(miles ~ incentive + history, data=cycling)

> summary(lm.3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.47050 0.11682 12.588 < 2e-16 ***

incentiveYes 1.73282 0.10917 15.872 < 2e-16 ***

history 0.47322 0.07294 6.487 1.37e-10 ***

(a) For each of the fitted models, briefly explain what can be inferred about
participants with similar histories.

(b) Based on this analysis and the experimental design, is it advisable for a
participant with asthma to cycle to work more often? Explain.
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Paper 1, Section I

5J Statistical Modelling
The Gamma distribution with shape parameter α > 0 and scale parameter λ > 0

has probability density function

f(y;α, λ) =
λα

Γ(α)
yα−1e−λy for y > 0

where Γ is the Gamma function. Give the definition of an exponential dispersion family
and show that the set of Gamma distributions forms one such family. Find the cumulant
generating function and derive the mean and variance of the Gamma distribution as a
function of α and λ.
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Paper 4, Section II

13J Statistical Modelling
A sociologist collects a dataset on friendships among m Cambridge graduates. Let

yi,j = 1 if persons i and j are friends 3 years after graduation, and yi,j = 0 otherwise.
[You may assume that yi,j = yj,i and yi,i = 0.] Let zi be a categorical variable for person
i’s college, taking values in the set {1, 2, . . . , C}. Consider logistic regression models,

P(yi,j = 1) =
eθi,j

1 + eθi,j
, 1 6 i < j 6 m,

with parameters either

(i) θi,j = βzi,zj ; or,

(ii) θi,j = βzi + βzj ; or,

(iii) θi,j = βzi + βzj + β0δzi,zj , where δzi,zj = 1 if zi = zj and 0 otherwise.

(a) Write down the likelihood of the models.

(b) Show that the three models are nested and specify the order. Suggest a statistic
to compare models (i) and (iii), give its definition and specify its asymptotic distribution
under the null hypothesis, citing any necessary theorems.

(c) Suppose persons i and j are in the same college k; consider the number of
friendships, Mi and Mj, that each of them has with people in college ℓ 6= k (ℓ and
k fixed). In each of the models above, compare the distribution of these two random
variables. Explain why this might lead to a poor quality of fit.

(d) Find a minimal sufficient statistic for β = (βk)k=0,1,...,C in model (iii). [You
may use the following characterisation of a minimal sufficient statistic: let f(β; y) be the
likelihood in this model, where y = (yi,j)i,j=1,...,m; suppose T = t(y) is a statistic such that
f(β; y)/f(β; y′) is constant in β if and only if t(y) = t(y′); then, T is a minimal sufficient
statistic for β.]
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13J Statistical Modelling
The ice cream data frame contains the result of a blind tasting of 90 ice creams,

each of which is rated as poor, good, or excellent. It also contains the price of each ice
cream classified into three categories. Consider the R code below and its output.

> table(ice_cream)

score

price excellent good poor

high 12 8 10

low 7 9 14

medium 12 11 7

>

> ice_cream.counts = as.data.frame(xtabs(Freq ~ price + score, data=table(ice_cream)))

> glm.fit = glm(Freq ~ price + score,data=ice_cream.counts,family="poisson")

> summary(glm.fit)

Call:

glm(formula = Freq ~ price + score - 1, family = "poisson", data = ice_cream.counts)

Deviance Residuals:

1 2 3 4 5 6 7 8 9

0.5054 -1.1019 0.5054 -0.4475 -0.1098 0.5304 -0.1043 1.0816 -1.1019

Coefficients:

Estimate Std. Error z value Pr(>|z|)

pricehigh 2.335e+00 2.334e-01 10.01 <2e-16 ***

pricelow 2.335e+00 2.334e-01 10.01 <2e-16 ***

pricemedium 2.335e+00 2.334e-01 10.01 <2e-16 ***

scoregood -1.018e-01 2.607e-01 -0.39 0.696

scorepoor 3.892e-14 2.540e-01 0.00 1.000

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 257.2811 on 9 degrees of freedom

Residual deviance: 4.6135 on 4 degrees of freedom

AIC: 51.791

(a) Write down the generalised linear model fitted by the code above.

(b) Prove that the fitted values resulting from the maximum likelihood estimator of
the coefficients in this model are identical to those resulting from the maximum likelihood
estimator when fitting a multinomial model which assumes the number of ice creams at
each price level is fixed.

(c) Using the output above, perform a goodness-of-fit test at the 1% level, specifying
the null hypothesis, the test statistic, its asymptotic null distribution, any assumptions of
the test and the decision from your test.

(d) If we believe that better ice creams are more expensive, what could be a more
powerful test against the model fitted above and why?
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5J Statistical Modelling
A scientist is studying the effects of a drug on the weight of mice. Forty mice are

divided into two groups, control and treatment. The mice in the treatment group are
given the drug, and those in the control group are given water instead. The mice are kept
in 8 different cages. The weight of each mouse is monitored for 10 days, and the results
of the experiment are recorded in the data frame Weight.data. Consider the following R
code and its output.

> head(Weight.data)

Time Group Cage Mouse Weight

1 1 Control 1 1 24.77578

2 2 Control 1 1 24.68766

3 3 Control 1 1 24.79008

4 4 Control 1 1 24.77005

5 5 Control 1 1 24.65092

6 6 Control 1 1 24.38436

> mod1 = lm(Weight ~ Time*Group + Cage, data=Weight.data)

> summary(mod1)

Call:

lm(formula = Weight ~ Time * Group + Cage, data = Weight.data)

Residuals:

Min 1Q Median 3Q Max

-1.36903 -0.33527 -0.01719 0.38807 1.24368

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.534771 0.100336 244.525 < 2e-16 ***

Time -0.006023 0.012616 -0.477 0.63334

GroupTreatment 0.321837 0.121993 2.638 0.00867 **

Cage2 -0.400228 0.095875 -4.174 3.68e-05 ***

Cage3 0.286941 0.102494 2.800 0.00537 **

Cage4 0.007535 0.095875 0.079 0.93740

Cage6 0.124767 0.125530 0.994 0.32087

Cage8 -0.295168 0.125530 -2.351 0.01920 *

Time:GroupTreatment -0.173515 0.017842 -9.725 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5125 on 391 degrees of freedom

Multiple R-squared: 0.5591,Adjusted R-squared: 0.55

F-statistic: 61.97 on 8 and 391 DF, p-value: < 2.2e-16

Which parameters describe the rate of weight loss with time in each group?
According to the R output, is there a statistically significant weight loss with time in
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the control group?

Three diagnostic plots were generated using the following R code.

mouse1 = (Weight.data$Mouse==1)

plot(Weight.data$Time[mouse1],mod1$residuals[mouse1])

mouse2 = (Weight.data$Mouse==2)

plot(Weight.data$Time[mouse2],mod1$residuals[mouse2])

mouse3 = (Weight.data$Mouse==3)

plot(Weight.data$Time[mouse3],mod1$residuals[mouse3])
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Based on these plots, should you trust the significance tests shown in the output of
the command summary(mod1)? Explain.
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5J Statistical Modelling
The data frame Cases.of.flu contains a list of cases of flu recorded in 3 London

hospitals during each month of 2017. Consider the following R code and its output.

> table(Cases.of.flu)

Hospital

Month A B C

April 10 40 27

August 9 34 19

December 24 129 81

February 49 134 74

January 45 138 78

July 5 47 35

June 11 36 22

March 20 82 41

May 5 43 23

November 17 82 62

October 6 26 19

September 6 40 21

> Cases.of.flu.table = as.data.frame(table(Cases.of.flu))

> head(Cases.of.flu.table)

Month Hospital Freq

1 April A 10

2 August A 9

3 December A 24

4 February A 49

5 January A 45

6 July A 5

> mod1 = glm(Freq ~., data=Cases.of.flu.table, family=poisson)

> mod1$dev

[1] 28.51836

> levels(Cases.of.flu$Month)

[1] "April" "August" "December" "February" "January" "July"

[7] "June" "March" "May" "November" "October" "September"

> levels(Cases.of.flu$Month) <- c("Q2","Q3","Q4","Q1","Q1","Q3",

+ "Q2","Q1","Q2","Q4","Q4","Q3")

> Cases.of.flu.table = as.data.frame(table(Cases.of.flu))

> mod2 = glm(Freq ~., data=Cases.of.flu.table, family=poisson)

> mod2$dev

[1] 17.9181

Describe a test for the null hypothesis of independence between the variables Month
and Hospital using the deviance statistic. State the assumptions of the test.

Perform the test at the 1% level for each of the two different models shown above.
You may use the table below showing 99th percentiles of the χ2

p distribution with a range of
degrees of freedom p. How would you explain the discrepancy between their conclusions?
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Degrees of freedom 99th percentile Degrees of freedom 99th percentile

1 6.63 21 38.93
2 9.21 22 40.29
3 11.34 23 41.64
4 13.28 24 42.98
5 15.09 25 44.31
6 16.81 26 45.64
7 18.48 27 46.96
8 20.09 28 48.28
9 21.67 29 49.59
10 23.21 30 50.89
11 24.72 31 52.19
12 26.22 32 53.49
13 27.69 33 54.78
14 29.14 34 56.06
15 30.58 35 57.34
16 32.00 36 58.62
17 33.41 37 59.89
18 34.81 38 61.16
19 36.19 39 62.43
20 37.57 40 63.69

Paper 2, Section I

5J Statistical Modelling
Consider a linear model Y = Xβ + σ2ε with ε ∼ N(0, I), where the design matrix

X is n by p. Provide an expression for the F -statistic used to test the hypothesis
βp0+1 = βp0+2 = · · · = βp = 0 for p0 < p. Show that it is a monotone function of a
log-likelihood ratio statistic.
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5J Statistical Modelling
The data frame Ambulance contains data on the number of ambulance requests

from a Cambridgeshire hospital on different days. In addition to the number of ambulance
requests on each day, the dataset records whether each day fell in the winter season, on a
weekend, or on a bank holiday, as well as the pollution level on each day.

> head(Ambulance)

Winter Weekend Bank.holiday Pollution.level Ambulance.requests

1 Yes Yes No High 16

2 No Yes No Low 7

3 No No No High 22

4 No Yes No Medium 11

5 Yes Yes No High 18

6 No No No Medium 25

A health researcher fitted two models to the dataset above using R. Consider the
following code and its output.

> mod1 = glm(Ambulance.requests ~ ., data=Ambulance, family=poisson)

> summary(mod1)

Call:

glm(formula = Ambulance.requests ~ ., family = poisson, data = Ambulance)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.2351 -0.8157 -0.0982 0.7787 3.6568

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.968477 0.036770 80.732 < 2e-16 ***

WinterYes 0.547756 0.033137 16.530 < 2e-16 ***

WeekendYes -0.607910 0.038184 -15.921 < 2e-16 ***

Bank.holidayYes 0.165684 0.049875 3.322 0.000894 ***

Pollution.levelLow -0.032739 0.042290 -0.774 0.438846

Pollution.levelMedium -0.001587 0.040491 -0.039 0.968734

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 818.08 on 199 degrees of freedom

Residual deviance: 304.97 on 194 degrees of freedom

AIC: 1262.4

Part II, 2018 List of Questions

2018



105

> mod2 = glm(Ambulance.requests ~ Winter+Weekend, data=Ambulance, family=poisson)

> summary(mod2)

Call:

glm(formula = Ambulance.requests ~ Winter + Weekend, family = poisson,

data = Ambulance)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4480 -0.8544 -0.1153 0.7689 3.5903

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.97077 0.02163 137.34 <2e-16 ***

WinterYes 0.55586 0.03268 17.01 <2e-16 ***

WeekendYes -0.60371 0.03813 -15.84 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 818.08 on 199 degrees of freedom

Residual deviance: 316.39 on 197 degrees of freedom

AIC: 1267.9

Define the two models fitted by this code and perform a hypothesis test with level
1% in which one of the models is the null hypothesis and the other is the alternative. State
the theorem used in this hypothesis test. You may use the information generated by the
following commands.

> qchisq(0.01, df=2, lower.tail=FALSE)

[1] 9.21034

> qchisq(0.01, df=3, lower.tail=FALSE)

[1] 11.34487

> qchisq(0.01, df=4, lower.tail=FALSE)

[1] 13.2767

> qchisq(0.01, df=5, lower.tail=FALSE)

[1] 15.08627
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Paper 4, Section II

13J Statistical Modelling
Bridge is a card game played by 2 teams of 2 players each. A bridge club records

the outcomes of many games between teams formed by its m members. The outcomes are
modelled by

P(team {i, j} wins against team {k, ℓ}) =
exp(βi + βj + β{i,j} − βk − βℓ − β{k,ℓ})

1 + exp(βi + βj + β{i,j} − βk − βℓ − β{k,ℓ})
,

where βi ∈ R is a parameter representing the skill of player i, and β{i,j} ∈ R is a parameter
representing how well-matched the team formed by i and j is.

(a) Would it make sense to include an intercept in this logistic regression model?
Explain your answer.

(b) Suppose that players 1 and 2 always play together as a team. Is there a unique
maximum likelihood estimate for the parameters β1, β2 and β{1,2}? Explain your answer.

(c) Under the model defined above, derive the asymptotic distribution (including the
values of all relevant parameters) for the maximum likelihood estimate of the probability
that team {i, j} wins a game against team {k, ℓ}. You can state it as a function of the true
vector of parameters β, and the Fisher information matrix iN (β) with N games. You may
assume that iN (β)/N → I(β) as N → ∞, and that β has a unique maximum likelihood
estimate for N large enough.

Paper 1, Section II

13J Statistical Modelling
A clinical study follows a number of patients with an illness. Let Yi ∈ [0,∞) be the

length of time that patient i lives and xi ∈ Rp a vector of predictors, for i ∈ {1, . . . , n}.
We shall assume that Y1, . . . , Yn are independent. Let fi and Fi be the probability density
function and cumulative distribution function, respectively, of Yi. The hazard function hi
is defined as

hi(t) =
fi(t)

1− Fi(t)
for t > 0.

We shall assume that hi(t) = λ(t) exp(β⊤xi), where β ∈ Rp is a vector of coefficients and
λ(t) is some fixed hazard function.

(a) Prove that Fi(t) = 1− exp(−
∫ t
0 hi(s)ds).

(b) Using the equation in part (a), write the log-likelihood function for β in terms
of λ, β, xi and Yi only.

(c) Show that the maximum likelihood estimate of β can be obtained through a
surrogate Poisson generalised linear model with an offset.
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Paper 1, Section I

5J Statistical Modelling
The dataset ChickWeights records the weight of a group of chickens fed four

different diets at a range of time points. We perform the following regressions in R.

attach(ChickWeight)

fit1 = lm(weight~ Time+Diet)

fit2 = lm(log(weight)~ Time+Diet)

fit3 = lm(log(weight)~ Time+Diet+Time:Diet)

(i) Which hypothesis test does the following command perform? State the degrees of
freedom, and the conclusion of the test.

> anova(fit2,fit3)

Analysis of Variance Table

Model 1: log(weight) ~ Time + Diet

Model 2: log(weight) ~ Time + Diet + Time:Diet

Res.Df RSS Df Sum of Sq F Pr(>F)

1 574 34.381

2 571 31.589 3 2.7922 16.824 1.744e-10 ***

(ii) Define a diagnostic plot that might suggest the logarithmic transformation of the
response in fit2.

(iii) Define the dashed line in the following plot, generated with the command plot(fit3).
What does it tell us about the data point 579?
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Paper 2, Section I

5J Statistical Modelling
A statistician is interested in the power of a t-test with level 5% in linear regression;

that is, the probability of rejecting the null hypothesis β0 = 0 with this test under an
alternative with β0 > 0.

(a) State the distribution of the least-squares estimator β̂0, and hence state the form of
the t-test statistic used.

(b) Prove that the power does not depend on the other coefficients βj for j > 0.

Paper 3, Section I

5J Statistical Modelling
For Fisher’s method of Iteratively Reweighted Least-Squares and Newton–Raphson

optimisation of the log-likelihood, the vector of parameters β is updated using an iteration

β(m+1) = β(m) +M(β(m))−1U(β(m)) ,

for a specific function M . How is M defined in each method?

Prove that they are identical in a Generalised Linear Model with the canonical link
function.
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Paper 4, Section I

5J Statistical Modelling
A Cambridge scientist is testing approaches to slow the spread of a species of moth

in certain trees. Two groups of 30 trees were treated with different organic pesticides,
and a third group of 30 trees was kept under control conditions. At the end of the
summer the trees are classified according to the level of leaf damage, obtaining the following
contingency table.

> xtabs(count~group+damage.level,data=treeConditions)

damage.level

group Severe.Damage Moderate.Damage Some.Damage

Control 22 5 3

Treatment 1 18 4 8

Treatment 2 14 3 13

Which of the following Generalised Linear Model fitting commands is appropriate
for these data? Why? Describe the model being fit.

(a) > fit <- glm(count~group+damage.level,data=treeConditions,family=poisson)

(b) > fit <- glm(count~group+damage.level,data=treeConditions,family=multinomial)

(c) > fit <- glm(damage.level~group,data=treeConditions,family=binomial)

(d) > fit <- glm(damage.level~group,data=treeConditions,family=binomial,

weights=count)
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Paper 1, Section II

12J Statistical Modelling
The Cambridge Lawn Tennis Club organises a tournament in which every match

consists of 11 games, all of which are played. The player who wins 6 or more games is
declared the winner.

For players a and b, let nab be the total number of games they play against each
other, and let yab be the number of these games won by player a. Let ñab and ỹab be the
corresponding number of matches.

A statistician analysed the tournament data using a Binomial Generalised Linear
Model (GLM) with outcome yab. The probability Pab that a wins a game against b is
modelled by

log

(
Pab

1− Pab

)
= βa − βb , (∗)

with an appropriate corner point constraint. You are asked to re-analyse the data, but
the game-level results have been lost and you only know which player won each match.

We define a new GLM for the outcomes ỹab with P̃ab = Eỹab/ñab and g(P̃ab) =
βa − βb, where the βa are defined in (∗). That is, βa − βb is the log-odds that a wins a
game against b, not a match.

Derive the form of the new link function g. [You may express your answer in terms
of a cumulative distribution function.]
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Paper 4, Section II
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12J Statistical Modelling
The dataset diesel records the number of diesel cars which go through a block of

Hills Road in 6 disjoint periods of 30 minutes, between 8AM and 11AM. The measurements
are repeated each day for 10 days. Answer the following questions based on the code below,
which is shown with partial output.

(a) Can we reject the model fit.1 at a 1% level? Justify your answer.

(b) What is the difference between the deviance of the models fit.2 and fit.3?

(c) Which of fit.2 and fit.3 would you use to perform variable selection by backward
stepwise selection? Why?

(d) How does the final plot differ from what you expect under the model in fit.2?
Provide a possible explanation and suggest a better model.

> head(diesel)

period num.cars day

1 1 69 1

2 2 97 1

3 3 103 1

4 4 99 1

5 5 67 1

6 6 91 1

> fit.1 = glm(num.cars~period,data=diesel,family=poisson)

> summary(fit.1)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.0188 -1.4837 -0.2117 1.6257 4.5965

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.628535 0.029288 158.035 <2e-16 ***

period -0.006073 0.007551 -0.804 0.421

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 262.36 on 59 degrees of freedom

Residual deviance: 261.72 on 58 degrees of freedom

AIC: 651.2

> diesel$period.factor = factor(diesel$period)

> fit.2 = glm(num.cars~period.factor,data=diesel,family=poisson)

> summary(fit.2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) 4.36818 0.03560 122.698 < 2e-16 ***

period.factor2 0.35655 0.04642 7.681 1.58e-14 ***

period.factor3 0.41262 0.04590 8.991 < 2e-16 ***

period.factor4 0.36274 0.04636 7.824 5.10e-15 ***

period.factor5 0.06501 0.04955 1.312 0.189481

period.factor6 0.16334 0.04841 3.374 0.000741 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> fit.3 = glm(num.cars~(period>1)+(period>2)+(period>3)+(period>4)+(period>5),

data=diesel,family=poisson)

> summary(fit.3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.36818 0.03560 122.698 < 2e-16 ***

period > 1TRUE 0.35655 0.04642 7.681 1.58e-14 ***

period > 2TRUE 0.05607 0.04155 1.350 0.1771

period > 3TRUE -0.04988 0.04148 -1.202 0.2292

period > 4TRUE -0.29773 0.04549 -6.545 5.96e-11 ***

period > 5TRUE 0.09833 0.04758 2.066 0.0388 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> C = matrix(nrow=6,ncol=2)

> for (period in 1:6) {

nums = diesel$num.cars[diesel$period == period]

C[period,] = c(mean(nums),var(nums))

}

plot(C[,1],C[,2])
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Paper 2, Section I

5K Statistical Modelling
Define an exponential dispersion family. Prove that the range of the natural

parameter, Θ, is an open interval. Derive the mean and variance as a function of the
log normalizing constant.

[Hint: Use the convexity of ex, i.e. epx+(1−p)y 6 pex + (1− p)ey for all p ∈ [0, 1].]

Paper 4, Section I

5K Statistical Modelling
(a) Let Yi = x⊺i β + εi where εi for i = 1, . . . , n are independent and identically

distributed. Let Zi = I(Yi < 0) for i = 1, . . . , n, and suppose that these variables
follow a binary regression model with the complementary log-log link function g(µ) =
log(− log(1− µ)). What is the probability density function of ε1?

(b) The Newton–Raphson algorithm can be applied to compute the MLE, β̂, in
certain GLMs. Starting from β(0) = 0, we let β(t+1) be the maximizer of the quadratic
approximation of the log-likelihood ℓ(β;Y ) around β(t):

ℓ(β;Y ) ≈ ℓ(β(t);Y ) + (β − β(t))⊺Dℓ(β(t);Y ) + (β − β(t))⊺D2ℓ(β(t);Y )(β − β(t)),

whereDℓ andD2ℓ are the gradient and Hessian of the log-likelihood. What is the difference
between this algorithm and Iterative Weighted Least Squares? Why might the latter be
preferable?
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Paper 3, Section I

5K Statistical Modelling
The R command

> boxcox(rainfall ∼ month+elnino+month:elnino)

performs a Box–Cox transform of the response at several values of the parameter λ, and
produces the following plot:
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We fit two linear models and obtain the Q–Q plots for each fit, which are shown
below in no particular order:

> fit.1 <- lm(rainfall ∼ month+elnino+month:elnino)

> plot(fit.1,which=2)

> fit.2 <- lm(rainfall^-0.07 ∼ month+elnino+month:elnino)

> plot(fit.2,which=2)
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This question continues on the next page
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5K Statistical Modelling (continued)
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Define the variable on the y-axis in the output of boxcox, and match each Q–Q plot
to one of the models.

After choosing the model fit.2, the researcher calculates Cook’s distance for the
ith sample, which has high leverage, and compares it to the upper 0.01-point of an Fp,n−p

distribution, because the design matrix is of size n × p. Provide an interpretation of this
comparison in terms of confidence sets for β̂. Is this confidence statement exact?
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Paper 1, Section I

5K Statistical Modelling
The body mass index (BMI) of your closest friend is a good predictor of your own

BMI. A scientist applies polynomial regression to understand the relationship between
these two variables among 200 students in a sixth form college. The R commands

> fit.1 <- lm(BMI ∼ poly(friendBMI,2,raw=T))

> fit.2 <- lm(BMI ∼ poly(friendBMI,3,raw=T))

fit the models Y = β0+β1X+β2X
2+ε and Y = β0+β1X+β2X

2+β3X
3+ε, respectively,

with ε ∼ N(0, σ2) in each case.

Setting the parameters raw to FALSE:

> fit.3 <- lm(BMI ∼ poly(friendBMI,2,raw=F))

> fit.4 <- lm(BMI ∼ poly(friendBMI,3,raw=F))

fits the models Y = β0 + β1P1(X) + β2P2(X) + ε and Y = β0 + β1P1(X) + β2P2(X) +
β3P3(X)+ε, with ε ∼ N(0, σ2). The function Pi is a polynomial of degree i. Furthermore,
the design matrix output by the function poly with raw=F satisfies:

> t(poly(friendBMI,3,raw=F))%*%poly(a,3,raw=F)

1 2 3

1 1.000000e+00 1.288032e-16 3.187554e-17

2 1.288032e-16 1.000000e+00 -6.201636e-17

3 3.187554e-17 -6.201636e-17 1.000000e+00

How does the variance of β̂ differ in the models fit.2 and fit.4? What about the
variance of the fitted values Ŷ = Xβ̂? Finally, consider the output of the commands

> anova(fit.1,fit.2)

> anova(fit.3,fit.4)

Define the test statistic computed by this function and specify its distribution. Which
command yields a higher statistic?
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12K Statistical Modelling
For 31 days after the outbreak of the 2014 Ebola epidemic, the World Health

Organization recorded the number of new cases per day in 60 hospitals in West Africa.
Researchers are interested in modelling Yij, the number of new Ebola cases in hospital i
on day j > 2, as a function of several covariates:

• lab: a Boolean factor for whether the hospital has laboratory facilities,

• casesBefore: number of cases at the hospital on the previous day,

• urban: a Boolean factor indicating an urban area,

• country: a factor with three categories, Guinea, Liberia, and Sierra Leone,

• numDoctors: number of doctors at the hospital,

• tradBurials: a Boolean factor indicating whether traditional burials are common
in the region.

Consider the output of the following R code (with some lines omitted):

> fit.1 <- glm(newCases∼lab+casesBefore+urban+country+numDoctors+tradBurials,
+ data=ebola,family=poisson)

> summary(fit.1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.094731 0.050322 1.882 0.0598 .

labTRUE 0.011298 0.049498 0.228 0.8195

casesBefore 0.324744 0.007752 41.891 < 2e-16 ***

urbanTRUE -0.091554 0.088212 -1.038 0.2993

countryLiberia 0.088490 0.034119 2.594 0.0095 **

countrySierra Leone -0.197474 0.036969 -5.342 9.21e-08 ***

numDoctors -0.020819 0.004658 -4.470 7.83e-06 ***

tradBurialsTRUE 0.054296 0.031676 1.714 0.0865 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(a) Would you conclude based on the z-tests that an urban setting does not affect
the rate of infection?

(b) Explain how you would predict the total number of new cases that the researchers
will record in Sierra Leone on day 32.

We fit a new model which includes an interaction term, and compute a test statistic
using the code:

> fit.2 <- glm(newCases∼casesBefore+country+country:casesBefore+numDoctors,
+ data=ebola,family=poisson)

> fit.2$deviance - fit.1$deviance

[1] 3.016138

(c) What is the distribution of the statistic computed in the last line?

(d) Under what conditions is the deviance of each model approximately chi-squared?
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12K Statistical Modelling
(a) Let Y be an n-vector of responses from the linear model Y = Xβ + ε, with

β ∈ Rp. The internally studentized residual is defined by

si =
Yi − x⊺i β̂

σ̃
√
1− pi

,

where β̂ is the least squares estimate, pi is the leverage of sample i, and

σ̃2 =
‖Y −Xβ̂‖22
(n− p)

.

Prove that the joint distribution of s = (s1, . . . , sn)
⊺ is the same in the following two

models: (i) ε ∼ N(0, σI), and (ii) ε | σ ∼ N(0, σI), with 1/σ ∼ χ2
ν (in this model, ε1, . . . , εn

are identically tν-distributed). [Hint: A random vector Z is spherically symmetric if for

any orthogonal matrix H, HZ
d
= Z. If Z is spherically symmetric and a.s. nonzero, then

Z/‖Z‖2 is a uniform point on the sphere; in addition, any orthogonal projection of Z is
also spherically symmetric. A standard normal vector is spherically symmetric.]

(b) A social scientist regresses the income of 120 Cambridge graduates onto 20
answers from a questionnaire given to the participants in their first year. She notices one
questionnaire with very unusual answers, which she suspects was due to miscoding. The
sample has a leverage of 0.8. To check whether this sample is an outlier, she computes its
externally studentized residual,

ti =
Yi − x⊺i β̂

σ̃(i)
√
1− pi

= 4.57,

where σ̃(i) is estimated from a fit of all samples except the one in question, (xi, Yi). Is this
a high leverage point? Can she conclude this sample is an outlier at a significance level of
5%?

(c) After examining the following plot of residuals against the response, the
investigator calculates the externally studentized residual of the participant denoted by
the black dot, which is 2.33. Can she conclude this sample is an outlier with a significance
level of 5%?
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Paper 4, Section I

4J Statistical Modelling

Data on 173 nesting female horseshoe crabs record for each crab its colour as one
of 4 factors (simply labelled 1, . . . , 4), its width (in cm) and the presence of male crabs
nearby (a 1 indicating presence). The data are collected into the R data frame crabs and
the first few lines are displayed below.

> crabs[1:4, ]

colour width males

1 2 28.3 1

2 3 22.5 0

3 1 26.0 1

4 4 21.0 0

Describe the model being fitted by the R command below.

> fit1 <- glm(males ~ colour + width, family = binomial, data=crabs)

The following (abbreviated) output is obtained from the summary command.

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.38 2.873 -3.962 7.43e-05 ***

colour2 0.07 0.740 0.098 0.922

colour3 -0.22 0.777 -0.288 0.773

colour4 -1.32 0.853 -1.560 0.119

width 0.46 0.106 4.434 9.26e-06 ***

Write out the calculation for an approximate 95% confidence interval for the coefficient for
width. Describe the calculation you would perform to obtain an estimate of the probability
that a female crab of colour 3 and with a width of 20cm has males nearby. [You need
not actually compute the end points of the confidence interval or the estimate of the
probability above, but merely show the calculations that would need to be performed in
order to arrive at them.]
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4J Statistical Modelling

Data are available on the number of counts (atomic disintegration events that take
place within a radiation source) recorded with a Geiger counter at a nuclear plant. The
counts were registered at each second over a 30 second period for a short-lived, man-made
radioactive compound. The first few rows of the dataset are displayed below.

> geiger[1:3, ]

Time Counts

1 0 750.0

2 1 725.2

3 2 695.0

Describe the model being fitted with the following R command.

> fit1 <- lm(Counts ~ Time, data=geiger)

Below is a plot against time of the residuals from the model fitted above.
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Referring to the plot, suggest how the model could be improved, and write out the R code
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for fitting this new model. Briefly describe how one could test in R whether the new model
is to be preferred over the old model.

Paper 2, Section I

4J Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn,
where log(µi) = βxi for some known constants xi ∈ R and an unknown parameter β. Find
the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
describe the algorithm you would use to find the maximum likelihood estimator β̂. [Hint:
Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]

Paper 1, Section I

4J Statistical Modelling

The outputs Y1, . . . , Yn of a particular process are positive and are believed to be
related to p-vectors of covariates x1, . . . , xn according to the following model

log(Yi) = µ+ xTi β + εi.

In this model εi are i.i.d. N(0, σ2) random variables where σ > 0 is known. It is not
possible to measure the output directly, but we can detect whether the output is greater
than or less than or equal to a certain known value c > 0. If

Zi =

{
1 if Yi > c

0 if Yi 6 c,

show that a probit regression model can be used for the data (Zi, xi), i = 1, . . . , n.

How can we recover µ and β from the parameters of the probit regression model?
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Paper 4, Section II

10J Statistical Modelling

Consider the normal linear model where the n-vector of responses Y satisfies
Y = Xβ + ε with ε ∼ Nn(0, σ

2I). Here X is an n × p matrix of predictors with full
column rank where p > 3 and β ∈ Rp is an unknown vector of regression coefficients.
For j ∈ {1, . . . , p}, denote the jth column of X by Xj , and let X−j be X with its jth
column removed. Suppose X1 = 1n where 1n is an n-vector of 1’s. Denote the maximum
likelihood estimate of β by β̂. Write down the formula for β̂j involving P−j , the orthogonal
projection onto the column space of X−j .

Consider j, k ∈ {2, . . . , p} with j < k. By thinking about the orthogonal projection
of Xj onto Xk, show that

var(β̂j) > σ2

‖Xj‖2

(
1 −

(
XT

k Xj

‖Xk‖‖Xj‖

)2 )−1

. (∗)

[You may use standard facts about orthogonal projections including the fact that if V
and W are subspaces of Rn with V a subspace of W and ΠV and ΠW denote orthogonal
projections onto V and W respectively, then for all v ∈ Rn, ‖ΠW v‖2 > ‖ΠV v‖2.]

This question continues on the next page
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10J Statistical Modelling (continued)

By considering the fitted values Xβ̂, explain why if, for any j > 2, a constant
is added to each entry in the jth column of X, then β̂j will remain unchanged. Let
X̄j =

∑n
i=1Xij/n. Why is (∗) also true when all instances of Xj and Xk are replaced by

Xj − X̄j1n and Xk − X̄k1n respectively?

The marks from mid-year statistics and mathematics tests and an end-of-year
statistics exam are recorded for 100 secondary school students. The first few lines of
the data are given below.

> exam_marks[1:3, ]

Stat_exam Maths_test Stat_test

1 83 94 92

2 76 45 27

3 73 67 62

The following abbreviated output is obtained:

> summary(lm(Stat_exam ~ Maths_test + Stat_test, data=exam_marks))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.0342 8.2694 3.027 0.00316 **

Maths_test 0.2782 0.3708 0.750 0.45503

Stat_test 0.1643 0.3364 0.488 0.62641

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

F-statistic: 6.111 on 2 and 97 DF, p-value: 0.003166

What are the hypothesis tests corresponding to the final column of the coefficients
table? What is the hypothesis test corresponding to the final line of the output? Interpret
the results when testing at the 5% level.

How does the following sample correlation matrix for the data help to explain the
relative sizes of some of the p-values?

> cor(exam_marks)

Stat_exam Maths_test Stat_test

Stat_exam 1.0000000 0.331224 0.3267138

Maths_test 0.3312240 1.000000 0.9371630

Stat_test 0.3267138 0.937163 1.0000000
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Paper 1, Section II

10J Statistical Modelling

An experiment is conducted where scientists count the numbers of each of three
different strains of fleas that are reproducing in a controlled environment. Varying
concentrations of a particular toxin that impairs reproduction are administered to the
fleas. The results of the experiment are stored in a data frame fleas in R, whose first few
rows are given below.

> fleas[1:3, ]

number conc strain

1 81 0.250 0

2 93 0.250 2

3 102 0.875 1

The full dataset has 80 rows. The first column provides the number of fleas, the second
provides the concentration of the toxin and the third specifies the strain of the flea as
factors 0, 1 or 2. Strain 0 is the common flea and strains 1 and 2 have been genetically
modified in a way thought to increase their ability to reproduce in the presence of the
toxin.

This question continues on the next page
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10J Statistical Modelling (continued)

Explain and interpret the R commands and (abbreviated) output below. In
particular, you should describe the model being fitted, briefly explain how the standard
errors are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ conc*strain, data=fleas, family=poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.47171 0.03849 116.176 < 2e-16 ***

conc -0.28700 0.06727 -4.266 1.99e-05 ***

strain1 0.09381 0.05483 1.711 0.087076 .

strain2 0.12157 0.05591 2.175 0.029666 *

conc:strain1 0.34215 0.09178 3.728 0.000193 ***

conc:strain2 0.02385 0.09789 0.244 0.807510

Explain and motivate the following R code in the light of the output above. Briefly explain
the differences between the models fitted below, and the model corresponding to fit1.

> strain_grp <- fleas$strain

> levels(strain_grp)

[1] "0" "1" "2"

> levels(strain_grp) <- c(0, 1, 0)

> fit2 <- glm(number ~ conc + strain + conc:strain_grp,

+ data=fleas, family=poisson)

> fit3 <- glm(number ~ conc*strain_grp, data=fleas, family=poisson)

Denote by M1,M2,M3 the three models being fitted in sequence above. Explain the
hypothesis tests comparing the models to each other that can be performed using the
output from the following R code.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 56.87 56.93 76.98

> qchisq(0.95, df = 1)

[1] 3.84

Use these numbers to comment on the most appropriate model for the data.
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Paper 4, Section I

5K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I) and X is an n × p design matrix with full column

rank. Write down a (1− α)-level confidence set for β.

Define the Cook’s distance for the observation (Yi, xi) where x
T
i is the ith row of X,

and give its interpretation in terms of confidence sets for β.

In the model above with n = 100 and p = 4, you observe that one observation has
Cook’s distance 3.1. Would you be concerned about the influence of this observation?
Justify your answer.

[Hint: You may find some of the following facts useful:

1. If Z ∼ χ2
4, then P(Z 6 1.06) = 0.1, P(Z 6 7.78) = 0.9.

2. If Z ∼ F4,96, then P(Z 6 0.26) = 0.1, P(Z 6 2.00) = 0.9.

3. If Z ∼ F96,4, then P(Z 6 0.50) = 0.1, P(Z 6 3.78) = 0.9.]
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Paper 3, Section I

5K Statistical Modelling
In an experiment to study factors affecting the production of the plastic polyvinyl

chloride (PVC), three experimenters each used eight devices to produce the PVC and
measured the sizes of the particles produced. For each of the 24 combinations of device
and experimenter, two size measurements were obtained.

The experimenters and devices used for each of the 48 measurements are stored in
R as factors in the objects experimenter and device respectively, with the measurements
themselves stored in the vector psize. The following analysis was performed in R.

> fit0 <- lm(psize ~ experimenter + device)

> fit <- lm(psize ~ experimenter + device + experimenter:device)

> anova(fit0, fit)

Analysis of Variance Table

Model 1: psize ~ experimenter + device

Model 2: psize ~ experimenter + device + experimenter:device

Res.Df RSS Df Sum of Sq F Pr(>F)

1 38 49.815

2 24 35.480 14 14.335 0.6926 0.7599

Let X and X0 denote the design matrices obtained by model.matrix(fit) and
model.matrix(fit0) respectively, and let Y denote the response psize. Let P and P0

denote orthogonal projections onto the column spaces of X and X0 respectively.

For each of the following quantities, write down their numerical values if they appear
in the analysis of variance table above; otherwise write ‘unknown’.

1. ‖(I − P )Y ‖2

2. ‖X(XTX)−1XTY ‖2

3. ‖(I − P0)Y ‖2 − ‖(I − P )Y ‖2

4.
‖(P − P0)Y ‖2/14
‖(I − P )Y ‖2/24

5.
∑48

i=1 Yi/48

Out of the two models that have been fitted, which appears to be the more
appropriate for the data according to the analysis performed, and why?
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Paper 2, Section I

5K Statistical Modelling
Define the concept of an exponential dispersion family. Show that the family of

scaled binomial distributions 1
nBin(n, p), with p ∈ (0, 1) and n ∈ N, is of exponential

dispersion family form.

Deduce the mean of the scaled binomial distribution from the exponential dispersion
family form.

What is the canonical link function in this case?

Paper 1, Section I

5K Statistical Modelling
Write down the model being fitted by the following R command, where y ∈ {0, 1, 2, . . .}n

and X is an n× p matrix with real-valued entries.

fit <- glm(y ~ X, family = poisson)

Write down the log-likelihood for the model. Explain why the command

sum(y) - sum(predict(fit, type = "response"))

gives the answer 0, by arguing based on the log-likelihood you have written down.
[Hint: Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]
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Paper 4, Section II

13K Statistical Modelling
In a study on infant respiratory disease, data are collected on a sample of 2074

infants. The information collected includes whether or not each infant developed a
respiratory disease in the first year of their life; the gender of each infant; and details
on how they were fed as one of three categories (breast-fed, bottle-fed and supplement).
The data are tabulated in R as follows:

disease nondisease gender food

1 77 381 Boy Bottle-fed

2 19 128 Boy Supplement

3 47 447 Boy Breast-fed

4 48 336 Girl Bottle-fed

5 16 111 Girl Supplement

6 31 433 Girl Breast-fed

Write down the model being fit by the R commands on the following page:
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> total <- disease + nondisease

> fit <- glm(disease/total ~ gender + food, family = binomial,

+ weights = total)

The following (slightly abbreviated) output from R is obtained.

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***

genderGirl -0.3126 0.1410 -2.216 0.0267 *

foodBreast-fed -0.6693 0.1530 -4.374 1.22e-05 ***

foodSupplement -0.1725 0.2056 -0.839 0.4013

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.37529 on 5 degrees of freedom

Residual deviance: 0.72192 on 2 degrees of freedom

Briefly explain the justification for the standard errors presented in the output above.

Explain the relevance of the output of the following R code to the data being studied,
justifying your answer:

> exp(c(-0.6693 - 1.96*0.153, -0.6693 + 1.96*0.153))

[1] 0.3793940 0.6911351

[Hint: It may help to recall that if Z ∼ N(0, 1) then P(Z > 1.96) = 0.025.]

Let D1 be the deviance of the model fitted by the following R command.

> fit1 <- glm(disease/total ~ gender + food + gender:food,

+ family = binomial, weights = total)

What is the numerical value of D1? Which of the two models that have been fitted should
you prefer, and why?
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Paper 1, Section II

13K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I). Here X is an n × p matrix of predictors with full

column rank where n > p+ 3, and β ∈ Rp is an unknown vector of regression coefficients.
Let X0 be the matrix formed from the first p0 < p columns of X, and partition β as
β = (βT

0 , β
T
1 )

T where β0 ∈ Rp0 and β1 ∈ Rp−p0. Denote the orthogonal projections onto
the column spaces of X and X0 by P and P0 respectively.

It is desired to test the null hypothesisH0 : β1 = 0 against the alternative hypothesis
H1 : β1 6= 0. Recall that the F -test for testing H0 against H1 rejects H0 for large values
of

F =
‖(P − P0)Y ‖2/(p − p0)

‖(I − P )Y ‖2/(n − p)
.

Show that (I − P )(P − P0) = 0, and hence prove that the numerator and denominator of
F are independent under either hypothesis.

Show that

Eβ,σ2(F ) =
(n − p)(τ2 + 1)

n− p− 2
,

where τ2 =
‖(P − P0)Xβ‖2

(p− p0)σ2
.

[In this question you may use the following facts without proof: P − P0 is an or-
thogonal projection with rank p − p0; any n × n orthogonal projection matrix Π satisfies
‖Πε‖2 ∼ σ2χ2

ν , where ν = rank(Π); and if Z ∼ χ2
ν then E(Z−1) = (ν − 2)−1 when ν > 2.]
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Paper 4, Section I

5J Statistical Modelling
The output X of a process depends on the levels of two adjustable variables: A, a

factor with four levels, and B, a factor with two levels. For each combination of a level of
A and a level of B, nine independent values of X are observed.

Explain and interpret the R commands and (abbreviated) output below. In
particular, describe the model being fitted, and describe and comment on the hypothesis
tests performed under the summary and anova commands.

> fit1 <- lm(x ˜ a+b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5445 0.2449 10.39 6.66e-16 ***

a2 -5.6704 0.4859 -11.67 < 2e-16 ***

a3 4.3254 0.3480 12.43 < 2e-16 ***

a4 -0.5003 0.3734 -1.34 0.0923

b2 -3.5689 0.2275 -15.69 < 2e-16 ***

> anova(fit1)

Response: x

Df Sum Sq mean Sq F value Pr(>F)

a 3 71.51 23.84 17.79 1.34e-8 ***

b 1 105.11 105.11 78.44 6.91e-13 ***

Residuals 67 89.56 1.34
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Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ǫ where Y = (Y1, . . . , Yn)

T, β = (β1, . . . , βp)
T,

and ǫ = (ǫ1, . . . , ǫn)
T, with ǫ1, . . . , ǫn independent N(0, σ2) random variables. The (n× p)

matrix X is known and is of full rank p < n. Give expressions for the maximum likelihood
estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint distribution. Show that
β̂ is unbiased whereas σ̂2 is biased.

Suppose that a new variable Y ∗ is to be observed, satisfying the relationship

Y ∗ = x∗Tβ + ǫ∗ ,

where x∗ (p × 1) is known, and ǫ∗ ∼ N(0, σ2) independently of ǫ. We propose to predict
Y ∗ by Ỹ = x∗Tβ̂. Identify the distribution of

Y ∗ − Ỹ

τ σ̃
,

where

σ̃2 =
n

n− p
σ̂2 ,

τ2 = x∗T(XTX)−1x∗ + 1 .

Paper 2, Section I

5J Statistical Modelling
Consider a linear model Y = Xβ+ǫ, where Y and ǫ are (n×1) with ǫ ∼ Nn(0, σ

2I),
β is (p × 1), and X is (n × p) of full rank p < n. Let γ and δ be sub-vectors of β. What
is meant by orthogonality between γ and δ?

Now suppose

Yi = β0 + β1xi + β2x
2
i + β3P3(xi) + ǫi (i = 1, . . . , n) ,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables, x1, . . . , xn are real-valued
known explanatory variables, and P3(x) is a cubic polynomial chosen so that β3 is
orthogonal to (β0, β1, β2)

T and β1 is orthogonal to (β0, β2)
T.

Let β̃ = (β0, β2, β1, β3)
T. Describe the matrix X̃ such that Y = X̃β̃ + ǫ. Show that

X̃TX̃ is block diagonal. Assuming further that this matrix is non-singular, show that the
least-squares estimators of β1 and β3 are, respectively,

β̂1 =

∑n
i=1 xiYi∑n
i=1 x

2
i

and β̂3 =

∑n
i=1 P3(xi)Yi∑n
i=1 P3(xi)2

.
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Paper 1, Section I

5J Statistical Modelling
Variables Y1, . . . , Yn are independent, with Yi having a density p(y |µi) governed by

an unknown parameter µi. Define the deviance for a model M that imposes relationships
between the (µi).

From this point on, suppose Yi ∼ Poisson(µi). Write down the log-likelihood of data
y1, . . . , yn as a function of µ1, . . . , µn.

Let µ̂i be the maximum likelihood estimate of µi under model M . Show that the
deviance for this model is given by

2
n∑

i=1

{
yi log

yi
µ̂i

− (yi − µ̂i)

}
.

Now suppose that, underM , log µi = βTxi, i = 1, . . . , n, where x1, . . . , xn are known
p-dimensional explanatory variables and β is an unknown p-dimensional parameter. Show
that µ̂ := (µ̂1, . . . , µ̂n)

T satisfies XTy = XTµ̂, where y = (y1, . . . , yn)
T and X is the (n×p)

matrix with rows xT1 , . . . , x
T
n , and express this as an equation for the maximum likelihood

estimate β̂ of β. [You are not required to solve this equation.]
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Paper 4, Section II

13J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0.

A random variable Y is said to have an inverse Gaussian distribution, with
parameters φ and λ (both positive), if its density function is

f(y;φ, λ) =

√
λ√

2πy3
e
√
λφ exp

{
−1

2

(
λ

y
+ φy

)}
(y > 0).

Show that the family of all inverse Gaussian distributions for Y is of exponential dispersion
family form. Deduce directly the corresponding expressions for E(Y ) and Var(Y ) in terms
of φ and λ. What are the corresponding canonical link function and variance function?

Consider a generalized linear model, M , for independent variables Yi (i = 1, . . . , n),
whose random component is defined by the inverse Gaussian distribution with link function
g(µ) = log(µ): thus g(µi) = xTi β, where β = (β1, . . . , βp)

T is the vector of unknown
regression coefficients and xi = (xi1, . . . , xip)

T is the vector of known values of the
explanatory variables for the ith observation. The vectors xi (i = 1, . . . , n) are linearly
independent. Assuming that the dispersion parameter is known, obtain expressions for
the score function and Fisher information matrix for β. Explain how these can be used to
compute the maximum likelihood estimate β̂ of β.
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Paper 1, Section II

13J Statistical Modelling
A cricket ball manufacturing company conducts the following experiment. Every

day, a bowling machine is set to one of three levels, “Medium”, “Fast” or “Spin”, and
then bowls 100 balls towards the stumps. The number of times the ball hits the stumps
and the average wind speed (in kilometres per hour) during the experiment are recorded,
yielding the following data (abbreviated):

Day Wind Level Stumps

1 10 Medium 26

2 8 Medium 37
...

...
...

...

50 12 Medium 32

51 7 Fast 31
...

...
...

...

120 3 Fast 28

121 5 Spin 35
...

...
...

...

150 6 Spin 31

Write down a reasonable model for Y1, . . . , Y150, where Yi is the number of times the ball
hits the stumps on the ith day. Explain briefly why we might want to include interactions
between the variables. Write R code to fit your model.

The company’s statistician fitted her own generalized linear model using R, and
obtained the following summary (abbreviated):

>summary(ball)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Wind 0.09055 0.01595 5.676 1.38e-08 ***

LevelFast -0.10005 0.08044 -1.244 0.213570

LevelSpin 0.29881 0.08268 3.614 0.000301 ***

Wind:LevelFast 0.03666 0.02364 1.551 0.120933

Wind:LevelSpin -0.07697 0.02845 -2.705 0.006825 **

Why are LevelMedium and Wind:LevelMedium not listed?

Suppose that, on another day, the bowling machine is set to “Spin”, and the
wind speed is 5 kilometres per hour. What linear function of the parameters should
the statistician use in constructing a predictor of the number of times the ball hits the
stumps that day?

Based on the above output, how might you improve the model? How could you fit
your new model in R?
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Paper 4, Section I

5K Statistical Modelling
Define the concepts of an exponential dispersion family and the corresponding

variance function. Show that the family of Poisson distributions with parameter λ > 0
is an exponential dispersion family. Find the corresponding variance function and deduce
from it expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ). What is the canonical link
function in this case?

Paper 3, Section I

5K Statistical Modelling
Consider the linear model

Yi = β0 + β1xi1 + β2xi2 + εi,

for i = 1, 2, . . . , n, where the εi are independent and identically distributed with N(0, σ2)
distribution. What does it mean for the pair β1 and β2 to be orthogonal? What does it
mean for all the three parameters β0, β1 and β2 to be mutually orthogonal? Give necessary
and sufficient conditions on (xi1)

n
i=1, (xi2)

n
i=1 so that β0, β1 and β2 are mutually orthogonal.

If β0, β1, β2 are mutually orthogonal, find the joint distribution of the corresponding
maximum likelihood estimators β̂0, β̂1 and β̂2.
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5K Statistical Modelling
The purpose of the following study is to investigate differences among certain treatments
on the lifespan of male fruit flies, after allowing for the effect of the variable ‘thorax length’
(thorax) which is known to be positively correlated with lifespan. Data was collected on
the following variables:

longevity lifespan in days

thorax (body) length in mm

treat a five level factor representing the treatment groups. The levels were labelled
as follows: “00”, “10”, “80”, “11”, “81”.

No interactions were found between thorax length and the treatment factor. A
linear model with thorax as the covariate, treat as a factor (having the above 5 levels)
and longevity as the response was fitted and the following output was obtained. There
were 25 males in each of the five groups, which were treated identically in the provision of
fresh food.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -49.98 10.61 -4.71 6.7e-06

treat10 2.65 2.98 0.89 0.37

treat11 -7.02 2.97 -2.36 0.02

treat80 3.93 3.00 1.31 0.19

treat81 -19.95 3.01 -6.64 1.0e-09

thorax 135.82 12.44 10.92 <2e-16

Residual standard error: 10.5 on 119 degrees of freedom

Multiple R-Squared: 0.656, Adjusted R-squared: 0.642

F-statistics: 45.5 on 5 and 119 degrees of freedom, p-value: 0

(a) Assuming the same treatment, how much longer would you expect a fly with a
thorax length 0.1mm greater than another to live?

(b) What is the predicted difference in longevity between a male fly receiving treatment
treat10 and treat81 assuming they have the same thorax length?

(c) Because the flies were randomly assigned to the five groups, the distribution of
thorax lengths in the five groups are essentially equal. What disadvantage would
the investigators have incurred by ignoring the thorax length in their analysis (i.e.,
had they done a one-way ANOVA instead)?

(d) The residual-fitted plot is shown in the left panel of Figure 1 overleaf. Is it possible
to determine if the regular residuals or the studentized residuals have been used to
construct this plot? Explain.

(e) The Box–Cox procedure was used to determine a good transformation for this
data. The plot of the log-likelihood for λ is shown in the right panel of Figure 1.
What transformation should be used to improve the fit and yet retain some
interpretability?
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Paper 1, Section I

5K Statistical Modelling
Let Y1, . . . , Yn be independent with Yi ∼ 1

ni
Bin(ni, µi), i = 1, . . . , n, and

log

(
µi

1− µi

)
= x⊤i β , (1)

where xi is a p × 1 vector of regressors and β is a p × 1 vector of parameters. Write
down the likelihood of the data Y1, . . . , Yn as a function of µ = (µ1, . . . , µn). Find the
unrestricted maximum likelihood estimator of µ, and the form of the maximum likelihood
estimator µ̂ = (µ̂1, . . . , µ̂n) under the logistic model (1).

Show that the deviance for a comparison of the full (saturated) model to the
generalised linear model with canonical link (1) using the maximum likelihood estimator

β̂ can be simplified to

D(y; µ̂) = −2
n∑

i=1

[
niyix

⊤
i β̂ − ni log(1− µ̂i)

]
.

Finally, obtain an expression for the deviance residual in this generalised linear
model.
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Paper 4, Section II

13K Statistical Modelling
Let (X1, Y1), . . . , (Xn, Yn) be jointly independent and identically distributed with

Xi ∼ N(0, 1) and conditional on Xi = x, Yi ∼ N(xθ, 1), i = 1, 2, . . . , n.

(a) Write down the likelihood of the data (X1, Y1), . . . , (Xn, Yn), and find the maxi-
mum likelihood estimate θ̂ of θ. [You may use properties of conditional probabil-
ity/expectation without providing a proof.]

(b) Find the Fisher information I(θ) for a single observation, (X1, Y1).

(c) Determine the limiting distribution of
√
n(θ̂ − θ). [You may use the result on

the asymptotic distribution of maximum likelihood estimators, without providing a
proof.]

(d) Give an asymptotic confidence interval for θ with coverage (1−α) using your answers
to (b) and (c).

(e) Define the observed Fisher information. Compare the confidence interval in part (d)
with an asymptotic confidence interval with coverage (1−α) based on the observed
Fisher information.

(f) Determine the exact distribution of
(∑n

i=1X
2
i

)1/2
(θ̂− θ) and find the true coverage

probability for the interval in part (e). [Hint. Condition on X1,X2, . . . ,Xn and
use the following property of conditional expectation: for U, V random vectors, any
suitable function g, and x ∈ R,

P{g(U, V ) 6 x} = E[P{g(U, V ) 6 x|V }].]
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Paper 1, Section II
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13K Statistical Modelling
The treatment for a patient diagnosed with cancer of the prostate depends on whether
the cancer has spread to the surrounding lymph nodes. It is common to operate on the
patient to obtain samples from the nodes which can then be analysed under a microscope.
However it would be preferable if an accurate assessment of nodal involvement could
be made without surgery. For a sample of 53 prostate cancer patients, a number of
possible predictor variables were measured before surgery. The patients then had surgery
to determine nodal involvement. We want to see if nodal involvement can be accurately
predicted from the available variables and determine which ones are most important. The
variables take the values 0 or 1.

r An indicator 0=no/1=yes of nodal involvement.

aged The patient’s age, split into less than 60 (=0) and 60 or over (=1).

stage A measurement of the size and position of the tumour observed by palpation with
the fingers. A serious case is coded as 1 and a less serious case as 0.

grade Another indicator of the seriousness of the cancer which is determined by a pathology
reading of a biopsy taken by needle before surgery. A value of 1 indicates a more
serious case of cancer.

xray Another measure of the seriousness of the cancer taken from an X-ray reading. A
value of 1 indicates a more serious case of cancer.

acid The level of acid phosphatase in the blood serum where 1=high and 0=low.

A binomial generalised linear model with a logit link was fitted to the data to predict
nodal involvement and the following output obtained:

Deviance Residuals:

Min 1Q Median 3Q Max

-2.332 -0.665 -0.300 0.639 2.150

Coefficients:

Estimate Std. Error t value Pr(>|z|)

(Intercept) -3.079 0.987 -3.12 0.0018

aged -0.292 0.754 -0.39 0.6988

grade 0.872 0.816 1.07 0.2850

stage 1.373 0.784 1.75 0.0799

xray 1.801 0.810 2.22 0.0263

acid 1.684 0.791 2.13 0.0334

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 47.611 on 47 degrees of freedom

AIC: 59.61

Number of Fisher Scoring iterations: 5
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(a) Give an interpretation of the coefficient of xray.

(b) Give the numerical value of the sum of the squared deviance residuals.

(c) Suppose that the predictors, stage, grade and xray are positively correlated.
Describe the effect that this correlation is likely to have on our ability to determine
the strength of these predictors in explaining the response.

(d) The probability of observing a value of 70.252 under a Chi-squared distribution with
52 degrees of freedom is 0.047. What does this information tell us about the null
model for this data? Justify your answer.

(e) What is the lowest predicted probability of the nodal involvement for any future
patient?

(f) The first plot in Figure 1 shows the (Pearson) residuals and the fitted values. Explain
why the points lie on two curves.

(g) The second plot in Figure 1 shows the value of β̂ − β̂(i) where (i) indicates that
patient i was dropped in computing the fit. The values for each predictor, including
the intercept, are shown. Could a single case change our opinion of which predictors
are important in predicting the response?

Part II, 2012 List of Questions

2012



89

Paper 1, Section I

5J Statistical Modelling
Let Y1, . . . , Yn be independent identically distributed random variables with model

function f(y, θ), y ∈ Y, θ ∈ Θ ⊆ R, and denote by Eθ and Varθ expectation and
variance under f(y, θ), respectively. Define Un(θ) =

∑n
i=1

∂
∂θ log f(Yi, θ). Prove that

EθUn(θ) = 0. Show moreover that if T = T (Y1, . . . , Yn) is any unbiased estimator of θ,
then its variance satisfies Varθ(T ) > (nVarθ(U1(θ))

−1. [You may use the Cauchy–Schwarz
inequality without proof, and you may interchange differentiation and integration without
justification if necessary.]

Paper 2, Section I

5J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0. Compute the cumulant generating function KY

of Y and deduce expressions for the mean and variance of Y that depend only on first and
second derivatives of K.

Paper 3, Section I

5J Statistical Modelling
Define a generalised linear model for a sample Y1, . . . , Yn of independent random

variables. Define further the concept of the link function. Define the binomial regression
model with logistic and probit link functions. Which of these is the canonical link function?
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Paper 4, Section I

5J Statistical Modelling
The numbers of ear infections observed among beach and non-beach (mostly pool)

swimmers were recorded, along with explanatory variables: frequency, location, age, and
sex. The data are aggregated by group, with a total of 24 groups defined by the explanatory
variables.

freq F = frequent, NF = infrequent
loc NB = non-beach, B = beach
age 15-19, 20-24, 24-29
sex F = female, M = male
count the number of infections reported over a fixed time period
n the total number of swimmers

The data look like this:

count n freq loc sex age

1 68 31 F NB M 15-19

2 14 4 F NB F 15-19

3 35 12 F NB M 20-24

4 16 11 F NB F 20-24

[...]

23 5 15 NF B M 25-29

24 6 6 NF B F 25-29

Let µj denote the expected number of ear infections of a person in group j. Explain
why it is reasonable to model countj as Poisson with mean njµj .

We fit the following Poisson model:

log(E(countj)) = log(njµj) = log(nj) + xjβ,

where log(nj) is an offset, i.e. an explanatory variable with known coefficient 1.

R produces the following (abbreviated) summary for the main effects model:

Call:

glm(formula = count ~ freq + loc + age + sex, family = poisson, offset = log(n))

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.48887 0.12271 3.984 6.78e-05 ***

freqNF -0.61149 0.10500 -5.823 5.76e-09 ***

locNB 0.53454 0.10668 5.011 5.43e-07 ***

age20-24 -0.37442 0.12836 -2.917 0.00354 **

age25-29 -0.18973 0.13009 -1.458 0.14473

sexM -0.08985 0.11231 -0.800 0.42371

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Why are expressions freqF, locB, age15-19, and sexF not listed?

Suppose that we plan to observe a group of 20 female, non-frequent, beach
swimmers, aged 20-24. Give an expression (using the coefficient estimates from the model
fitted above) for the expected number of ear infections in this group.

Now, suppose that we allow for interaction between variables age and sex. Give the
R command for fitting this model. We test for the effect of this interaction by producing
the following (abbreviated) ANOVA table:

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 18 51.714

2 16 44.319 2 7.3948 0.02479 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Briefly explain what test is performed, and what you would conclude from it. Does
either of these models fit the data well?
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Paper 1, Section II

13J Statistical Modelling
The data consist of the record times in 1984 for 35 Scottish hill races. The columns

list the record time in minutes, the distance in miles, and the total height gained during
the route. The data are displayed in R as follows (abbreviated):

> hills

dist climb time

Greenmantle 2.5 650 16.083

Carnethy 6.0 2500 48.350

Craig Dunain 6.0 900 33.650

Ben Rha 7.5 800 45.600

Ben Lomond 8.0 3070 62.267

[...]

Cockleroi 4.5 850 28.100

Moffat Chase 20.0 5000 159.833

Consider a simple linear regression of time on dist and climb. Write down this
model mathematically, and explain any assumptions that you make. How would you
instruct R to fit this model and assign it to a variable hills.lm1?

First, we test the hypothesis of no linear relationship to the variables dist and
climb against the full model. R provides the following ANOVA summary:

Res.Df RSS Df Sum of Sq F Pr(>F)

1 34 85138

2 32 6892 2 78247 181.66 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Using the information in this table, explain carefully how you would test this hypothesis.
What do you conclude?

The R command

summary(hills.lm1)

provides the following (slightly abbreviated) summary:

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.992039 4.302734 -2.090 0.0447 *

dist 6.217956 0.601148 10.343 9.86e-12 ***

climb 0.011048 0.002051 5.387 6.45e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Carefully explain the information that appears in each column of the table. What
are your conclusions? In particular, how would you test for the significance of the variable
climb in this model?
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Figure 1: Hills data: diagnostic plots

Finally, we perform model diagnostics on the full model, by looking at studentised
residuals versus fitted values, and the normal QQ-plot. The plots are displayed in Figure 1.
Comment on possible sources of model misspecification. Is it possible that the problem
lies with the data? If so, what do you suggest?

Paper 4, Section II

13J Statistical Modelling
Consider the general linear model Y = Xβ + ǫ, where the n × p matrix X has

full rank p 6 n, and where ǫ has a multivariate normal distribution with mean zero
and covariance matrix σ2In. Write down the likelihood function for β, σ2 and derive the
maximum likelihood estimators β̂, σ̂2 of β, σ2. Find the distribution of β̂. Show further
that β̂ and σ̂2 are independent.

Part II, 2011 List of Questions [TURN OVER

2011



84

Paper 1, Section I

5J Statistical Modelling
Consider a binomial generalised linear model for data y1, ..., yn modelled as realisa-

tions of independent Yi ∼ Bin(1, µi) and logit link µi = eβxi/(1 + eβxi) for some known
constants xi, i = 1, . . . , n, and unknown scalar parameter β. Find the log-likelihood for
β, and the likelihood equation that must be solved to find the maximum likelihood estim-
ator β̂ of β. Compute the second derivative of the log-likelihood for β, and explain the
algorithm you would use to find β̂.

Paper 2, Section I

5J Statistical Modelling
Suppose you have a parametric model consisting of probability mass functions

f(y; θ), θ ∈ Θ ⊂ R. Given a sample Y1, ..., Yn from f(y; θ), define the maximum likelihood
estimator θ̂n for θ and, assuming standard regularity conditions hold, state the asymptotic
distribution of

√
n (θ̂n − θ).

Compute the Fisher information of a single observation in the case where f(y; θ) is
the probability mass function of a Poisson random variable with parameter θ. If Y1, ..., Yn

are independent and identically distributed random variables having a Poisson distribution
with parameter θ, show that Ȳ = 1

n

∑n
i=1 Yi and S = 1

n−1

∑n
i=1(Yi − Ȳ )2 are unbiased

estimators for θ. Without calculating the variance of S , show that there is no reason to
prefer S over Y .

[You may use the fact that the asymptotic variance of
√
n (θ̂n − θ) is a lower bound for

the variance of any unbiased estimator.]

Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ε , where Y is a n × 1 random vector,

ε ∼ Nn(0, σ
2I) , and where the n× p nonrandom matrix X is known and has full column

rank p. Derive the maximum likelihood estimator σ̂ 2 of σ 2. Without using Cochran’s
theorem, show carefully that σ̂ 2 is biased. Suggest another estimator σ̃ 2 for σ 2 that is
unbiased.
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Paper 4, Section I

5J Statistical Modelling
Below is a simplified 1993 dataset of US cars. The columns list index, make, model,

price (in $1000), miles per gallon, number of passengers, length and width in inches, and
weight (in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

4 Audi 100 37.7 26 6 193 70 3405

5 BMW 535i 30.0 30 4 186 69 3640

... ... ...

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes of car are independent. We model
the logarithm of the price as a linear combination of the other quantitative properties of
the cars and an error term. Write down this model mathematically. How would you
instruct R to fit this model and assign it to a variable “fit”?

R provides the following (slightly abbreviated) summary:

> summary(fit)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8751080 0.7687276 5.041 2.50e-06 ***

mpg -0.0109953 0.0085475 -1.286 0.201724

psngr -0.1782818 0.0290618 -6.135 2.45e-08 ***

length 0.0067382 0.0032890 2.049 0.043502 *

width -0.0517544 0.0151009 -3.427 0.000933 ***

weight 0.0008373 0.0001302 6.431 6.60e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[...]

Briefly explain the information that is being provided in each column of the table. What
are your conclusions and how would you try to improve the model?
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Paper 1, Section II

13J Statistical Modelling
Consider a generalised linear model with parameter β⊤ partitioned as (β⊤

0 , β
⊤
1 ),

where β0 has p0 components and β1 has p − p0 components, and consider testing
H0 : β1 = 0 against H1 : β1 6= 0 . Define carefully the deviance, and use it to construct a
test for H0 .

[You may use Wilks’ theorem to justify this test, and you may also assume that the
dispersion parameter is known.]

Now consider the generalised linear model with Poisson responses and the canonical
link function with linear predictor η = (η1, ..., ηn)

T given by ηi = x⊤i β , i = 1, ..., n ,
where x i1 = 1 for every i . Derive the deviance for this model, and argue that it may be
approximated by Pearson’s χ 2 statistic.
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Paper 4, Section II
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13J Statistical Modelling
Every day, Barney the darts player comes to our laboratory. We record his facial

expression, which can be either “mad”, “weird” or “relaxed”, as well as how many units
of beer he has drunk that day. Each day he tries a hundred times to hit the bull’s-eye,
and we write down how often he succeeds. The data look like this:

>

Day Beer Expression BullsEye

1 3 Mad 30

2 3 Mad 32
. . . .. . . .. . . .

60 2 Mad 37

61 4 Weird 30
. . . .. . . .. . . .

110 4 Weird 28

111 2 Relaxed 35
. . . .. . . .. . . .

150 3 Relaxed 31

Write down a reasonable model for Y1, . . . , Yn, where n = 150 and where Yi is the number
of times Barney has hit bull’s-eye on the ith day. Explain briefly why we may wish initially
to include interactions between the variables. Write the R code to fit your model.

The scientist of the above story fitted her own generalized linear model, and
subsequently obtained the following summary (abbreviated):

> summary(barney)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Beer -0.09055 0.01595 -5.676 1.38e-08 ***

ExpressionWeird -0.10005 0.08044 -1.244 0.213570

ExpressionRelaxed 0.29881 0.08268 3.614 0.000301 ***

Beer:ExpressionWeird 0.03666 0.02364 1.551 0.120933

Beer:ExpressionRelaxed -0.07697 0.02845 -2.705 0.006825 **

[...]

Why are ExpressionMad and Beer:ExpressionMad not listed? Suppose on a particular
day, Barney’s facial expression is weird, and he drank three units of beer. Give the linear
predictor in the scientist’s model for this day.

Based on the summary, how could you improve your model? How could one fit this
new model in R (without modifying the data file)?
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Paper 1, Section I

5I Statistical Modelling

Consider a binomial generalised linear model for data y1, . . . , yn, modelled as

realisations of independent Yi ∼ Bin(1, µi) and logit link, i.e. log µi

1−µi
= βxi, for some

known constants x1, . . . , xn, and an unknown parameter β. Find the log-likelihood for β,

and the likelihood equations that must be solved to find the maximum likelihood estimator

β̂ of β.

Compute the first and second derivatives of the log-likelihood for β, and explain the

algorithm you would use to find β̂.

Paper 2, Section I

5I Statistical Modelling

What is meant by an exponential dispersion family? Show that the family of Poisson

distributions with parameter λ is an exponential dispersion family by explicitly identifying

the terms in the definition.

Find the corresponding variance function and deduce directly from your calculations

expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ).

What is the canonical link function in this case?

Paper 3, Section I

5I Statistical Modelling

Consider the linear model Y = Xβ + ε, where ε ∼ Nn(0, σ
2I) and X is an n × p

matrix of full rank p < n. Suppose that the parameter β is partitioned into k sets as

follows: β⊤ = (β⊤
1 · · · β⊤

k ). What does it mean for a pair of sets βi, βj , i 6= j, to be

orthogonal? What does it mean for all k sets to be mutually orthogonal?

In the model

Yi = β0 + β1xi1 + β2xi2 + εi

where εi ∼ N(0, σ2) are independent and identically distributed, find necessary and suffi-

cient conditions on x11, . . . , xn1, x12, . . . , xn2 for β0, β1 and β2 to be mutually orthogonal.

If β0, β1 and β2 are mutually orthogonal, what consequence does this have for the

joint distribution of the corresponding maximum likelihood estimators β̂0, β̂1 and β̂2?
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Paper 4, Section I

5I Statistical Modelling

Sulphur dioxide is one of the major air pollutants. A dataset by Sokal and Rohlf

(1981) was collected on 41 US cities/regions in 1969–1971. The annual measurements

obtained for each region include (average) sulphur dioxide content, temperature, number of

manufacturing enterprises employing more than 20 workers, population size in thousands,

wind speed, precipitation, and the number of days with precipitation. The data are

displayed in R as follows (abbreviated):

> usair

region so2 temp manuf pop wind precip days

1 Phoenix 10 70.3 213 582 6.0 7.05 36

2 Little Rock 13 61.0 91 132 8.2 48.52 100

... ... ...

41 Milwaukee 16 45.7 569 717 11.8 29.07 123

Describe the model being fitted by the following R commands.

> fit <- lm(log(so2) ~ temp + manuf + pop + wind + precip + days)

Explain the (slightly abbreviated) output below, describing in particular how the hypoth-

esis tests are performed and your conclusions based on their results:

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 0.0190138 -3.150 0.00339 **

manuf 0.0012639 0.0004820 2.622 0.01298 *

pop -0.0007077 0.0004632 -1.528 0.13580

wind -0.1697171 0.0555563 -3.055 0.00436 **

precip 0.0173723 0.0111036 1.565 0.12695

days 0.0004347 0.0049591 0.088 0.93066

Residual standard error: 0.448 on 34 degrees of freedom

Based on the summary above, suggest an alternative model.

Finally, what is the value obtained by the following command?

> sqrt(sum(resid(fit)^2)/fit$df)
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Paper 1, Section II

13I Statistical Modelling

A three-year study was conducted on the survival status of patients suffering from

cancer. The age of the patients at the start of the study was recorded, as well as whether

or not the initial tumour was malignant. The data are tabulated in R as follows:

> cancer

age malignant survive die

1 <50 no 77 10

2 <50 yes 51 13

3 50-69 no 51 11

4 50-69 yes 38 20

5 70+ no 7 3

6 70+ yes 6 3

Describe the model that is being fitted by the following R commands:

> total <- survive + die

> fit1 <- glm(survive/total ~ age + malignant, family = binomial,

+ weights = total)

Explain the (slightly abbreviated) output from the code below, describing how the

hypothesis tests are performed and your conclusions based on their results.

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0730 0.2812 7.372 1.68e-13 ***

age50-69 -0.6318 0.3112 -2.030 0.0424 *

age70+ -0.9282 0.5504 -1.686 0.0917 .

malignantyes -0.7328 0.2985 -2.455 0.0141 *

----

Null deviance: 12.65585 on 5 degrees of freedom

Residual deviance: 0.49409 on 2 degrees of freedom

AIC: 30.433

Based on the summary above, motivate and describe the following alternative model:

> age2 <- as.factor(c("<50", "<50", "50+", "50+", "50+", "50+"))

> fit2 <- glm(survive/total ~ age2 + malignant, family = binomial,

+ weights = total)

This question continues on the next page
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Based on the output of the code that follows, which of the two models do you prefer?

Why?

> summary(fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0721 0.2811 7.372 1.68e-13 ***

age250+ -0.6744 0.3000 -2.248 0.0246 *

malignantyes -0.7310 0.2983 -2.451 0.0143 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Null deviance: 12.656 on 5 degrees of freedom

Residual deviance: 0.784 on 3 degrees of freedom

AIC: 28.723

What is the final value obtained by the following commands?

> mu.hat <- inv.logit(predict(fit2))

> -2 * (sum(dbinom(survive, total, mu.hat, log = TRUE)

+ - sum(dbinom(survive, total, survive/total, log = TRUE)))

Paper 4, Section II

13I Statistical Modelling

Consider the linear model Y = Xβ + ε, where ε ∼ Nn(0, σ
2I) and X is an n × p

matrix of full rank p < n. Find the form of the maximum likelihood estimator β̂ of β, and

derive its distribution assuming that σ2 is known.

Assuming the prior π(β, σ2) ∝ σ−2 find the joint posterior of (β, σ2) up to a

normalising constant. Derive the posterior conditional distribution π(β|σ2,X, Y ).

Comment on the distribution of β̂ found above and the posterior conditional

π(β|σ2,X, Y ). Comment further on the predictive distribution of y∗ at input x∗ under

both the maximum likelihood and Bayesian approaches.
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1/I/5J Statistical Modelling

Consider the following Binomial generalized linear model for data y1, . . . , yn, with
logit link function. The data y1, . . . , yn are regarded as observed values of independent
random variables Y1, . . . , Yn, where

Yi ∼ Bin(1, µi), log
µi

1− µi
= β>xi, i = 1, . . . , n,

where β is an unknown p-dimensional parameter, and where x1, . . . , xn are known p-
dimensional explanatory variables. Write down the likelihood function for y = (y1, . . . , yn)
under this model.

Show that the maximum likelihood estimate β̂ satisfies an equation of the form
X>y = X>µ̂, where X is the p × n matrix with rows x>1 , . . . , x

>
n , and where µ̂ =

(µ̂1, . . . , µ̂n), with µ̂i a function of xi and β̂, which you should specify.

Define the deviance D(y; µ̂) and find an explicit expression for D(y; µ̂) in terms of
y and µ̂ in the case of the model above.
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1/II/13J Statistical Modelling

Consider performing a two-way analysis of variance (ANOVA) on the following
data:

> Y[,,1] Y[,,2] Y[,,3]

[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 2.72 6.66 [1,] -5.780 1.7200 [1,] -2.2900 0.158

[2,] 4.88 5.98 [2,] -4.600 1.9800 [2,] -3.1000 1.190

[3,] 3.49 8.81 [3,] -1.460 2.1500 [3,] -2.6300 1.190

[4,] 2.03 6.26 [4,] -1.780 0.7090 [4,] -0.2400 1.470

[5,] 2.39 8.50 [5,] -2.610 -0.5120 [5,] 0.0637 2.110

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, and comment on the hypothesis
tests which are performed under the summary and anova commands.

> K <- dim(Y)[1]

> I <- dim(Y)[2]

> J <- dim(Y)[3]

> c(I,J,K)

[1] 2 3 10

> y <- as.vector(Y)

> a <- gl(I, K, length(y))

> b <- gl(J, K * I, length(y))

> fit1 <- lm(y ~ a + b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7673 0.3032 12.43 < 2e-16 ***

a2 3.4542 0.3032 11.39 3.27e-16 ***

b2 -6.3215 0.3713 -17.03 < 2e-16 ***

b3 -5.8268 0.3713 -15.69 < 2e-16 ***

> anova(fit1)
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Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 129.83 3.272e-16 ***

b 2 494.39 247.19 179.31 < 2.2e-16 ***

Residuals 56 77.20 1.38

The following R code fits a similar model. Briefly explain the difference between
this model and the one above. Based on the output of the anova call below, say whether
you prefer this model over the one above, and explain your preference.

> fit2 <- lm(y ~ a * b)

> anova(fit2)

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 125.6367 1.033e-15 ***

b 2 494.39 247.19 173.5241 < 2.2e-16 ***

a:b 2 0.27 0.14 0.0963 0.9084

Residuals 54 76.93 1.42

Finally, explain what is being calculated in the code below and give the value that
would be obtained by the final line of code.

> n <- I * J * K

> p <- length(coef(fit2))

> p0 <- length(coef(fit1))

> PY <- fitted(fit2)

> P0Y <- fitted(fit1)

> ((n - p)/(p - p0)) * sum((PY - P0Y)^2)/sum((y - PY)^2)
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2/I/5J Statistical Modelling

Suppose that we want to estimate the angles α, β and γ (in radians, say) of the
triangle ABC, based on a single independent measurement of the angle at each corner.
Suppose that the error in measuring each angle is normally distributed with mean zero
and variance σ2. Thus, we model our measurements yA, yB , yC as the observed values of
random variables

YA = α+ εA, YB = β + εB , YC = γ + εC ,

where εA, εB , εC are independent, each with distribution N(0, σ2). Find the maximum
likelihood estimate of α based on these measurements.

Can the assumption that εA, εB , εC ∼ N(0, σ2) be criticized? Why or why not?

3/I/5J Statistical Modelling

Consider the linear model Y = Xβ + ε. Here, Y is an n-dimensional vector of
observations, X is a known n× p matrix, β is an unknown p-dimensional parameter, and
ε ∼ Nn(0, σ2I), with σ2 unknown. Assume that X has full rank and that p� n. Suppose

that we are interested in checking the assumption ε ∼ Nn(0, σ2I). Let Ŷ = Xβ̂, where

β̂ is the maximum likelihood estimate of β. Write in terms of X an expression for the
projection matrix P = (pij : 1 6 i, j 6 n) which appears in the maximum likelihood

equation Ŷ = Xβ̂ = PY .

Find the distribution of ε̂ = Y − Ŷ , and show that, in general, the components of
ε̂ are not independent.

A standard procedure used to check our assumption on ε is to check whether the
studentized fitted residuals

η̂i =
ε̂i

σ̃
√

1− pii
, i = 1, . . . , n,

look like a random sample from an N(0, 1) distribution. Here,

σ̃2 =
1

n− p ||Y −Xβ̂||
2.

Say, briefly, how you might do this in R.

This procedure appears to ignore the dependence between the components of ε̂
noted above. What feature of the given set-up makes this reasonable?
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4/I/5J Statistical Modelling

A long-term agricultural experiment had n = 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH. In the experiment, there were 30 plots of
“low pH”, 30 of “medium pH” and 30 of “high pH”. Three lines of the data are reproduced
here as an aid.

> grass[c(1,31, 61), ]

pH Biomass Species

1 high 0.4692972 30

31 mid 0.1757627 29

61 low 0.1008479 18

Briefly explain the commands below. That is, explain the models being fitted.

> fit1 <- glm(Species ~ Biomass, family = poisson)

> fit2 <- glm(Species ~ pH + Biomass, family = poisson)

> fit3 <- glm(Species ~ pH * Biomass, family = poisson)

Let H1, H2 and H3 denote the hypotheses represented by the three models and fits.
Based on the output of the code below, what hypotheses are being tested, and which of
the models seems to give the best fit to the data? Why?

> anova(fit1, fit2, fit3, test = "Chisq")

Analysis of Deviance Table

Model 1: Species ~ Biomass

Model 2: Species ~ pH + Biomass

Model 3: Species ~ pH * Biomass

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 88 407.67

2 86 99.24 2 308.43 1.059e-67

3 84 83.20 2 16.04 3.288e-04

Finally, what is the value obtained by the following command?

> mu.hat <- exp(predict(fit2))

> -2 * (sum(dpois(Species, mu.hat, log = TRUE)) - sum(dpois(Species,

+ Species, log = TRUE)))
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4/II/13J Statistical Modelling

Consider the following generalized linear model for responses y1, . . . , yn as a function
of explanatory variables x1, . . . , xn, where xi = (xi1, . . . , xip)

> for i = 1, . . . , n. The
responses are modelled as observed values of independent random variables Y1, . . . , Yn,
with

Yi ∼ ED(µi, σ
2
i ), g(µi) = x>i β, σ2

i = σ2ai,

Here, g is a given link function, β and σ2 are unknown parameters, and the ai are treated
as known.

[Hint: recall that we write Y ∼ ED(µ, σ2) to mean that Y has density function of
the form

f(y;µ, σ2) = a(σ2, y) exp

{
1

σ2
[θ(µ)y −K(θ(µ))]

}

for given functions a and θ.]

[ You may use without proof the facts that, for such a random variable Y ,

E(Y ) = K ′(θ(µ)), var(Y ) = σ2K ′′(θ(µ)) ≡ σ2V (µ).]

Show that the score vector and Fisher information matrix have entries:

Uj(β) =
n∑

i=1

(yi − µi)xij
σ2
i V (µi)g′(µi)

, j = 1, . . . , p,

and

ijk(β) =
n∑

i=1

xijxik
σ2
i V (µi)(g′(µi))2

, j, k = 1, . . . , p.

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum
likelihood estimate β̂ for β.

Part II 2008

2008



12

1/I/5I Statistical Modelling

According to the Independent newspaper (London, 8 March 1994) the Metropolitan
Police in London reported 30475 people as missing in the year ending March 1993. For
those aged 18 or less, 96 of 10527 missing males and 146 of 11363 missing females were
still missing a year later. For those aged 19 and above, the values were 157 of 5065 males
and 159 of 3520 females. This data is summarised in the table below.

age gender still total

1 Kid M 96 10527

2 Kid F 146 11363

3 Adult M 157 5065

4 Adult F 159 3520

Explain and interpret the R commands and (slightly abbreviated) output below.
You should describe the model being fitted, explain how the standard errors are calculated,
and comment on the hypothesis tests being described in the summary. In particular, what
is the worst of the four categories for the probability of remaining missing a year later?

> fit <- glm(still/total ~ age + gender, family = binomial,

+ weights = total)

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.06073 0.07216 -42.417 < 2e-16 ***

ageKid -1.27079 0.08698 -14.610 < 2e-16 ***

genderM -0.37211 0.08671 -4.291 1.78e-05 ***

Residual deviance: 0.06514 on 1 degrees of freedom

For a person who was missing in the year ending in March 1993, find a formula,
as a function of age and gender, for the estimated expected probability that they are still
missing a year later.
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1/II/13I Statistical Modelling

This problem deals with data collected as the number of each of two different strains
of Ceriodaphnia organisms are counted in a controlled environment in which reproduction
is occurring among the organisms. The experimenter places into the containers a varying
concentration of a particular component of jet fuel that impairs reproduction. Hence it
is anticipated that as the concentration of jet fuel grows, the mean number of organisms
should decrease.

The table below gives a subset of the data. The full dataset has n = 70 rows. The
first column provides the number of organisms, the second the concentration of jet fuel
(in grams per litre) and the third specifies the strain of the organism.

number fuel strain

82 0 1

58 0 0

45 0.5 1

27 0.5 0

29 0.75 1

15 1.25 1

6 1.25 1

8 1.5 0

4 1.75 0

. . .

. . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, explain how the standard errors
are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ fuel + strain + fuel:strain,family = poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.14443 0.05101 81.252 < 2e-16 ***

fuel -1.47253 0.07007 -21.015 < 2e-16 ***

strain 0.33667 0.06704 5.022 5.11e-07 ***

fuel:strain -0.12534 0.09385 -1.336 0.182

The following R code fits two very similar models. Briefly explain the difference
between these models and the one above. Motivate the fitting of these models in light of
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the summary from the fit of the one above.

> fit2 <- glm(number ~ fuel + strain, family = poisson)

> fit3 <- glm(number ~ fuel, family = poisson)

Denote by H1, H2, H3 the three hypotheses being fitted in sequence above.

Explain the hypothesis tests, including an approximate test of the fit of H1, that
can be performed using the output from the following R code. Use these numbers to
comment on the most appropriate model for the data.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 84.59557 86.37646 118.99503

> qchisq(0.95, df = 1)

[1] 3.841459

2/I/5I Statistical Modelling

Consider the linear regression setting where the responses Yi, i = 1, . . . , n are
assumed independent with means µi = xTi β. Here xi is a vector of known explanatory
variables and β is a vector of unknown regression coefficients.

Show that if the response distribution is Laplace, i.e.,

Yi ∼ f(yi;µi, σ) = (2σ)−1 exp

{
−|yi − µi|

σ

}
, i = 1, . . . , n; yi, µi ∈ R; σ ∈ (0,∞);

then the maximum likelihood estimate β̂ of β is obtained by minimising

S1(β) =
n∑

i=1

|Yi − xTi β|.

Obtain the maximum likelihood estimate for σ in terms of S1(β̂).

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.
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3/I/5I Statistical Modelling

Consider two possible experiments giving rise to observed data yij where
i = 1, . . . , I, j = 1, . . . , J .

1. The data are realizations of independent Poisson random variables, i.e.,

Yij ∼ f1(yij ;µij) =
µ
yij

ij

yij !
exp{−µij}

where µij = µij(β), with β an unknown (possibly vector) parameter. Write β̂ for

the maximum likelihood estimator (m.l.e.) of β and ŷij = µij(β̂) for the (i, j)th
fitted value under this model.

2. The data are components of a realization of a multinomial random ‘vector’

Y ∼ f2((yij);n, (pij)) = n!
I∏

i=1

J∏

j=1

p
yij

ij

yij !

where the yij are non-negative integers with

I∑

i=1

J∑

j=1

yij = n and pij(β) =
µij(β)

n
.

Write β∗ for the m.l.e. of β and y∗ij = npij(β
∗) for the (i, j)th fitted value under

this model.

Show that, if
I∑

i=1

J∑

j=1

ŷij = n ,

then β̂ = β∗ and ŷij = y∗ij for all i, j. Explain the relevance of this result in the context
of fitting multinomial models within a generalized linear model framework.
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4/I/5I Statistical Modelling

Consider the normal linear model Y = Xβ + ε in vector notation, where

Y =



Y1
...
Yn


 , X =



xT1
...
xTn


 , β =



β1
...
βp


 , ε =



ε1
...
εn


 , εi ∼ i.i.d. N(0, σ2),

where xTi = (xi1, . . . , xip) is known and X is of full rank (p < n). Give expressions for

maximum likelihood estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint
distribution.

Suppose that there is a new pair (x∗, y∗), independent of (x1, y1), . . . , (xn, yn),
satisfying the relationship

y∗ = x∗Tβ + ε∗, where ε∗ ∼ N(0, σ2).

We suppose that x∗ is known, and estimate y∗ by ỹ = x∗Tβ̂. State the distribution of

ỹ − y∗

σ̃τ
, where σ̃2 =

n

n− p
σ̂2 and τ2 = x∗T(XTX)−1x∗ + 1.

Find the form of a (1− α)–level prediction interval for y∗.

4/II/13I Statistical Modelling

Let Y have a Gamma distribution with density

f(y;α, λ) =
λαyα−1

Γ(α)
e−λy .

Show that the Gamma distribution is of exponential dispersion family form. Deduce
directly the corresponding expressions for E[Y ] and Var[Y ] in terms of α and λ. What is
the canonical link function?

Let p < n. Consider a generalised linear model (g.l.m.) for responses yi, i = 1, . . . , n
with random component defined by the Gamma distribution with canonical link g(µ), so
that g(µi) = ηi = xTi β, where β = (β1, . . . , βp)

T is the vector of unknown regression
coefficients and xi = (xi1, . . . , xip)

T is the vector of known values of the explanatory
variables for the ith observation, i = 1, . . . , n.

Obtain expressions for the score function and Fisher information matrix and explain
how these can be used in order to approximate β̂, the maximum likelihood estimator
(m.l.e.) of β.

[Use the canonical link function and assume that the dispersion parameter is known.]

Finally, obtain an expression for the deviance for a comparison of the full (sat-

urated) model to the g.l.m. with canonical link using the m.l.e. β̂ (or estimated mean

µ̂ = Xβ̂).
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1/I/5I Statistical Modelling

Assume that observations Y = (Y1, . . . , Yn)
T satisfy the linear model

Y = Xβ + ε,

where X is an n×p matrix of known constants of full rank p < n, where β = (β1, . . . , βp)
T

is unknown and ε ∼ Nn(0, σ
2I). Write down a (1− α)-level confidence set for β.

Define Cook’s distance for the observation (xi, Yi), where x
T
i is the ith row of X.

Give its interpretation in terms of confidence sets for β.

In the above model with n = 50 and p = 2, you observe that one observation has
Cook’s distance 1.3. Would you be concerned about the influence of this observation?

[You may find some of the following facts useful:
(i) If Z ∼ χ2

2, then P(Z 6 0.21) = 0.1, P(Z 6 1.39) = 0.5 and P(Z 6 4.61) = 0.9.
(ii) If Z ∼ F2,48, then P(Z 6 0.11) = 0.1, P(Z 6 0.70) = 0.5 and P(Z 6 2.42) = 0.9.
(iii) If Z ∼ F48,2, then P(Z 6 0.41) = 0.1, P(Z 6 1.42) = 0.5 and P(Z 6 9.47) = 0.9. ]
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1/II/13I Statistical Modelling

The table below gives a year-by-year summary of the career batting record of the
baseball player Babe Ruth. The first column gives his age at the start of each season and
the second gives the number of ‘At Bats’ (AB) he had during the season. For each At Bat,
it is recorded whether or not he scored a ‘Hit’. The third column gives the total number
of Hits he scored in the season, and the final column gives his ‘Average’ for the season,
defined as the number of Hits divided by the number of At Bats.

Age AB Hits Average

19 10 2 0.200

20 92 29 0.315

21 136 37 0.272

22 123 40 0.325

23 317 95 0.300

24 432 139 0.322

25 457 172 0.376

26 540 204 0.378

27 406 128 0.315

28 522 205 0.393

29 529 200 0.378

30 359 134 0.373

31 495 184 0.372

32 540 192 0.356

33 536 173 0.323

34 499 172 0.345

35 518 186 0.359

36 534 199 0.373

37 457 156 0.341

38 459 138 0.301

39 365 105 0.288

40 72 13 0.181
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Explain and interpret the R commands below. In particular, you should explain
the model that is being fitted, the approximation leading to the given standard errors and
the test that is being performed in the last line of output.

> Mod <- glm(Hits/AB~Age+I(Age^2),family=binomial,weights=AB)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5406713 0.8487687 -5.350 8.81e-08 ***

Age 0.2684739 0.0565992 4.743 2.10e-06 ***

I(Age^2) -0.0044827 0.0009253 -4.845 1.27e-06 ***

Residual deviance: 23.345 on 19 degrees of freedom

Assuming that any required packages are loaded, draw a careful sketch of the graph
that you would expect to see on entering the following lines of code:

> Coef <- coef(Mod)

> Fitted <- inv.logit(Coef[[1]]+Coef[[2]]*Age+Coef[[3]]*Age^2)

> plot(Age,Average)

> lines(Age,Fitted)

2/I/5I Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn, for
i = 1, . . . , n, where log(µi) = βxi, for some known constants xi and an unknown parameter
β. Find the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
explain the algorithm you would use to find the maximum likelihood estimator, β̂.
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3/I/5I Statistical Modelling

Consider a generalized linear model for independent observations Y1, . . . , Yn, with
E(Yi) = µi for i = 1, . . . , n. What is a linear predictor? What is meant by the link
function? If Yi has model function (or density) of the form

f(yi;µi, σ
2) = exp

[
1

σ2

{
θ(µi)yi −K(θ(µi))

}]
a(σ2, yi),

for yi ∈ Y ⊆ R, µi ∈ M ⊆ R, σ2 ∈ Φ ⊆ (0,∞), where a(σ2, yi) is a known positive
function, define the canonical link function.

Now suppose that Y1, . . . , Yn are independent with Yi ∼ Bin(1, µi) for i = 1, . . . , n.
Derive the canonical link function.
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4/I/5I Statistical Modelling

The table below summarises the yearly numbers of named storms in the Atlantic
basin over the period 1944–2004, and also gives an index of average July ocean temperature
in the northern hemisphere over the same period. To save space, only the data for the
first four and last four years are shown.

Year Storms Temp

1944 11 0.165

1945 11 0.080

1946 6 0.000

1947 9 -0.024

...
...

...

2001 15 0.592

2002 12 0.627

2003 16 0.608

2004 15 0.546

Explain and interpret the R commands and (slightly abbreviated) output below.

> Mod <- glm(Storms~Temp,family=poisson)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.26061 0.04841 46.697 < 2e-16 ***

Temp 0.48870 0.16973 2.879 0.00399 **

Residual deviance: 51.499 on 59 degrees of freedom

In 2005, the ocean temperature index was 0.743. Explain how you would predict
the number of named storms for that year.
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4/II/13I Statistical Modelling

Consider a linear model for Y = (Y1, . . . , Yn)
T given by

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, where β is an unknown vector and
ε ∼ Nn(0, σ

2I). Derive an expression for the maximum likelihood estimator β̂ of β, and
write down its distribution.

Find also the maximum likelihood estimator σ̂2 of σ2, and derive its distribution.

[You may use Cochran’s theorem, provided that it is stated carefully. You may also assume
that the matrix P = X(XTX)−1XT has rank p, and that I − P has rank n− p.]
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1/I/5I Statistical Modelling

Suppose that Y1, . . . , Yn are independent random variables, and that Yi has prob-
ability density function

f(yi|θi, φ) = exp
[ (yiθi − b(θi))

φ
+ c(yi, φ)

]
.

Assume that E(Yi) = µi and that there is a known link function g(.) such that

g(µi) = βTxi ,

where x1, . . . , xn are known p-dimensional vectors and β is an unknown p-dimensional
parameter. Show that E(Yi) = b′(θi) and that, if `(β, φ) is the log-likelihood function
from the observations (y1, . . . , yn), then

∂`(β, φ)

∂β
=

n∑

1

(yi − µi)xi
g′(µi)Vi

,

where Vi is to be defined.

1/II/13I Statistical Modelling

The Independent, June 1999, under the headline ‘Tourists get hidden costs warn-
ings’ gave the following table of prices in pounds, called ‘How the resorts compared’.

Algarve 8.00 0.50 3.50 3.00 4.00 100.00

CostaDelSol 6.95 1.30 4.10 12.30 4.10 130.85

Majorca 10.25 1.45 5.35 6.15 3.30 122.20

Tenerife 12.30 1.25 4.90 3.70 2.90 130.85

Florida 15.60 1.90 5.05 5.00 2.50 114.00

Tunisia 10.90 1.40 5.45 1.90 2.75 218.10

Cyprus 11.60 1.20 5.95 3.00 3.60 149.45

Turkey 6.50 1.05 6.50 4.90 2.85 263.00

Corfu 5.20 1.05 3.75 4.20 2.50 137.60

Sorrento 7.70 1.40 6.30 8.75 4.75 215.40

Malta 11.20 0.70 4.55 8.00 4.80 87.85

Rhodes 6.30 1.05 5.20 3.15 2.70 261.30

Sicily 13.25 1.75 4.20 7.00 3.85 174.40

Madeira 10.25 0.70 5.10 6.85 6.85 153.70
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Here the column headings are, respectively: Three-course meal, Bottle of Beer,
Suntan Lotion, Taxi (5km), Film (24 exp), Car Hire (per week). Interpret the R
commands, and explain how to interpret the corresponding (slightly abbreviated) R output
given below. Your solution should include a careful statement of the underlying statistical
model, but you may quote without proof any distributional results required.

> price = scan("dresorts") ; price

> Goods = gl(6,1,length=84); Resort=gl(14,6,length=84)

> first.lm = lm(log(price) ~ Goods + Resort)

> summary(first.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8778 0.1629 11.527 < 2e-16

Goods2 -2.1084 0.1295 -16.286 < 2e-16

Goods3 -0.6343 0.1295 -4.900 6.69e-06

Goods4 -0.6284 0.1295 -4.854 7.92e-06

Goods5 -0.9679 0.1295 -7.476 2.49e-10

Goods6 2.8016 0.1295 21.640 < 2e-16

Resort2 0.4463 0.1978 2.257 0.02740

Resort3 0.4105 0.1978 2.076 0.04189

Resort4 0.3067 0.1978 1.551 0.12584

Resort5 0.4235 0.1978 2.142 0.03597

Resort6 0.2883 0.1978 1.458 0.14963

Resort7 0.3457 0.1978 1.748 0.08519

Resort8 0.3787 0.1978 1.915 0.05993

Resort9 0.0943 0.1978 0.477 0.63508

Resort10 0.5981 0.1978 3.025 0.00356

Resort11 0.3281 0.1978 1.659 0.10187

Resort12 0.2525 0.1978 1.277 0.20616

Resort13 0.5508 0.1978 2.785 0.00700

Resort14 0.4590 0.1978 2.321 0.02343

Residual standard error: 0.3425 on 65 degrees of freedom

Multiple R-Squared: 0.962
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2/I/5I Statistical Modelling

You see below three R commands, and the corresponding output (which is slightly
abbreviated). Explain the effects of the commands. How is the deviance defined, and why
do we have d.f.=7 in this case? Interpret the numerical values found in the output.

> n = scan()

3 5 16 12 11 34 37 51 56

> i = scan ()

1 2 3 4 5 6 7 8 9

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

3/I/5I Statistical Modelling

Consider the model Y = Xβ + ε, where Y is an n-dimensional observation vector,
X is an n× p matrix of rank p, ε is an n-dimensional vector with components ε1, . . . , εn,
and ε1, . . . , εn are independently and normally distributed, each with mean 0 and variance
σ2.

(a) Let β̂ be the least-squares estimator of β. Show that

(XTX)β̂ = XTY

and find the distribution of β̂.

(b) Define Ŷ = Xβ̂. Show that Ŷ has distribution N(Xβ, σ2H), where H is a
matrix that you should define.

[You may quote without proof any results you require about the multivariate normal
distribution.]

Part II 2005

2005



13

4/I/5I Statistical Modelling

You see below five R commands, and the corresponding output (which is slightly
abbreviated). Without giving any mathematical proofs, explain the purpose of these
commands, and interpret the output.

> Yes = c(12, 27,11,24)

> Total = c(117,170,52,118)

> Sclass = c("a","a","b","b")

> Sclass = factor(Sclass)

> summary(glm(Yes/Total~ Sclass, binomial, weights=Total))

Coefficients:

Estimate Std. Error z value

(Intercept) -1.8499 0.1723 -10.739

Sclassb 0.4999 0.2562 1.951

Residual deviance: 1.9369 on 2 degrees of freedom

Number of Fisher Scoring iterations: 4
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4/II/13I Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|β, ν) =
(
νyi
µi

)ν

e−yiν/µi
1

Γ(ν)

1

yi
for yi > 0

where
1/µi = βTxi , for 1 6 i 6 n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var (Yi) = µ2
i /ν.

(ii) Find the equation for β̂, the maximum likelihood estimator of β, and suggest
an iterative scheme for its solution.

(iii) If p = 2, and xi =

(
1
zi

)
, find the large-sample distribution of β̂2. Write your

answer in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2
i , b =

∑
ziµ

2
i , c =

∑
z2i µ

2
i .
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