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Paper 1, Section I

10D Quantum Information and Computation

(a) Assume that you are given a device that is able to clone arbitrary quantum
states. Consider two states |φ〉 , |ψ〉 with |φ〉 6= |ψ〉. Show how the given device can be
used to distinguish between these states with arbitrarily high success probability. [You
may use without proof any results from the course provided these are clearly stated.]

(b) Assume you are given a device that is able to distinguish the states |φ〉 and |ψ〉
perfectly. Show how this can be used to clone these states. [You can assume that you are
able to prepare any computational basis state and implement any unitary operator U .]

(c) Let {|φ0〉 , |φ1〉} and {|ψ0〉 , |ψ1〉} be two sets of states. Show that there exists a
unitary operator U and states |e0〉 and |e1〉 such that

U |φ0〉 |0〉 = |ψ0〉 |e0〉
U |φ1〉 |0〉 = |ψ1〉 |e1〉

if and only if |〈φ0|φ1〉| 6 |〈ψ0|ψ1〉|.
[Hint: You can use the fact that for sets of states {|ξ0〉 , |ξ1〉} and {|η0〉 , |η1〉}

with 〈ξ0|ξ1〉 = 〈η0|η1〉 there exists a unitary operator U such that U |ξ0〉 = |η0〉 and
U |ξ1〉 = |η1〉.]
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Paper 2, Section I

10D Quantum Information and Computation
(a) Consider the Bell states

|Φ+
AB〉 =

1√
2

(|00〉+ |11〉) and |Φ−
AB〉 =

1√
2

(|00〉 − |11〉) . (1)

Show that 〈Φ+
AB|Q ⊗ I |Φ+

AB〉 = 〈Φ−
AB|Q ⊗ I |Φ−

AB〉 for any positive semidefinite linear
operator Q acting on qubit A.

(b) Suppose you are now given a quantum state which can either be |Φ+
AB〉 or |Φ−

AB〉
with equal probability.

(i) If you have access to both qubits A and B, can you determine which of the
two states you have by doing a measurement on both qubits?

(ii) If you can only access qubit A, can you determine which of the two states
you have by doing a measurement on it alone?

(iii) Suppose instead that qubit A is with Alice and qubit B is with Bob.
Alice and Bob are at distant locations. They are allowed to do local
measurements on the qubits in their possession and can communicate
classically with each other. Can they determine the joint state of the
two qubits?

(c) Suppose Alice uses the quantum dense coding protocol and a third party, Charlie,
intercepts the qubit that Alice sends to Bob. Can Charlie infer which of the four bit strings
00, 01, 10 and 11 Alice is trying to send? Justify your answer.

Part II, Paper 1
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Paper 3, Section I

10D Quantum Information and Computation

(a) Given two positive integers N and a which are coprime to each other (with
1 < a < N), define the order of amodN .

(b) For such a pair of integers (a,N), the modular exponential function f : Z→ ZN ,
is defined as f : k 7→ ak modN , where ZN := {0, 1, . . . , N − 1}. Prove that f is a periodic
function and determine its period (clearly stating any theorem that you use).

(c) Suppose that we would like to factorise N = 33 and we pick a = 10. Following
the argument presented in the lecture for Shor’s algorithm, show how the order of amodN
can be used to factorise N . Find the order of amodN by hand and hence factorise N .

(d) Recall that Shor’s algorithm for factoring an integer N involves an application
of the quantum Fourier transform on m qubits and a subsequent measurement of these
m qubits which yields an integer c, where 0 6 c < 2m. Suppose we want to factor the
number N = 21; we pick a = 8, m = 9 and get the measurement result c = 256. Show
how you can find the order of amodN from this measurement result. [You should clearly
state any results that you use from the lectures.]

Part II, Paper 1 [TURN OVER]
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Paper 4, Section I

10D Quantum Information and Computation
[In this question you do not need to draw any circuits and you can assume that Alice can
perform a measurement on two qubits in the Bell basis.]

(a) Suppose that Alice and Bob share the quantum state

|ψ+
AB〉 =

1√
2

(|01〉+ |10〉),

and can communicate classically. Alice wants to send an arbitrary qubit state to Bob.
State the steps that Alice and Bob need to execute to achieve this goal.

(b) Suppose Alice, Bob and Charlie share the following state of three qubits:

|ΨABC〉 =
1√
2

(|000〉+ |111〉) ,

where the qubits A, B and C are with Alice, Bob and Charlie, respectively. Moreover,
Alice has the qubit state |α〉 = a |0〉 + b |1〉 , with a, b ∈ C and |a|2 + |b|2 = 1. She
now performs the Bell measurement on the two qubits in her possession. Depending on
the measurement outcome, she asks Bob and Charlie to perform the necessary correction
operations on their individual qubits, as is done in the standard teleportation protocol.
Show that the final joint state of Bob and Charlie at the end of this protocol is either the
state |ϕ1〉 := a |00〉+ b |11〉 or the state |ϕ2〉 := a |00〉 − b |11〉. Show that these states are
entangled if and only if a 6= 0 and b 6= 0.

Part II, Paper 1
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Paper 2, Section II

15D Quantum Information and Computation
(a) Let ZN = {0, 1, 2, . . . , N − 1} and let QFTN denote the quantum Fourier

transform mod N . What is the action of QFTN on |x〉, where x ∈ ZN?

(b) Show that QFT2
N |x〉 = |−x〉. Hence show that QFT4

N = I. What can you
conclude about the eigenvalues of QFTN?

(c) Let f : Z16 → Z4 be a periodic function such that f(0) = 2, f(1) = 1, f(2) = 3,
f(3) = 0 and f(x) = f(x− 4) for all x ∈ Z16 (so that f(4) = 2 etc.).

We want to determine the periodicity of the function f using the quantum Fourier
transform. The periodicity determination algorithm acts on two registers and involves
two measurements – one being a measurement of the second register and one being
a measurement of the first register. Work through all the steps of the periodicity
determination algorithm, assuming that the outcome of the first measurement is 1 and
the outcome of the second measurement is 12. Does the algorithm succeed?

(d) Now consider the same setup as in part (c) but assume that the outcome of the
second measurement is 8. Does the algorithm succeed?

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II

15D Quantum Information and Computation
Consider the following quantum circuit C:

H Z

H

(a) Suppose the state |0〉 |0〉 is sent through the circuit. What is the state at the
output? Suppose each of the two qubits are measured in the computational basis. What
is the distribution of measurement outcomes?

(b) Let V denote the unitary operator corresponding to the circuit C. Draw the
quantum circuit corresponding to the inverse operator V −1.

(c) The SWAP gate for two qubits is defined as SWAP |x〉 |y〉 = |y〉 |x〉, where
x, y ∈ {0, 1}. Show that the SWAP gate can be implemented as a combination of CNOT
gates and draw the corresponding quantum circuit.

(d) Let U be a unitary operator with eigenstate |ψ〉 such that U |ψ〉 = eiθ |ψ〉.
Consider the following quantum circuit:

|0〉 H H

|ψ〉 U

Write down the final state at the end of the algorithm. What is the probability that the
outcome 1 is observed when the first register is measured in the computational basis?
Suppose we are promised that either U |ψ〉 = |ψ〉 or U |ψ〉 = − |ψ〉, but we have no other
information about U and |ψ〉. Show that the above circuit can be used to determine which
of these is the case with certainty.

Part II, Paper 1
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Paper 1, Section I
10D Quantum Information and Computation

Alice and Bob are separated in space and possess local quantum systems A and B
respectively.

(a) State the no-signalling theorem for quantum states of the composite system AB.

(b) State and prove the no-cloning theorem (for unitary processes) for a set S of
quantum states.

(c) Now let S = {| 0〉 , | 1〉 , |+〉 , | −〉} where | ±〉 = 1√
2
(| 0〉 ± | 1〉). Starting with a

suitable state for a 2-qubit composite system AB, show how the no-cloning theorem for
the set S can be seen as a consequence of the no-signalling theorem for AB.

Paper 2, Section I
10D Quantum Information and Computation

(a) Suppose that Alice and Bob are distantly separated in space and they can
communicate classically publicly. They also have available a noiseless quantum channel
on which there is no eavesdropping. Describe the steps of the BB84 protocol that results
in Alice and Bob sharing a secret key of expected length n/2. [Note that the steps of
information reconciliation and privacy amplification will not be needed in this idealised
situation.]

(b) Suppose now that an eavesdropper Eve taps into the quantum channel. Eve
also possesses a supply of ancilla qubits each in state | 0〉E . For each passing qubit |ψ〉A
sent by Alice, Eve intercepts it and applies a CX operation to it and one of her ancilla
qubits | 0〉E with Alice’s qubit being the control i.e. Eve applies CXAE . After this action
Eve sends Alice’s qubit on to Bob while retaining her ancilla qubit.

(i) Show that for two choices of Alice’s sent qubits, the qubit received by Bob will be
entangled with Eve’s corresponding ancilla qubit.

(ii) Calculate the bit error rate for Alice and Bob’s final key in part (a) that results
from Eve’s action.

Part II, Paper 1 [TURN OVER]
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Paper 3, Section I
10D Quantum Information and Computation

Let x = x0x1 . . . xN−1 be an N -bit string with N = 2K being even. LetHM denote a
state space of dimension M with orthonormal basis {| k〉 : k ∈ ZM}. A quantum oracle Ox

for x is a unitary operation onHN⊗H2 whose action is defined by Ox | i〉 | y〉 = | i〉 | y ⊕ xi〉,
where y ∈ {0, 1} and ⊕ denotes addition modulo 2.

Consider the following oracle problem, called Problem A:
Input: an oracle Ox for some N -bit string x.
Promise: x is either a constant string, or a balanced string (the latter meaning that x
contains exactly K 0’s and K 1’s).
Problem: decide if x is balanced.

(a) Suppose we have a universal set of quantum gates available and any desired
unitary operation that is independent of x may be exactly implemented. Also, we may
perform measurements in the basis {| i〉 : i ∈ ZN} of an N -dimensional register.

Show that Problem A can be solved with certainty by a quantum algorithm that
makes only one query to the oracle Ox. The algorithm should begin with each register
initially in the state | 0〉 (in the appropriate state space).

(b) Suppose now that in addition to Ox and measurements in the basis {| i〉 : i ∈
ZN}, we can implement only the Pauli Z gate on a qubit register and gates F and F−1

on an N -dimensional register, where F has the property that F | 0〉 = 1√
N

∑
i∈ZN

| i〉.

By considering the action of Z on a qubit register | y〉, or otherwise, show that with
the restricted set of operations, Problem A can be solved with certainty by a quantum
algorithm that makes two queries to the oracle Ox, and as before, with each register
starting in the state | 0〉 (in the appropriate state space).

Part II, Paper 1
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Paper 4, Section I
10D Quantum Information and Computation

(a) Let Bn denote the set of all n-bit strings and write N = 2n. The Grover iteration
operator on n qubits is given by

Q = −HnI0HnIx0 .

Give a definition of the constituent operators Hn, I0 and Ix0 and state a geometrical
interpretation of the action of Q on the space of n qubits.

(b) The quantum oracle for the identity function I : Bn → Bn, I(x) = x is the
unitary operation UI on 2n qubits defined by UI(|x〉 | y〉) = |x〉 | y ⊕ I(x)〉 for all x, y ∈ Bn.
Here ⊕ denotes the sum of n-bit strings bitwise mod 2 separately at each of the n positions
in the string, i.e. the group operation in (Z2)

n.

Show how the action of UI can be represented by a circuit of CX gates.

(c) Suppose we are given a quantum oracle for I but it is known to be faulty on
one of its inputs. Instead of the full identity function it implements instead the function
f : Bn → Bn given by

f(x) =

{
x for all x 6= x0

x⊕ a for x = x0

where a ∈ Bn is the n-bit string 00 . . . 01 and where x0 ∈ Bn is unknown, i.e. the
given quantum oracle actually implements Uf . By providing a suitable input state for a
circuit involving Uf and further gates independent of f , show how Ix0 on n qubits may be
implemented in terms of Uf .

(d) Hence or otherwise show that for sufficiently large N , x0 may be determined
with some constant probability greater than 1

2 using O(
√
N) queries to the oracle Uf .

Part II, Paper 1 [TURN OVER]
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Paper 2, Section II
15D Quantum Information and Computation

(a) (i) Define the Bell measurement on two qubits.

(ii) In terms of the Bell measurement and the Bell state |φ+〉 give the steps of
the quantum teleportation protocol. You need not give a derivation of the steps but you
should clearly state all inputs and outputs of the protocol.

(iii) Suppose now that the |φ+〉 state used in the protocol is replaced by | ξ〉 =
I ⊗U |φ+〉, where U is any 1-qubit unitary and all steps of the protocol remain otherwise
the same as in part (ii) above. State the outputs of this modified protocol and give a
justification of your answer. [You may quote any statements from part (ii) above.]

(b) A programmable 1-qubit gate G is defined to be a device acting on two registers
A and B, where A is a 1-qubit register called the input register and B is a K-qubit register
(for some fixed K ∈ N) called the program register. For any given state of AB the action
of G is a fixed unitary operation G on the K + 1 qubits, which is required to satisfy the
following condition called (PROG):

For any 1-qubit unitary U there is a K-qubit state |PU 〉 such that for any 1-qubit
state |α〉 we have

|α〉 ⊗ |PU 〉 7−→ G( |α〉 ⊗ |PU 〉 ) = (U |α〉)⊗
∣∣∣ P̃U

〉
.

Here
∣∣∣ P̃U

〉
is some K-qubit state (which could generally depend on |α〉 too). Thus |PU 〉

serves as a “program” for the application of U to any 1-qubit state |α〉 via the fixed
unitary action G.

(i) By considering suitable inner products or otherwise, show that if (PROG) holds

then
∣∣∣ P̃U

〉
must be independent of the state |α〉.

(ii) Suppose that |PU 〉 and |PV 〉 implement 1-qubit unitaries U and V that have
physically different actions i.e. U 6= V eiθ for any phase θ. Show that |PU 〉 and
|PV 〉 must then be orthogonal if (PROG) holds. [Hint: It may be helpful to show
that for any unitary W , if 〈α|W |α〉 is independent of |α〉 then W must be the
identity gate (up to an overall phase).]

(iii) Show that a programmable 1-qubit gate G satisfying (PROG) cannot exist.

(iv) Suppose now that (PROG) is extended to allow the action of G to involve quantum
measurements as well as unitary operations and we require of the “program” |PU 〉
only that it succeeds in applying U to |α〉 with at least some constant probability
0 < p < 1 independent of U and |α〉, i.e. the action of G on |α〉 ⊗ |PU 〉 results in
U |α〉 in the first register with probability at least p for each U and |α〉. Can such
a probabilistic programmable 1-qubit gate exist? Give a reason for your answer.

Part II, Paper 1
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Paper 3, Section II
15D Quantum Information and Computation

For any positive integerN , let QFTN denote the quantum Fourier transform modN .

(a) Consider an N -dimensional state space equipped with an orthonormal basis
B = {| k〉 : k ∈ ZN}. You may assume that QFTN , measurements in the basis B, and the
basic arithmetic operations of addition and multiplication modulo N may all be performed
in time O(poly(logN)).

Consider the function f : ZN → ZN defined by f(x) = ax mod N , where we have
fixed a choice of a ∈ ZN with a 6= 0. It is promised that f is periodic with period r which
divides N exactly, and f is one-to-one within each period.

Describe a quantum algorithm which runs in time O(poly(logN)) that will identify
r with success probability at least 1/2. The algorithm should start with each quantum
register (of suitable dimension) being in state | 0〉 and it should have the property that in
any run, we also learn whether it has succeeded or not. For any step of your algorithm that
is not one of the operations listed above, give a brief justification that it can be performed
in time O(poly(logN)). [You may use without proof any results from classical number
theory or classical probability theory but they must be stated clearly.]

(b) Consider an N -dimensional state space with orthonormal basis {| i〉 : i ∈ ZN}.
Let S be the operation defined by S | i〉 = | i+ 1〉 for all i ∈ ZN (and + being addition
modulo N). Show that the states QFTN | k〉 for k ∈ ZN are eigenvectors of S.
Now let N = 4 and represent each basis state | j〉 with two qubits as |x〉 | y〉 where the
2-bit string xy is j written in binary. Suppose we can implement only the gates QFT4, its

inverse and any 1-qubit phase gate P (θ) =

(
1 0
0 eiθ

)
. Show how S may be implemented

on any input 2-qubit state and sketch the circuit for S.

Part II, Paper 1 [TURN OVER]
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Paper 1, Section I

10D Quantum Information and Computation
Alice wishes to communicate to Bob a 1-bit message m = 0 or m = 1 chosen by

her with equal prior probabilities 1/2. For m = 0 (respectively m = 1) she sends Bob
the quantum state |a0〉 (respectively |a1〉). On receiving the state, Bob applies quantum
operations to it, to try to determine Alice’s message. The Helstrom–Holevo theorem
asserts that the probability PS for Bob to correctly determine Alice’s message is bounded
by PS 6 1

2(1 + sin θ), where θ = cos−1 |〈a0|a1〉|, and that this bound is achievable.

(a) Suppose that |a0〉 = |0〉 and |a1〉 = 1√
2
(|0〉 + |1〉), and that Bob measures

the received state in the basis {|b0〉 , |b1〉}, where |b0〉 = cosβ |0〉 + sinβ |1〉 and |b1〉 =
− sinβ |0〉+cosβ |1〉, to produce his output 0 or 1, respectively. Calculate the probability
PS that Bob correctly determines Alice’s message, and show that the maximum value of
PS over choices of β ∈ (−π

2 ,
π
2 ] achieves the Helstrom–Holevo bound.

(b) State the no-cloning theorem as it applies to unitary processes and a set of two
non-orthogonal states {|c0〉 , |c1〉}. Show that the Helstrom–Holevo theorem implies the
validity of the no-cloning theorem in this situation.

Paper 2, Section I

10D Quantum Information and Computation
Let Bn denote the set of all n-bit strings and let f : Bn → B1 be a Boolean function

which obeys either

(I) f(x) = 0 for all x ∈ Bn, or
(II) f(x) = 0 for exactly half of all x ∈ Bn.

Suppose we are given the n-qubit state

| ξ〉 = 1√
2n

∑

x∈Bn

(−1)f(x) |x〉 .

Show how we may determine with certainty whether f is of case (I) or case (II).

Suppose now that Alice and Bob are separated in space. Alice possesses a quantum
oracle for a Boolean function fA : Bn → B1 and Bob similarly possess a quantum oracle
for a Boolean function fB : Bn → B1. These functions are arbitrary, except that either

(1) fA(x) = fB(x) for all x ∈ Bn, or
(2) fA(x) = fB(x) for exactly half of all x ∈ Bn.

Alice and Bob each have available a supply of qubits in state |0〉 and each can apply local
quantum operations (including their own function oracle) to any qubits in their possession.
Additionally, they can send qubits to each other.

Show how Bob may decide with certainty which case applies, after he has received
n qubits from Alice. [Hint: You may find it helpful to consider the function h(x) =
fA(x)⊕ fB(x), where ⊕ denotes addition mod 2.]

Part II, 2021 List of Questions
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Paper 3, Section I

10D Quantum Information and Computation
Let |ψ〉AB be the joint state of a bipartite system AB with subsystems A and B

separated in space. Suppose that Alice and Bob have access only to subsystems A and B
respectively, on which they can perform local quantum operations.

Alice performs a unitary operation U on A and then a (generally incomplete)
measurement on A, with projectors {Πa} labelled by her possible measurement outcomes
a. Then Bob performs a complete measurement on B relative to the orthonormal basis
{|b〉} labelled by his possible outcomes b.

Show that the probability distribution of Bob’s measurement outcomes is unaffected
by whether or not Alice actually performs the local operations on A described above.

Paper 4, Section I

10D Quantum Information and Computation
Let H be a state space of dimension N with standard orthonormal basis {|k〉}

labelled by k ∈ ZN . Let QFT denote the quantum Fourier transform mod N and let S
denote the operation defined by S|k〉 = |k + 1 mod N〉.

(a) Introduce the basis {|χk〉} defined by |χk〉 = QFT−1|k〉. Show that each |χk〉 is
an eigenstate of S and determine the corresponding eigenvalue.

(b) By expressing a generic state |v〉 ∈ H in the {|χk〉} basis, show that QFT |v〉
and QFT(S|v〉) have the same output distribution if measured in the standard basis.

(c) Let A, r be positive integers with Ar = N , and let x0 be an integer with
0 6 x0 < r. Suppose that we are given the state

|ξ〉 =
1√
A

A−1∑

j=0

|x0 + jr mod N〉 ,

where x0 and r are unknown to us. Using part (b) or otherwise, show that a standard
basis measurement on QFT |ξ〉 has an output distribution that is independent of x0.

Part II, 2021 List of Questions [TURN OVER]
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Paper 2, Section II

15D Quantum Information and Computation
Alice and Bob are separated in space and can communicate only over a noiseless

public classical channel, i.e. they can exchange bit string messages perfectly, but the
messages can be read by anyone. An eavesdropper Eve constantly monitors the channel,
but cannot alter any passing messages. Alice wishes to communicate an m-bit string
message to Bob whilst keeping it secret from Eve.

(a) Explain how Alice can do this by the one-time pad method, specifying clearly
any additional resource that Alice and Bob need. Explain why in this method, Alice’s
message does, in fact, remain secure against eavesdropping.

(b) Suppose now that Alice and Bob do not possess the additional resource needed
in part (a) for the one-time pad, but that they instead possess n pairs of qubits, where
n� 1, with each pair being in the state

|ψ〉AB = t |00〉AB + s |11〉AB ,

where the real parameters (t, s) are known to Alice and Bob and obey t > s > 0 and
t2+ s2 = 1. For each qubit pair in state |ψ〉AB, Alice possesses qubit A and Bob possesses
qubit B. They each also have available a supply of ancilla qubits, each in state |0〉, and
they can each perform local quantum operations on qubits in their possession.

Show how Alice, using only local quantum operations, can convert each |ψ〉AB state
into |φ+〉AB = 1√

2
(|00〉AB + |11〉AB) by a process that succeeds with non-zero probability.

[Hint: It may be useful for Alice to start by adjoining an ancilla qubit |0〉A′ and work
locally on her two qubits in |0〉A′ |ψ〉AB.]

Hence, or otherwise, show how Alice can communicate a bit string of expected
length (2s2)n to Bob in a way that keeps it secure against eavesdropping by Eve.

Part II, 2021 List of Questions
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Paper 3, Section II

15D Quantum Information and Computation
Let Bn denote the set of all n-bit strings and let Hn denote the space of n qubits.

(a) Suppose f : B2 → B1 has the property that f(x0) = 1 for a unique x0 ∈ B2 and
suppose we have a quantum oracle Uf .

(i) Let |ψ0〉 = 1
2

∑
x∈B2

|x〉 and introduce the operators

Ix0 = I2 − 2 |x0〉〈x0| and J = I2 − 2 |ψ0〉〈ψ0|

on H2, where I2 is the identity operator. Give a geometrical description of the
actions of −J , Ix0 and Q = −JIx0 on the 2-dimensional subspace of H2 given
by the real span of |x0〉 and |ψ0〉. [You may assume without proof that the
product of two reflections in R2 is a rotation through twice the angle between
the mirror lines.]

(ii) Using the results of part (i), or otherwise, show how we may determine x0
with certainty, starting with a supply of qubits each in state |0〉 and using Uf
only once, together with other quantum operations that are independent of
f .

(b) Suppose Hn = A ⊕ A⊥, where A is a fixed linear subspace with orthogonal
complement A⊥. Let ΠA denote the projection operator onto A and let IA = I − 2 ΠA,
where I is the identity operator on Hn.

(i) Show that any |ξ〉 ∈ Hn can be written as |ξ〉 = sin θ |α〉 + cos θ |β〉, where
θ ∈ [0, π/2], and |α〉 ∈ A and |β〉 ∈ A⊥ are normalised.

(ii) Let Iξ = I−2 |ξ〉〈ξ| andQ = −IξIA. Show thatQ|α〉 = − sin 2θ |β〉+cos 2θ |α〉.

(iii) Now assume, in addition, that Q|β〉 = cos 2θ |β〉 + sin 2θ |α〉 and that |ξ〉 =
U |0 . . . 0〉 for some unitary operation U . Suppose we can implement the
operators U , U †, IA as well as the operation I − 2|0 . . . 0〉〈0 . . . 0|. In the
case θ = π/10, show how the n-qubit state |α〉 may be made exactly from
|0 . . . 0〉 by a process that succeeds with certainty.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

10C Quantum Information and Computation
Suppose we measure an observable A = n̂ ·~σ on a qubit, where n̂ = (nx, ny, nz) ∈ R3

is a unit vector and ~σ = (σx, σy, σz) is the vector of Pauli operators.

(i) Express A as a 2× 2 matrix in terms of the components of n̂.

(ii) Representing n̂ in terms of spherical polar coordinates as n̂ = (1, θ, φ), rewrite
the above matrix in terms of the angles θ and φ.

(iii) What are the possible outcomes of the above measurement?

(iv) Suppose the qubit is initially in a state |1〉. What is the probability of getting
an outcome 1?

(v) Consider the three-qubit state

|ψ〉 = a |000〉+ b |010〉+ c |110〉+ d |111〉+ e |100〉 .

Suppose the second qubit is measured relative to the computational basis. What is the
probability of getting an outcome 1? State the rule that you are using.

Paper 2, Section I

10C Quantum Information and Computation
Consider the set of states

|βzx〉 :=
1√
2
[|0x〉+ (−1)z |1x〉],

where x, z ∈ {0, 1} and x = x⊕ 1 (addition modulo 2).

(i) Show that

(H ⊗ I) ◦ CX |βzx〉 = |zx〉 ∀ z, x ∈ {0, 1},

where H denotes the Hadamard gate and CX denotes the controlled-X gate.

(ii) Show that for any z, x ∈ {0, 1},

(ZzXx ⊗ I) |β00〉 = |βzx〉 . (∗)

[Hint: For any unitary operator U , we have (U ⊗ I) |β00〉 = (I⊗ UT ) |β00〉 ,
where UT denotes the transpose of U with respect to the computational basis.]

(iii) Suppose Alice and Bob initially share the state |β00〉. Show using (∗) how Alice
can communicate two classical bits to Bob by sending him only a single qubit.
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For φ ∈ [0, 2π) and |ψ〉 ∈ C4 consider the operator

Rφψ = I−
(

1− eiφ
)
|ψ〉 〈ψ| .

Let U be a unitary operator on C4 = C2 ⊗ C2 with action on |00〉 given as follows

U |00〉 =
√
p |g〉+

√
1− p |b〉 =: |ψin〉 , (†)

where p is a constant in [0, 1] and |g〉 , |b〉 ∈ C4 are orthonormal states.

(i) Give an explicit expression of the state RφgU |00〉.

(ii) Find a |ψ〉 ∈ C4 for which Rπψ = URπ00U
†.

(iii) Choosing p = 1/4 in equation (†), calculate the state URπ00U
†RφgU |00〉. For

what choice of φ ∈ [0, 2π) is this state proportional to |g〉?

(iv) Describe how the above considerations can be used to find a marked element g
in a list of four items {g, b1, b2, b3}. Assume that you have the state |00〉 and can act on
it with a unitary operator that prepares the uniform superposition of four orthonormal
basis states |g〉 , |b1〉 , |b2〉 , |b3〉 of C4. [You may use the operators U (defined in (†)), U †

and Rφψ for any choice of φ ∈ [0, 2π) and any |ψ〉 ∈ C4.]

Paper 4, Section I

10C Quantum Information and Computation
(i) What is the action of QFTN on a state |x〉, where x ∈ {0, 1, 2, . . . , N − 1} and

QFTN denotes the Quantum Fourier Transform modulo N?

(ii) For the case N = 4 write 0, 1, 2, 3 respectively in binary as 00, 01, 10, 11 thereby
identifying the four-dimensional space as that of two qubits. Show that QFTN |10〉 is an
unentangled state of the two qubits.

(iii) Prove that (QFTN )
2 |x〉 = |N − x〉, where (QFTN )

2 ≡ QFTN ◦QFTN .

[Hint: For ω = e2πi/N ,
∑N−1

m=0 ω
mK = 0 if K is not a multiple of N .]

(iv) What is the action of (QFTN )
4 on a state |x〉, for any x ∈ {0, 1, 2, . . . , N − 1}?

Use the above to determine what the eigenvalues of QFTN are.
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(a) Show how the n-qubit state

|ψn〉 :=
1√
2n

∑

x∈Bn

|x〉

can be generated from a computational basis state of Cn by the action of Hadamard gates.

(b) Prove that CZ = (I ⊗H)CNOT12(I ⊗H), where CZ denotes the controlled-Z
gate. Justify (without any explicit calculations) the following identity:

CNOT12 = (I ⊗H)CZ(I ⊗H).

(c) Consider the following two-qubit circuit:

What is its action on an arbitrary 2-qubit state |ψ〉 ⊗ |φ〉? In particular, for two given
states |ψ〉 and |φ〉, find the states |α〉 and |β〉 such that

U(|ψ〉 ⊗ |φ〉) = |α〉 ⊗ |β〉 .

(d) Consider the following quantum circuit diagram

where the measurement is relative to the computational basis and U is the quantum gate
from part (c). Note that the second gate in the circuit performs the following controlled
operation:

|0〉 |ψ〉 |φ〉 7→ |0〉 |ψ〉 |φ〉 ; |1〉 |ψ〉 |φ〉 7→ |1〉U (|ψ〉 |φ〉) .

(i) Give expressions for the joint state of the three qubits after the action of the
first Hadamard gate; after the action of the quantum gate U ; and after the action of the
second Hadamard gate.

(ii) Compute the probabilities p0 and p1 of getting outcome 0 and 1, respectively,
in the measurement.

(iii) How can the above circuit be used to determine (with high probability) whether
the two states |ψ〉 and |φ〉 are identical or not? [Assume that you are given arbitrarily
many copies of the three input states and that the quantum circuit can be used arbitrarily
many times.]
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Consider the quantum oracle Uf for a function f : Bn → Bn which acts on the state

|x〉 |y〉 of 2n qubits as follows:

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 . (1)

The function f is promised to have the following property: there exists a z ∈ Bn such that
for any x, y ∈ Bn,

[f(x) = f(y)] if and only if x⊕ y ∈ {0n, z}, (2)

where 0n ≡ (0, 0, . . . , 0) ∈ Bn.

(a) What is the nature of the function f for the case in which z = 0n, and for the
case in which z 6= 0n?

(b) Suppose initially each of the 2n qubits are in the state |0〉. They are then
subject to the following operations:

1. Each of the first n qubits forming an input register are acted on by Hadamard gates;
2. The 2n qubits are then acted on by the quantum oracle Uf ;
3. Next, the qubits in the input register are individually acted on by Hadamard gates.

(i) List the states of the 2n qubits after each of the above operations; the expression
for the final state should involve the n-bit “dot product” which is defined as follows:

a · b = (a1b1 + a2b2 + . . .+ anbn) mod 2,

where a, b ∈ Bn with a = (a1, . . . , an) and b = (b1, . . . , bn).

(ii) Justify that if z = 0n then for any y ∈ Bn and any ϕ(x, y) ∈ {−1,+1}, the
following identity holds:

∥∥∥∥∥
∑

x∈Bn

ϕ(x, y) |f(x)〉
∥∥∥∥∥

2

=

∥∥∥∥∥
∑

x∈Bn

ϕ(x, y) |x〉
∥∥∥∥∥

2

. (3)

(iii) For the case z = 0n, what is the probability that a measurement of the input
register, relative to the computational basis of Cn results in a string y ∈ Bn?

(iv) For the case z 6= 0n, show that the probability that the above-mentioned
measurement of the input register results in a string y ∈ Bn, is equal to the following:

zero for all strings y ∈ Bn satisfying y · z = 1, and

2−(n−1) for any fixed string y ∈ Bn satisfying y · z = 0.

[State any identity you may employ. You may use (x⊕z)·y = (x·y)⊕(z ·y), ∀x, y, z ∈ Bn.]
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(a) Define the order of α mod N for coprime integers α and N with α < N . Explain

briefly how knowledge of this order can be used to provide a factor of N , stating conditions
on α and its order that must be satisfied.

(b) Shor’s algorithm for factoring N starts by choosing α < N coprime. Describe
the subsequent steps of a single run of Shor’s algorithm that computes the order of α mod
N with probability O(1/ log logN).

[Any significant theorems that you invoke to justify the algorithm should be clearly
stated (but proofs are not required). In addition you may use without proof the following
two technical results.

Theorem FT: For positive integers t and M with M > t2, and any 0 6 x0 < t, let K
be the largest integer such that x0 +(K − 1)t < M . Let QFT denote the quantum Fourier

transform mod M . Suppose we measure QFT
(

1√
K

∑K−1
k=0 |x0 + kt〉

)
to obtain an integer

c with 0 6 c < M . Then with probability O(1/ log log t), c will be an integer closest to a
multiple j(M/t) of M/t for which the value of j (between 0 and t) is coprime to t.

Theorem CF: For any rational number a/b with 0 < a/b < 1 and with integers a
and b having at most n digits each, let p/q with p and q coprime, be any rational number
satisfying ∣∣∣∣

a

b
− p

q

∣∣∣∣ 6
1

2q2
.

Then p/q is one of the O(n) convergents of the continued fraction of a/b and all the
convergents can be classically computed from a/b in time O(n3).]
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Let Bn denote the set of all n-bit strings and write N = 2n. Let I denote the

identity operator on n qubits and for G = {x1, x2, . . . , xk} ⊂ Bn introduce the n-qubit
operator

Q = −HnI0HnIG

where Hn = H ⊗ . . .⊗H is the Hadamard operation on each of the n qubits, and I0 and
IG are given by

I0 = I − 2 |00 . . . 0〉 〈00 . . . 0| IG = I − 2
∑

x∈G
|x〉 〈x| .

Also introduce the states

|ψ0〉 =
1√
N

∑

x∈Bn

|x〉 |ψG〉 =
1√
k

∑

x∈G
|x〉 |ψB〉 =

1√
N − k

∑

x/∈G
|x〉 .

Let P denote the real span of |ψ0〉 and |ψG〉.
(a) Show that Q maps P to itself, and derive a geometrical interpretation of the

action of Q on P, stating clearly any results from Euclidean geometry that you use.

(b) Let f : Bn → B1 be the Boolean function such that f(x) = 1 iff x ∈ G. Suppose
that k = N/4. Show that we can obtain an x ∈ G with certainty by using just one
application of the standard quantum oracle Uf for f (together with other operations that
are independent of f).
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The BB84 quantum key distribution protocol begins with Alice choosing two

uniformly random bit strings X = x1x2 . . . xm and Y = y1y2 . . . ym.

(a) In terms of these strings, describe Alice’s process of conjugate coding for the
BB84 protocol.

(b) Suppose Alice and Bob are distantly separated in space and have available a
noiseless quantum channel on which there is no eavesdropping. They can also communicate
classically publicly. For this idealised situation, describe the steps of the BB84 protocol
that results in Alice and Bob sharing a secret key of expected length m/2.

(c) Suppose now that an eavesdropper Eve taps into the channel and carries out the
following action on each passing qubit. With probability 1−p, Eve lets it pass undisturbed,
and with probability p she chooses a bit w ∈ {0, 1} uniformly at random and measures
the qubit in basis Bw where B0 = {|0〉 , |1〉} and B1 = {(|0〉 + |1〉)/

√
2, (|0〉 − |1〉)/

√
2}.

After measurement Eve sends the post-measurement state on to Bob. Calculate the bit
error rate for Alice and Bob’s final key in part (b) that results from Eve’s action.
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Introduce the 2-qubit states

|βxz〉 = (ZzXx)⊗ I

( |00〉+ |11〉√
2

)
,

where X and Z are the standard qubit Pauli operations and x, z ∈ {0, 1}.
(a) For any 1-qubit state |α〉 show that the 3-qubit state |α〉C |β00〉AB of system

CAB can be expressed as

|α〉C |β00〉AB =
1

2

1∑

x,z=0

|βxz〉CA |µxz〉B ,

where the 1-qubit states |µxz〉 are uniquely determined. Show that |µ10〉 = X |α〉.
(b) In addition to |µ10〉 = X |α〉 you may now assume that |µxz〉 = XxZz |α〉. Alice

and Bob are separated distantly in space and share a |β00〉AB state with A and B labelling
qubits held by Alice and Bob respectively. Alice also has a qubit C in state |α〉 whose
identity is unknown to her. Using the results of part (a) show how she can transfer the
state of C to Bob using only local operations and classical communication, i.e. the sending
of quantum states across space is not allowed.

(c) Suppose that in part (b), while sharing the |β00〉AB state, Alice and Bob are
also unable to engage in any classical communication, i.e. they are able only to perform
local operations. Can Alice now, perhaps by a modified process, transfer the state of C
to Bob? Give a reason for your answer.
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Let Hd denote a d-dimensional state space with orthonormal basis {|y〉 : y ∈ Zd}.

For any f : Zm → Zn let Uf be the operator on Hm ⊗Hn defined by

Uf |x〉 |y〉 = |x〉 |y + f(x) modn〉

for all x ∈ Zm and y ∈ Zn.

(a) Define QFT , the quantum Fourier transform mod d (for any chosen d).

(b) Let S on Hd (for any chosen d) denote the operator defined by

S |y〉 = |y + 1 mod d〉

for y ∈ Zd. Show that the Fourier basis states |ξx〉 = QFT |x〉 for x ∈ Zd are eigenstates
of S. By expressing Uf in terms of S find a basis of eigenstates of Uf and determine the
corresponding eigenvalues.

(c) Consider the following oracle promise problem:
Input: an oracle for a function f : Z3 → Z3.
Promise: f has the form f(x) = sx+ t where s and t are unknown coefficients (and with
all arithmetic being mod 3).
Problem: Determine s with certainty.

Can this problem be solved by a single query to a classical oracle for f (and possible
further processing independent of f)? Give a reason for your answer.

Using the results of part (b) or otherwise, give a quantum algorithm for this problem
that makes just one query to the quantum oracle Uf for f .

(d) For any f : Z3 → Z3, let f1(x) = f(x + 1) and f2(x) = −f(x) (all arithmetic
being mod 3). Show how Uf1 and Uf2 can each be implemented with one use of Uf together
with other unitary gates that are independent of f .

(e) Consider now the oracle problem of the form in part (c) except that now f is a
quadratic function f(x) = ax2+bx+c with unknown coefficients a, b, c (and all arithmetic
being mod 3), and the problem is to determine the coefficient a with certainty. Using the
results of part (d) or otherwise, give a quantum algorithm for this problem that makes
just two queries to the quantum oracle for f .
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Let |α0〉 6= |α1〉 be two quantum states and let p0 and p1 be associated probabilities

with p0 + p1 = 1, p0 6= 0, p1 6= 0 and p0 > p1. Alice chooses state |αi〉 with probability pi
and sends it to Bob. Upon receiving it, Bob performs a 2-outcome measurement M with
outcomes labelled 0 and 1, in an attempt to identify which state Alice sent.

(a) By using the extremal property of eigenvalues, or otherwise, show that the
operator D = p0 |α0〉 〈α0| − p1 |α1〉 〈α1| has exactly two nonzero eigenvalues, one of which
is positive and the other negative.

(b) Let PS denote the probability that Bob correctly identifies Alice’s sent state. If
the measurementM comprises orthogonal projectors {Π0,Π1} (corresponding to outcomes
0 and 1 respectively) give an expression for PS in terms of p1, Π0 and D.

(c) Show that the optimal success probability P opt
S , i.e. the maximum attainable

value of PS , is

P opt
S =

1 +
√

1− 4p0p1 cos2 θ

2
,

where cos θ = |〈α0|α1〉|.
(d) Suppose we now place the following extra requirement on Bob’s discrimination

process: whenever Bob obtains output 0 then the state sent by Alice was definitely |α0〉.
Show that Bob’s P opt

S now satisfies P opt
S > 1− p0 cos

2 θ.
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Let Bn denote the set of all n-bit strings. Suppose we are given a 2-qubit quantum

gate Ix0 which is promised to be of the form

Ix0 |x〉 =
{

| x〉 x 6= x0
− | x〉 x = x0

but the 2-bit string x0 is unknown to us. We wish to determine x0 with the least
number of queries to Ix0 . Define A = I − 2 |ψ〉〈ψ|, where I is the identity operator
and |ψ〉 = 1

2

∑
x∈B2

| x〉.
(a) Is A unitary? Justify your answer.

(b) Compute the action of Ix0 on |ψ〉, and the action of |ψ〉〈ψ| on |x0〉, in each case
expressing your answer in terms of |ψ〉 and |x0〉. Hence or otherwise show that x0 may
be determined with certainty using only one application of the gate Ix0 , together with any
other gates that are independent of x0.

(c) Let fx0 : B2 → B1 be the function having value 0 for all x 6= x0 and having value
1 for x = x0. It is known that a single use of Ix0 can be implemented with a single query to
a quantum oracle for the function fx0 . But suppose instead that we have a classical oracle
for fx0 , i.e. a black box which, on input x, outputs the value of fx0(x). Can we determine
x0 with certainty using a single query to the classical oracle? Justify your answer.
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Let Bn denote the set of all n-bit strings. For any Boolean function on 2 bits

f : B2 → B1 consider the linear operation on 3 qubits defined by

Uf |x〉 | y〉 = |x〉 | y ⊕ f(x)〉

for all x ∈ B2, y ∈ B1 and ⊕ denoting addition of bits modulo 2. Here the first register
is a 2-qubit register and the second is a 1-qubit register. We are able to apply only the
1-qubit Pauli X and Hadamard H gates to any desired qubits, as well as the 3-qubit gate
Uf to any three qubits. We can also perform measurements in the computational basis.

(a) Describe how we can construct the state

| f〉 = 1

2

∑

x∈B2

(−1)f(x) |x〉

starting from the standard 3-qubit state | 0〉 | 0〉 | 0〉.
(b) Suppose now that the gate Uf is given to us but f is not specified. However f

is promised to be one of two following cases:

(i) f is a constant function (i.e. f(x) = 0 for all x, or f(x) = 1 for all x),

(ii) for any 2-bit string x = b1b2 we have f(b1b2) = b1 ⊕ b2 (with ⊕ as above).

Show how we may determine with certainty which of the two cases (i) or (ii) applies, using
only a single application of Uf .

Paper 2, Section I

10D Quantum Information and Computation
(a) The classical controlled-NOT operation applied to the 2-bit string b0 (for b = 0

or 1) achieves the cloning of b, i.e. the result is bb. Let CX denote the quantum controlled-
X (or controlled-NOT ) operation on two qubits. For which qubit states |ψ〉 = a | 0〉+b | 1〉
will the application of CX to |ψ〉 | 0〉 (with the first qubit being the control qubit) achieve
the cloning of |ψ〉? Justify your answer.

(b) Let |α0〉 and |α1〉 be two distinct non-orthogonal quantum states. State and
prove the quantum no-cloning theorem for unitary processes.
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(a) Define what it means for a 2-qubit state |ψ〉AB of a composite quantum

system AB to be entangled.

Consider the 2-qubit state

|α〉 = 1√
3

(
2 | 00〉 −H ⊗H | 11〉

)

where H is the Hadamard gate. From the definition of entanglement, show that |α〉 is an
entangled state.

(b) Alice and Bob are distantly separated in space. Initially they each hold one
qubit of the 2-qubit entangled state

∣∣φ+
〉
=

1√
2

(
| 00〉+ | 11〉

)
.

They are able to perform local quantum operations (unitary gates and measurements) on
quantum systems they hold. Alice wants to communicate two classical bits of information
to Bob. Explain how she can achieve this (within their restricted operational resources)
by sending him a single qubit.
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(a) Suppose that Alice and Bob are distantly separated in space and each has one

qubit of the 2-qubit state |φ+〉 = 1√
2
(| 00〉 + | 11〉). They also have the ability to perform

local unitary quantum operations and local computational basis measurements, and to
communicate only classically. Alice has a 1-qubit state |α〉 (whose identity is unknown to
her) which she wants to communicate to Bob. Show how this can be achieved using only
the operational resources, listed above, that they have available.

Suppose now that a third party, called Charlie, joins Alice and Bob. They are all
mutually distantly separated in space and each holds one qubit of the 3-qubit state

| γ〉 = 1√
2

(
| 000〉 + | 111〉

)
.

As previously with Alice and Bob, they are able to communicate with each other only
classically, e.g. by telephone, and they can each also perform only local unitary operations
and local computational basis measurements. Alice and Bob phone Charlie to say that
they want to do some quantum teleportation and they need a shared |φ+〉 state (as defined
above). Show how Charlie can grant them their wish (with certainty), given their joint
possession of | γ〉 and using only their allowed operational resources. [Hint: It may be
useful to consider application of an appropriate Hadamard gate action.]

(b) State the quantum no-signalling principle for a bipartite state |ψ〉AB of the
composite system AB.

Suppose we are given an unknown one of the two states

|φ+〉AB = 1√
2

(
| 00〉AB + | 11〉AB

)
,

|φ−〉AB = 1√
2

(
| 00〉AB − | 11〉AB

)
,

and we wish to identify which state we have. Show that the minimum error probability
for this state discrimination task is zero.

Suppose now that we have access only to qubit B of the received state. Show that
we can now do no better in the state discrimination task than just making a random guess
as to which state we have.
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In this question you may assume the following fact about the quantum Fourier

transform QFT mod N : if N = Ar and 0 6 x0 < r, where A, r, x0 ∈ Z, then

QFT
1√
A

A−1∑

k=0

|x0 + kr〉 = 1√
r

r−1∑

l=0

ωx0lA | lA〉

where ω = e2πi/N .

(a) Let ZN denote the integers modulo N . Let f : ZN → Z be a periodic function
with period r and with the property that f is one-to-one within each period. We have one
instance of the quantum state

| f〉 = 1√
N

N−1∑

x=0

|x〉 | f(x)〉

and the ability to calculate the function f on at most two x values of our choice.

Describe a procedure that may be used to determine the period r with success
probability O(1/ log logN). As a further requirement, at the end of the procedure we
should know if it has been successful, or not, in outputting the correct period value.
[You may assume that the number of integers less than N that are coprime to N is
O(N/ log logN)].

(b) Consider the function f : Z12 → Z10 defined by f(x) = 3x mod 10.

(i) Show that f is periodic and find the period.

(ii) Suppose we are given the state | f〉 = 1√
12

∑11
x=0 | x〉 | f(x)〉 and we measure

the second register. What are the possible resulting measurement values y
and their probabilities?

(iii) Suppose the measurement result was y = 3. Find the resulting state |α〉
of the first register after the measurement.

(iv) Suppose we measure the state QFT |α〉 (with |α〉 from part (iii)). What
is the probability of each outcome 0 6 c 6 11?
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