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Paper 1, Section II

27K Probability and Measure
(a) State and prove Dynkin’s lemma.

(b) Let (Ω,F ,P) be a probability space. Show that if A1,A2 are π-systems contained
in F such that

P(A1 ∩A2) = P(A1)P(A2) for all A1 ∈ A1, A2 ∈ A2,

then the generated σ-algebras σ(A1) and σ(A2) are independent.

Paper 2, Section II

27K Probability and Measure
(a) Denote by L1(Rd) the space of Lebesgue integrable functions on Rd. For

f ∈ L1(Rd) with Fourier transform f̂ ∈ L1(Rd), state (without proof) the Fourier inversion
theorem and deduce Plancherel’s identity for such f from it. Argue that if f is continuous,
then the inversion formula holds everywhere.

(b) Show that the integral

g(x) =
1

2π

∫

R
e−iux 4 sin

2(u/2)

u2
du, x ∈ R,

exists, and vanishes whenever |x| > 1. What is ‖g‖22? Justify your answers.

Paper 3, Section II

26K Probability and Measure
(a) State (without proof) Birkhoff’s ergodic theorem. Show that convergence in that

theorem holds in L1(µ), whenever µ is a probability measure. [You may use convergence
results for integrals without proof, provided they are clearly stated.]

(b) Now consider (0, 1] equipped with its Borel σ-algebra B and Lebesgue measure
µ. For A ∈ B, a ∈ (0, 1] \Q, and

θ(x) = x+ a mod 1, x ∈ (0, 1],

determine the µ-almost everywhere limit of Sn(1A)/n as n→∞, where

Sn(1A) = 1A + 1A ◦ θ + . . . 1A ◦ θn−1.

[You may use without proof that θ is ergodic.]

(c) If A = (a, b] for 0 < a < b < 1, show that convergence in the last limit in fact
occurs everywhere on (0, 1]. [Hint: Use your result from (b) with Ak = (a+ k−1, b− k−1]
for all k large enough.]

Part II, Paper 1 [TURN OVER]

2023
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Paper 4, Section II

26K Probability and Measure
(a) Let (Yn : n ∈ N) be an infinite sequence of i.i.d. random variables such that

E|Y1| =∞. Show that lim supn→∞ |Y1 + · · ·+ Yn|/n =∞ almost surely.

(b) Show that one can find (Yn : n ∈ N) as in part (a) but such that (Y1+ · · ·+Yn)/n
converges weakly to some random variable Z.

[You may use theorems from lectures provided you state them clearly.]

Part II, Paper 1

2023
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Paper 1, Section II
27G Probability and Measure

(a) State and prove Kolmogorov’s zero-one law.

(b) Consider the product space E = RN equipped with the σ-algebra σ(C) generated
by the cylinder sets

C =
{
A = ×∞

n=1An |An ⊆ R, An Borel for n 6 N,An = R for n > N, some N ∈ N
}
.

For m a probability measure on R, show that there exists a unique product measure µ on
(E, σ(C)) for which µ(A) =

∏∞
n=1m(An) for all A ∈ C. Show further that the shift map θ

defined on E by θ((x1, x2, . . . )) = (x2, x3, . . . ) is measure-preserving and ergodic for µ.

[You may use without proof the existence of an infinite sequence of i.i.d. real random
variables defined on any probability space.]

Paper 2, Section II
27G Probability and Measure

(a) State and prove the monotone convergence theorem.

(b) Let f1 be a µ-integrable function and let f be a measurable function defined on
some measure space (E, E , µ). Suppose the sequence (fn : n ∈ N) of measurable functions
on E is such that fn ↑ f pointwise on E as n → ∞. Show that µ(fn) ↑ µ(f) as n → ∞.
Show that the conclusion may fail if f1 is not integrable.

Paper 3, Section II
26G Probability and Measure

Suppose that as n → ∞, a sequence of real random variables Xn →d X, i.e. Xn

converges in distribution to some limiting random variable X. Suppose further that as
n → ∞ a sequence of real random variables Yn →P c, i.e. Yn converges in probability to
some constant (non-random) limit c > 0. Show that XnYn →d cX as n→ ∞.

Now let (Zn : n ∈ N) be i.i.d. real random variables with EZi = 0 and finite variance
Var(Zi) = 1 for all i. Show that

√
n
∑n

i=1 Zi∑n
i=1 Z

2
i

→d N(0, 1)

as n→ ∞, where N(0, 1) denotes the standard normal distribution.

[You may use the strong law of large numbers and the central limit theorem without
proof, provided they are clearly stated. You may further use without proof the equivalence
of weak convergence of laws of probability measures and convergence in distribution for
real random variables.]

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II
26G Probability and Measure

Denote by L1 the space of real-valued functions on R that are integrable with respect
to Lebesgue measure. For f ∈ L1 and gt the probability density function of a normal
N(0, t) random variable with variance t > 0, show that their convolution

f ∗ gt(x) =

∫

R
f(x− y)gt(y)dy , x ∈ R,

defines another element of L1. Show carefully that the Fourier inversion theorem holds
for f ∗ gt.

Now suppose that the Fourier transform of f is also in L1. Show that f∗gt(x)→ f(x)
for almost every x ∈ R as t→ 0.

[You may use Fubini’s theorem and the translation invariance of Lebesgue measure
without proof.]

Part II, Paper 1

2022
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Paper 1, Section II

27H Probability and Measure
(a) State and prove Fatou’s lemma. [You may use the monotone convergence

theorem without proof, provided it is clearly stated.]

(b) Show that the inequality in Fatou’s lemma can be strict.

(c) Let (Xn : n ∈ N) and X be non-negative random variables such that Xn → X
almost surely as n→ ∞. Must we have EX 6 supn EXn?

Paper 2, Section II

27H Probability and Measure
Let (E, E , µ) be a measure space. A function f is simple if it is of the form

f =
∑N

i=1 ai1Ai , where ai ∈ R, N ∈ N and Ai ∈ E .
Now let f : (E, E , µ) → [0,∞] be a Borel-measurable map. Show that there exists

a sequence fn of simple functions such that fn(x)→ f(x) for all x ∈ E as n→∞.

Next suppose f is also µ-integrable. Construct a sequence fn of simple µ-integrable
functions such that

∫
E |fn − f |dµ→ 0 as n→∞.

Finally, suppose f is also bounded. Show that there exists a sequence fn of simple
functions such that fn → f uniformly on E as n→∞.

Paper 3, Section II

26H Probability and Measure
Show that random variables X1, . . . , XN defined on some probability space (Ω,F ,P)

are independent if and only if

E
( N∏

n=1

fn(Xn)
)

=

N∏

n=1

E
(
fn(Xn)

)

for all bounded measurable functions fn : R → R, n = 1, . . . , N .

Now let (Xn : n ∈ N) be an infinite sequence of independent Gaussian random
variables with zero means, EXn = 0, and finite variances, EX2

n = σ2n > 0. Show that the
series

∑∞
n=1Xn converges in L2(P) if and only if

∑∞
n=1 σ

2
n <∞.

[You may use without proof that E[eiuXn ] = e−u
2σ2

n/2 for u ∈ R.]

Part II, 2021 List of Questions

2021
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Paper 4, Section II

26H Probability and Measure
Let (Ω,F ,P) be a probability space. Show that for any sequence An ∈ F satisfying∑∞

n=1 P(An) <∞ one necessarily has P(lim supnAn) = 0.

Let (Xn : n ∈ N) and X be random variables defined on (Ω,F ,P). Show that
Xn → X almost surely as n→ ∞ implies that Xn → X in probability as n→ ∞.

Show that Xn → X in probability as n → ∞ if and only if for every subsequence
Xn(k) there exists a further subsequence Xn(k(r)) such that Xn(k(r)) → X almost surely as
r → ∞.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

27K Probability and Measure
(a) Let (X,F , ν) be a probability space. State the definition of the space L2(X,F , ν).

Show that it is a Hilbert space.

(b) Give an example of two real random variables Z1, Z2 that are not independent
and yet have the same law.

(c) Let Z1, . . . , Zn be n random variables distributed uniformly on [0, 1]. Let λ be
the Lebesgue measure on the interval [0, 1], and let B be the Borel σ-algebra. Consider
the expression

D(f) := Var
[ 1

n
(f(Z1) + . . .+ f(Zn))−

∫

[0,1]
fdλ

]

where Var denotes the variance and f ∈ L2([0, 1],B, λ).

Assume that Z1, . . . , Zn are pairwise independent. Compute D(f) in terms of the
variance Var(f) := Var(f(Z1)).

(d) Now we no longer assume that Z1, . . . , Zn are pairwise independent. Show that

supD(f) > 1

n
,

where the supremum ranges over functions f ∈ L2([0, 1],B, λ) such that ‖f‖2 = 1 and∫
[0,1] fdλ = 0.

[Hint: you may wish to compute D(fp,q) for the family of functions fp,q =
√

k
2

(
1Ip − 1Iq

)

where 1 6 p, q 6 k, Ij = [ jk ,
j+1
k ) and 1A denotes the indicator function of the subset A.]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

26K Probability and Measure
Let X be a set. Recall that a Boolean algebra B of subsets of X is a family of

subsets containing the empty set, which is stable under finite union and under taking
complements. As usual, let σ(B) be the σ-algebra generated by B.

(a) State the definitions of a σ-algebra, that of a measure on a measurable space, as
well as the definition of a probability measure.

(b) State Carathéodory’s extension theorem.

(c) Let (X,F , µ) be a probability measure space. Let B ⊂ F be a Boolean algebra
of subsets of X. Let C be the family of all A ∈ F with the property that for every ε > 0,
there is B ∈ B such that

µ(A4B) < ε,

where A4B denotes the symmetric difference of A and B, i.e., A4B = (A∪B) \ (A∩B).

(i) Show that σ(B) is contained in C. Show by example that this may fail if
µ(X) = +∞.

(ii) Now assume that (X,F , µ) = ([0, 1],L[0,1],m), where L[0,1] is the σ-algebra of
Lebesgue measurable subsets of [0, 1] and m is the Lebesgue measure. Let B be the family
of all finite unions of sub-intervals. Is it true that C is equal to L[0,1] in this case? Justify
your answer.

Paper 3, Section II

26K Probability and Measure
Let (X,A,m, T ) be a probability measure preserving system.

(a) State what it means for (X,A,m, T ) to be ergodic.

(b) State Kolmogorov’s 0-1 law for a sequence of independent random variables.
What does it imply for the canonical model associated with an i.i.d. random process?

(c) Consider the special case when X = [0, 1], A is the σ-algebra of Borel subsets,
and T is the map defined as

Tx =

{
2x, if x ∈ [0, 12 ],

2− 2x, if x ∈ [12 , 1].

(i) Check that the Lebesgue measure m on [0, 1] is indeed an invariant probability
measure for T .

(ii) Let X0 := 1(0, 1
2
) and Xn := X0 ◦ Tn for n > 1. Show that (Xn)n>0 forms a

sequence of i.i.d. random variables on (X,A,m), and that the σ-algebra σ(X0, X1, . . .) is
all of A. [Hint: check first that for any integer n > 0, T−n(0, 12) is a disjoint union of 2n

intervals of length 1/2n+1.]

(iii) Is (X,A,m, T ) ergodic? Justify your answer.

Part II, 2020 List of Questions

2020
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Paper 4, Section II

26K Probability and Measure
(a) State and prove the strong law of large numbers for sequences of i.i.d. random

variables with a finite moment of order 4.

(b) Let (Xk)k>1 be a sequence of independent random variables such that

P(Xk = 1) = P(Xk = −1) =
1

2
.

Let (ak)k>1 be a sequence of real numbers such that

∑

k>1

a2k <∞.

Set

Sn :=

n∑

k=1

akXk.

(i) Show that Sn converges in L2 to a random variable S as n→∞. Does it converge
in L1? Does it converge in law?

(ii) Show that ‖S‖4 6 31/4‖S‖2.
(iii) Let (Yk)k>1 be a sequence of i.i.d. standard Gaussian random variables, i.e.

each Yk is distributed as N (0, 1). Show that then
∑n

k=1 akYk converges in law as n→∞
to a random variable and determine the law of the limit.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

26K Probability and Measure
(a) Let (Xi,Ai) for i = 1, 2 be two measurable spaces. Define the product σ-algebra

A1 ⊗A2 on the Cartesian product X1 ×X2. Given a probability measure µi on (Xi,Ai)
for each i = 1, 2, define the product measure µ1⊗µ2. Assuming the existence of a product
measure, explain why it is unique. [You may use standard results from the course if clearly
stated.]

(b) Let (Ω,F ,P) be a probability space on which the real random variables U and V
are defined. Explain what is meant when one says that U has law µ. On what measurable
space is the measure µ defined? Explain what it means for U and V to be independent
random variables.

(c) Now let X = [−1
2 ,

1
2 ], let A be its Borel σ-algebra and let µ be Lebesgue

measure. Give an example of a measure η on the product (X × X,A ⊗ A) such that
η(X × A) = µ(A) = η(A × X) for every Borel set A, but such that η is not Lebesgue
measure on X ×X.

(d) Let η be as in part (c) and let I, J ⊂ X be intervals of length x and y respectively.
Show that

x+ y − 1 6 η(I × J) 6 min{x, y}.

(e) Let X be as in part (c). Fix d > 2 and let Πi denote the projection
Πi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd) from Xd to Xd−1. Construct a probability
measure η on Xd, such that the image under each Πi coincides with the (d−1)-dimensional
Lebesgue measure, while η itself is not the d-dimensional Lebesgue measure. [Hint:
Consider the following collection of 2d − 1 independent random variables: U1, . . . , Ud
uniformly distributed on [0, 12 ], and ε1, . . . , εd−1 such that P(εi = 1) = P(εi = −1) = 1

2 for
each i.]

Part II, 2019 List of Questions

2019
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Paper 3, Section II

26K Probability and Measure
(a) Let X and Y be real random variables such that E[f(X)] = E[f(Y )] for every

compactly supported continuous function f . Show that X and Y have the same law.

(b) Given a real random variable Z, let ϕZ(s) = E(eisZ) be its characteristic
function. Prove the identity

∫∫
g(εs)f(x)e−isxϕZ(s)ds dx =

∫
ĝ(t) E[f(Z − εt)]dt

for real ε > 0, where is f is continuous and compactly supported, and where g is a Lebesgue
integrable function such that ĝ is also Lebesgue integrable, where

ĝ(t) =

∫
g(x)eitxdx

is its Fourier transform. Use the above identity to derive a formula for E[f(Z)] in terms
of ϕZ , and recover the fact that ϕZ determines the law of Z uniquely.

(c) Let X and Y be bounded random variables such that E(Xn) = E(Y n) for every
positive integer n. Show that X and Y have the same law.

(d) The Laplace transform ψZ(s) of a non-negative random variable Z is defined by
the formula

ψZ(s) = E(e−sZ)

for s > 0. Let X and Y be (possibly unbounded) non-negative random variables such that
ψX(s) = ψY (s) for all s > 0. Show that X and Y have the same law.

(e) Let

f(x; k) = 1{x>0}
1

k!
xke−x

where k is a non-negative integer and 1{x>0} is the indicator function of the interval
(0,+∞).

Given non-negative integers k1, . . . , kn, suppose that the random variablesX1, . . . ,Xn

are independent with Xi having density function f(·; ki). Find the density of the random
variableX1+· · ·+Xn.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

26K Probability and Measure
(a) Let (Xn)n>1 and X be real random variables with finite second moment on a

probability space (Ω,F ,P). Assume that Xn converges to X almost surely. Show that the
following assertions are equivalent:

(i) Xn → X in L2 as n→ ∞,

(ii) E(X2
n) → E(X2) as n→ ∞.

(b) Suppose now that Ω = (0, 1), F is the Borel σ-algebra of (0, 1) and P is Lebesgue
measure. Given a Borel probability measure µ on R we set

Xµ(ω) = inf{x ∈ R|Fµ(x) > ω},

where Fµ(x) := µ((−∞, x]) is the distribution function of µ and ω ∈ Ω.

(i) Show that Xµ is a random variable on (Ω,F ,P) with law µ.

(ii) Let (µn)n>1 and ν be Borel probability measures on R with finite second
moments. Show that

E((Xµn −Xν)
2) → 0 as n→ ∞

if and only if µn converges weakly to ν and
∫
x2dµn(x) converges to∫

x2dν(x) as n→ ∞.

[You may use any theorem proven in lectures as long as it is clearly stated.
Furthermore, you may use without proof the fact that µn converges weakly to ν as n→ ∞
if and only if Xµn converges to Xν almost surely.]

Part II, 2019 List of Questions

2019
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Paper 1, Section II

27K Probability and Measure
Let X = (X1, . . . ,Xd) be an Rd-valued random variable. Given u = (u1, . . . , ud) ∈

Rd we let
φX(u) = E(ei〈u,X〉)

be its characteristic function, where 〈·, ·〉 is the usual inner product on Rd.

(a) Suppose X is a Gaussian vector with mean 0 and covariance matrix σ2Id, where
σ > 0 and Id is the d × d identity matrix. What is the formula for the characteristic
function φX in the case d = 1? Derive from it a formula for φX in the case d > 2.

(b) We now no longer assume that X is necessarily a Gaussian vector. Instead we
assume that the Xi’s are independent random variables and that the random vector AX
has the same law as X for every orthogonal matrix A. Furthermore we assume that d > 2.

(i) Show that there exists a continuous function f : [0,+∞) → R such that

φX(u) = f(u21 + . . . + u2d).

[ You may use the fact that for every two vectors u, v ∈ Rd such that
〈u, u〉 = 〈v, v〉 there is an orthogonal matrix A such that Au = v. ]

(ii) Show that for all r1, r2 > 0

f(r1 + r2) = f(r1)f(r2).

(iii) Deduce that f takes values in (0, 1], and furthermore that there exists α > 0
such that f(r) = e−rα, for all r > 0.

(iv) What must be the law of X?

[Standard properties of characteristic functions from the course may be used without
proof if clearly stated.]

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 4, Section II

26J Probability and Measure
Let (X,A) be a measurable space. Let T : X → X be a measurable map, and µ a

probability measure on (X,A).

(a) State the definition of the following properties of the system (X,A, µ, T ):

(i) µ is T -invariant.

(ii) T is ergodic with respect to µ.

(b) State the pointwise ergodic theorem.

(c) Give an example of a probability measure preserving system (X,A, µ, T ) in which
Card(T−1{x}) > 1 for µ-a.e. x.

(d) Assume X is finite and A is the boolean algebra of all subsets of X. Suppose
that µ is a T -invariant probability measure on X such that µ({x}) > 0 for all x ∈ X.
Show that T is a bijection.

(e) Let X = N, the set of positive integers, and A be the σ-algebra of all subsets of
X. Suppose that µ is a T -invariant ergodic probability measure on X. Show that there is
a finite subset Y ⊆ X with µ(Y ) = 1.

Part II, 2018 List of Questions

2018
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Paper 2, Section II

26J Probability and Measure
Let (Ω,F ,P) be a probability space. Let (Xn)n>1 be a sequence of random variables

with E(|Xn|2) 6 1 for all n > 1.

(a) Suppose Z is another random variable such that E(|Z|2) < ∞. Why is ZXn

integrable for each n?

(b) Assume E(ZXn) −−−→
n→∞

0 for every random variable Z on (Ω,F ,P) such that

E(|Z|2) <∞. Show that there is a subsequence Yk := Xnk
, k > 1, such that

1

N

N∑

k=1

Yk −−−−→
N→∞

0 in L2.

(c) Assume that Xn → X in probability. Show that X ∈ L2. Show that Xn → X
in L1. Must it converge also in L2? Justify your answer.

(d) Assume that the (Xn)n>1 are independent. Give a necessary and sufficient
condition on the sequence (E(Xn)n>1) for the sequence

YN =
1

N

N∑

k=1

Xk

to converge in L2.

Part II, 2018 List of Questions [TURN OVER

2018



86

Paper 3, Section II

26J Probability and Measure
Let m be the Lebesgue measure on the real line. Recall that if E ⊆ R is a Borel

subset, then

m(E) = inf

{∑

n>1

|In|, E ⊆
⋃

n>1

In

}
,

where the infimum is taken over all covers of E by countably many intervals, and |I|
denotes the length of an interval I.

(a) State the definition of a Borel subset of R.

(b) State a definition of a Lebesgue measurable subset of R.

(c) Explain why the following sets are Borel and compute their Lebesgue measure:

Q, R \Q,
⋂

n>2

[ 1
n
, n
]
.

(d) State the definition of a Borel measurable function f : R → R.

(e) Let f be a Borel measurable function f : R → R. Is it true that the subset of
all x ∈ R where f is continuous at x is a Borel subset? Justify your answer.

(f) Let E ⊆ [0, 1] be a Borel subset with m(E) = 1/2 + α, α > 0. Show that

E − E := {x− y : x, y ∈ E}

contains the interval (−2α, 2α).

(g) Let E ⊆ R be a Borel subset such that m(E) > 0. Show that for every ε > 0,
there exists a < b in R such that

m(E ∩ (a, b)) > (1− ε)m((a, b)).

Deduce that E−E contains an open interval around 0.

Part II, 2018 List of Questions

2018
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Paper 1, Section II

27J Probability and Measure
(a) Let X be a real random variable with E(X2) < ∞. Show that the variance of

X is equal to inf
a∈R

(E(X − a)2).

(b) Let f(x) be the indicator function of the interval [−1, 1] on the real line.
Compute the Fourier transform of f .

(c) Show that ∫ +∞

0

(
sinx

x

)2

dx =
π

2
.

(d) Let X be a real random variable and µ̂X be its characteristic function.

(i) Assume that |µ̂X(u)| = 1 for some u ∈ R. Show that there exists θ ∈ R
such that almost surely:

uX ∈ θ + 2πZ.

(ii) Assume that |µ̂X(u)| = |µ̂X(v)| = 1 for some real numbers u, v not equal to
0 and such that u/v is irrational. Prove that X is almost surely constant.
[Hint: You may wish to consider an independent copy of X.]

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 2, Section II

24J Probability and Measure

(a) Give the definition of the Fourier transform f̂ of a function f ∈ L1(Rd).

(b) Explain what it means for Fourier inversion to hold.

(c) Prove that Fourier inversion holds for gt(x) = (2πt)−d/2e−‖x‖2/(2t). Show all of
the steps in your computation. Deduce that Fourier inversion holds for Gaussian
convolutions, i.e. any function of the form f ∗ gt where t > 0 and f ∈ L1(Rd).

(d) Prove that any function f for which Fourier inversion holds has a bounded, continuous
version. In other words, there exists g bounded and continuous such that f(x) = g(x)
for a.e. x ∈ Rd.

(e) Does Fourier inversion hold for f = 1[0,1]?

Paper 3, Section II

24J Probability and Measure

(a) Suppose that X = (Xn) is a sequence of random variables on a probability space
(Ω,F ,P). Give the definition of what it means for X to be uniformly integrable.

(b) State and prove Hölder’s inequality.

(c) Explain what it means for a family of random variables to be Lp bounded. Prove that
an Lp bounded sequence is uniformly integrable provided p > 1.

(d) Prove or disprove: every sequence which is L1 bounded is uniformly integrable.

Part II, 2017 List of Questions

2017
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Paper 4, Section II

25J Probability and Measure

(a) Suppose that (E, E , µ) is a finite measure space and θ : E → E is a measurable map.
Prove that µθ(A) = µ(θ−1(A)) defines a measure on (E, E).

(b) Suppose that A is a π-system which generates E . Using Dynkin’s lemma, prove that
θ is measure-preserving if and only if µθ(A) = µ(A) for all A ∈ A.

(c) State Birkhoff’s ergodic theorem and the maximal ergodic lemma.

(d) Consider the case (E, E , µ) = ([0, 1),B([0, 1)), µ) where µ is Lebesgue measure on
[0, 1). Let θ : [0, 1) → [0, 1) be the following map. If x =

∑∞
n=1 2

−nωn is the
binary expansion of x (where we disallow infinite sequences of 1s), then θ(x) =∑∞

n=1 2
−n(ωn−11n∈E + ωn+11n∈O) where E and O are respectively the even and odd

elements of N.

(i) Prove that θ is measure-preserving. [You may assume that θ is measurable.]

(ii) Prove or disprove: θ is ergodic.

Paper 1, Section II

26J Probability and Measure

(a) Give the definition of the Borel σ-algebra on R and a Borel function f : E → R where
(E, E) is a measurable space.

(b) Suppose that (fn) is a sequence of Borel functions which converges pointwise to a
function f . Prove that f is a Borel function.

(c) Let Rn : [0, 1) → R be the function which gives the nth binary digit of a number in
[0, 1) (where we do not allow for the possibility of an infinite sequence of 1s). Prove
that Rn is a Borel function.

(d) Let f : [0, 1)2 → [0,∞] be the function such that f(x, y) for x, y ∈ [0, 1)2 is equal to
the number of digits in the binary expansions of x, y which disagree. Prove that f is
non-negative measurable.

(e) Compute the Lebesgue measure of f−1([0,∞)), i.e. the set of pairs of numbers in [0, 1)
whose binary expansions disagree in a finite number of digits.

Part II, 2017 List of Questions [TURN OVER
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Paper 3, Section II

23J Probability and Measure
(a) Define the Borel σ-algebra B and the Borel functions.

(b) Give an example with proof of a set in [0, 1] which is not Lebesgue measurable.

(c) The Cantor set C is given by

C =

{ ∞∑

k=1

ak
3k

: (ak) is a sequence with ak ∈ {0, 2} for all k

}
.

(i) Explain why C is Lebesgue measurable.

(ii) Compute the Lebesgue measure of C.
(iii) Is every subset of C Lebesgue measurable?

(iv) Let f : [0, 1] → C be the function given by

f(x) =

∞∑

k=1

2ak
3k

where ak = ⌊2kx⌋ − 2⌊2k−1x⌋.

Explain why f is a Borel function.

(v) Using the previous parts, prove the existence of a Lebesgue measurable set
which is not Borel.

Paper 4, Section II

24J Probability and Measure
Give the definitions of the convolution f ∗g and of the Fourier transform f̂ of f , and

show that f̂ ∗ g = f̂ ĝ. State what it means for Fourier inversion to hold for a function f .

State the Plancherel identity and compute the L2 norm of the Fourier transform of
the function f(x) = e−x1[0,1].

Suppose that (fn), f are functions in L1 such that fn → f in L1 as n → ∞. Show
that f̂n → f̂ uniformly.

Give the definition of weak convergence, and state and prove the Central Limit
Theorem.

Part II, 2016 List of Questions [TURN OVER

2016
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Paper 2, Section II

24J Probability and Measure
(a) State Jensen’s inequality. Give the definition of ‖ · ‖Lp and the space Lp for

1 < p <∞. If ‖f − g‖Lp = 0, is it true that f = g? Justify your answer. State and prove
Hölder’s inequality using Jensen’s inequality.

(b) Suppose that (E, E , µ) is a finite measure space. Show that if 1 < q < p and
f ∈ Lp(E) then f ∈ Lq(E). Give the definition of ‖ · ‖L∞ and show that ‖f‖Lp → ‖f‖L∞

as p→ ∞.

(c) Suppose that 1 < q < p <∞. Show that if f belongs to both Lp(R) and Lq(R),
then f ∈ Lr(R) for any r ∈ [q, p]. If f ∈ Lp(R), must we have f ∈ Lq(R)? Give a proof or
a counterexample.

Paper 1, Section II

25J Probability and Measure
Throughout this question (E, E , µ) is a measure space and (fn), f are measurable

functions.

(a) Give the definitions of pointwise convergence, pointwise a.e. convergence, and
convergence in measure.

(b) If fn → f pointwise a.e., does fn → f in measure? Give a proof or a
counterexample.

(c) If fn → f in measure, does fn → f pointwise a.e.? Give a proof or a
counterexample.

(d) Now suppose that (E, E) = ([0, 1],B([0, 1])) and that µ is Lebesgue measure on
[0, 1]. Suppose (fn) is a sequence of Borel measurable functions on [0, 1] which converges
pointwise a.e. to f .

(i) For each n, k let En,k =
⋃

m>n{x : |fm(x) − f(x)| > 1/k}. Show that
limn→∞ µ(En,k) = 0 for each k ∈ N.

(ii) Show that for every ǫ > 0 there exists a set A with µ(A) < ǫ so that fn → f
uniformly on [0, 1] \ A.

(iii) Does (ii) hold with [0, 1] replaced by R? Give a proof or a counterexample.

Part II, 2016 List of Questions

2016
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Paper 4, Section II

22J Probability and Measure

(a) State Fatou’s lemma.

(b) Let X be a random variable on Rd and let (Xk)
∞
k=1 be a sequence of random

variables on Rd. What does it mean to say that Xk → X weakly?

State and prove the Central Limit Theorem for i.i.d. real-valued random variables.
[You may use auxiliary theorems proved in the course provided these are clearly stated.]

(c) Let X be a real-valued random variable with characteristic function ϕ. Let
(hn)

∞
n=1 be a sequence of real numbers with hn 6= 0 and hn → 0. Prove that if we have

lim inf
n→∞

2ϕ(0) − ϕ(−hn)− ϕ(hn)

h2n
< ∞,

then E[X2] < ∞.

Paper 3, Section II

22J Probability and Measure

(a) Let (E, E , µ) be a measure space. What does it mean to say that T : E → E
is a measure-preserving transformation? What does it mean to say that a set A ∈ E is
invariant under T ? Show that the class of invariant sets forms a σ-algebra.

(b) Take E to be [0, 1) with Lebesgue measure on its Borel σ-algebra. Show that
the baker’s map T : [0, 1) → [0, 1) defined by

T (x) = 2x− ⌊2x⌋

is measure-preserving.

(c) Describe in detail the construction of the canonical model for sequences of
independent random variables having a given distribution m.

Define the Bernoulli shift map and prove it is a measure-preserving ergodic trans-
formation.

[You may use without proof other results concerning sequences of independent
random variables proved in the course, provided you state these clearly.]

Part II, 2015 List of Questions [TURN OVER

2015
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Paper 2, Section II

23J Probability and Measure

(a) Let (E, E , µ) be a measure space, and let 1 6 p < ∞. What does it mean to say
that f belongs to Lp(E, E , µ)?

(b) State Hölder’s inequality.

(c) Consider the measure space of the unit interval endowed with Lebesgue measure.
Suppose f ∈ L2(0, 1) and let 0 < α < 1/2.

(i) Show that for all x ∈ R,
∫ 1

0
|f(y)||x− y|−α dy < ∞ .

(ii) For x ∈ R, define

g(x) =

∫ 1

0
f(y)|x− y|−αdy .

Show that for x ∈ R fixed, the function g satisfies

|g(x+ h)− g(x)| 6 ‖f‖2 · (I(h))1/2,

where

I(h) =

∫ 1

0

(
|x+ h− y|−α − |x− y|−α

)2
dy.

(iii) Prove that g is a continuous function. [Hint: You may find it helpful to
split the integral defining I(h) into several parts.]

Part II, 2015 List of Questions

2015
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Paper 1, Section II

23J Probability and Measure

(a) Define the following concepts: a π-system, a d-system and a σ-algebra.

(b) State the Dominated Convergence Theorem.

(c) Does the set function

µ(A) =

{
0 for A bounded,

1 for A unbounded,

furnish an example of a Borel measure?

(d) Suppose g : [0, 1] → [0, 1] is a measurable function. Let f : [0, 1] → R be
continuous with f(0) 6 f(1). Show that the limit

lim
n→∞

∫ 1

0
f( g(x)n) dx

exists and lies in the interval [f(0), f(1)].

Part II, 2015 List of Questions [TURN OVER

2015
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Paper 4, Section II

25K Probability and Measure
Let (Xn : n ∈ N) be a sequence of independent identically distributed random

variables. Set Sn = X1 + · · ·+Xn.

(i) State the strong law of large numbers in terms of the random variables Xn.

(ii) Assume now that the Xn are non-negative and that their expectation is infinite. Let
R ∈ (0,∞). What does the strong law of large numbers say about the limiting behaviour
of SR

n /n, where SR
n = (X1 ∧R) + · · ·+ (Xn ∧R)?

Deduce that Sn/n → ∞ almost surely.

Show that ∞∑

n=0

P(Xn > n) = ∞.

Show that Xn > Rn infinitely often almost surely.

(iii) Now drop the assumption that the Xn are non-negative but continue to assume that
E(|X1|) = ∞. Show that, almost surely,

lim sup
n→∞

|Sn|/n = ∞.

Paper 3, Section II

25K Probability and Measure
(i) Let (E, E , µ) be a measure space. What does it mean to say that a function

θ : E → E is a measure-preserving transformation?

What does it mean to say that θ is ergodic?

State Birkhoff’s almost everywhere ergodic theorem.

(ii) Consider the set E = (0, 1]2 equipped with its Borel σ-algebra and Lebesgue
measure. Fix an irrational number a ∈ (0, 1] and define θ : E → E by

θ(x1, x2) = (x1 + a, x2 + a),

where addition in each coordinate is understood to be modulo 1. Show that θ is a measure-
preserving transformation. Is θ ergodic? Justify your answer.

Let f be an integrable function on E and let f̄ be the invariant function associated
with f by Birkhoff’s theorem. Write down a formula for f̄ in terms of f . [You are not
expected to justify this answer.]

Part II, 2014 List of Questions

2014
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Paper 2, Section II

26K Probability and Measure
State and prove the monotone convergence theorem.

Let (E1, E1, µ1) and (E2, E2, µ2) be finite measure spaces. Define the product
σ-algebra E = E1 ⊗ E2 on E1 × E2.

Define the product measure µ = µ1⊗µ2 on E , and show carefully that µ is countably
additive.

[You may use without proof any standard facts concerning measurability provided
these are clearly stated.]

Paper 1, Section II

26K Probability and Measure
What is meant by the Borel σ-algebra on the real line R?

Define the Lebesgue measure of a Borel subset of R using the concept of outer
measure.

Let µ be the Lebesgue measure on R. Show that, for any Borel set B which is
contained in the interval [0, 1], and for any ε > 0, there exist n ∈ N and disjoint intervals
I1, . . . , In contained in [0, 1] such that, for A = I1 ∪ · · · ∪ In, we have

µ(A△B) 6 ε,

where A△B denotes the symmetric difference (A \B) ∪ (B \ A).
Show that there does not exist a Borel set B contained in [0, 1] such that, for all

intervals I contained in [0, 1],
µ(B ∩ I) = µ(I)/2.

Part II, 2014 List of Questions [TURN OVER
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Paper 4, Section II

25K Probability and Measure
State Birkhoff’s almost-everywhere ergodic theorem.

Let (Xn : n ∈ N) be a sequence of independent random variables such that

P(Xn = 0) = P(Xn = 1) = 1/2 .

Define for k ∈ N

Yk =
∞∑

n=1

Xk+n−1/2
n .

What is the distribution of Yk? Show that the random variables Y1 and Y2 are not
independent.

Set Sn = Y1 + · · · + Yn. Show that Sn/n converges as n → ∞ almost surely and
determine the limit. [You may use without proof any standard theorem provided you state
it clearly.]

Paper 3, Section II

25K Probability and Measure
LetX be an integrable random variable with E(X) = 0. Show that the characteristic

function φX is differentiable with φ′
X(0) = 0. [You may use without proof standard

convergence results for integrals provided you state them clearly.]

Let (Xn : n ∈ N) be a sequence of independent random variables, all having the same
distribution as X. Set Sn = X1 + · · ·+Xn. Show that Sn/n → 0 in distribution. Deduce
that Sn/n → 0 in probability. [You may not use the Strong Law of Large Numbers.]

Paper 2, Section II

26K Probability and Measure
Let (fn : n ∈ N) be a sequence of non-negative measurable functions defined on a

measure space (E, E , µ). Show that lim infn fn is also a non-negative measurable function.

State the Monotone Convergence Theorem.

State and prove Fatou’s Lemma.

Let (fn : n ∈ N) be as above. Suppose that fn(x) → f(x) as n → ∞ for all x ∈ E.
Show that

µ(min{fn, f}) → µ(f) .

Deduce that, if f is integrable and µ(fn) → µ(f), then fn converges to f in L1.
[Still assume that fn and f are as above.]

Part II, 2013 List of Questions

2013
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Paper 1, Section II

26K Probability and Measure
State Dynkin’s π-system/d-system lemma.

Let µ and ν be probability measures on a measurable space (E, E). Let A be a
π-system on E generating E . Suppose that µ(A) = ν(A) for all A ∈ A. Show that µ = ν.

What does it mean to say that a sequence of random variables is independent?

Let (Xn : n ∈ N) be a sequence of independent random variables, all uniformly
distributed on [0, 1]. Let Y be another random variable, independent of (Xn : n ∈ N).
Define random variables Zn in [0, 1] by Zn = (Xn + Y ) mod 1. What is the distribution
of Z1? Justify your answer.

Show that the sequence of random variables (Zn : n ∈ N) is independent.

Part II, 2013 List of Questions [TURN OVER

2013
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Paper 4, Section II

25J Probability and Measure
State and prove Fatou’s lemma. [You may use the monotone convergence theorem.]

For (E, E , µ) a measure space, define L1 := L1(E, E , µ) to be the vector space of µ-
integrable functions on E, where functions equal almost everywhere are identified. Prove
that L1 is complete for the norm ‖ · ‖1,

‖f‖1 :=
∫

E
|f |dµ, f ∈ L1.

[You may assume that ‖ · ‖1 indeed defines a norm on L1.] Give an example of a measure
space (E, E , µ) and of a sequence fn ∈ L1 that converges to f almost everywhere such that
f /∈ L1.

Now let

D := {f ∈ L1 : f > 0 almost everywhere ,

∫

E
fdµ = 1} .

If a sequence fn ∈ D converges to f in L1, does it follow that f ∈ D? If fn ∈ D converges
to f almost everywhere, does it follow that f ∈ D? Justify your answers.

Paper 3, Section II

25J Probability and Measure
Carefully state and prove the first and second Borel–Cantelli lemmas.

Now let (An : n ∈ N) be a sequence of events that are pairwise independent ; that
is, P(An ∩ Am) = P(An)P(Am) whenever m 6= n. For N > 1, let SN =

∑N
n=1 1An . Show

that Var(SN ) 6 E(SN).

Using Chebyshev’s inequality or otherwise, deduce that if
∑∞

n=1 P(An) = ∞, then
limN→∞ SN = ∞ almost surely. Conclude that P(An infinitely often) = 1.

Part II, 2012 List of Questions [TURN OVER

2012
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Paper 2, Section II

26J Probability and Measure
The Fourier transform of a Lebesgue integrable function f ∈ L1(R) is given by

f̂(u) =

∫

R
f(x)eixudµ(x),

where µ is Lebesgue measure on the real line. For f(x) = e−ax2
, x ∈ R, a > 0, prove that

f̂(u) =

√
π

a
e−

u2

4a .

[You may use properties of derivatives of Fourier transforms without proof provided they
are clearly stated, as well as the fact that φ(x) = (2π)−1/2e−x2/2 is a probability density
function.]

State and prove the almost everywhere Fourier inversion theorem for Lebesgue
integrable functions on the real line. [You may use standard results from the course,
such as the dominated convergence and Fubini’s theorem. You may also use that
gt ∗ f(x) :=

∫
R gt(x− y)f(y)dy where gt(z) = t−1φ(z/t), t > 0, converges to f in L1(R) as

t → 0 whenever f ∈ L1(R).]

The probability density function of a Gamma distribution with scalar parameters
λ > 0, α > 0 is given by

fα,λ(x) = λe−λx(λx)α−11[0,∞)(x).

Let 0 < α < 1, λ > 0. Is f̂α,λ integrable?

Paper 1, Section II

26J Probability and Measure
Carefully state and prove Jensen’s inequality for a convex function c : I → R, where

I ⊆ R is an interval. Assuming that c is strictly convex, give necessary and sufficient
conditions for the inequality to be strict.

Let µ be a Borel probability measure on R, and suppose µ has a strictly positive
probability density function f0 with respect to Lebesgue measure. Let P be the family of
all strictly positive probability density functions f on R with respect to Lebesgue measure
such that log(f/f0) ∈ L1(µ). Let X be a random variable with distribution µ. Prove that
the mapping

f 7→ E
[
log

f

f0
(X)

]

has a unique maximiser over P, attained when f = f0 almost everywhere.

Part II, 2012 List of Questions
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Paper 1, Section II

26K Probability and Measure

(i) Let (E, E , µ) be a measure space and let 1 6 p < ∞. For a measurable function f ,
let ‖f‖p = (

∫
|f |pdµ)1/p. Give the definition of the space Lp. Prove that (Lp, ‖ · ‖p)

forms a Banach space.

[You may assume that Lp is a normed vector space. You may also use in your proof
any other result from the course provided that it is clearly stated.]

(ii) Show that convergence in probability implies convergence in distribution.

[Hint: Show the pointwise convergence of the characteristic function, using without
proof the inequality |eiy − eix| 6 |x− y| for x, y ∈ R.]

(iii) Let (αj)j>1 be a given real-valued sequence such that
∑∞

j=1 α
2
j = σ2 < ∞. Let

(Xj)j>1 be a sequence of independent standard Gaussian random variables defined
on some probability space (Ω,F ,P). Let

Yn =
n∑

j=1

αjXj .

Prove that there exists a random variable Y such that Yn → Y in L2.

(iv) Specify the distribution of the random variable Y defined in part (iii), justifying
carefully your answer.

Part II, 2011 List of Questions [TURN OVER
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Paper 2, Section II

26K Probability and Measure

(i) Define the notions of a π-system and a d-system. State and prove Dynkin’s lemma.

(ii) Let (E1, E1, µ1) and (E2, E2, µ2) denote two finite measure spaces. Define the σ-
algebra E1 ⊗ E2 and the product measure µ1 ⊗ µ2. [You do not need to verify that
such a measure exists.] State (without proof) Fubini’s Theorem.

(iii) Let (E, E , µ) be a measure space, and let f be a non-negative Borel-measurable
function. Let G be the subset of E × R defined by

G = {(x, y) ∈ E × R : 0 6 y 6 f(x)} .

Show that G ∈ E ⊗ B(R), where B(R) denotes the Borel σ-algebra on R. Show
further that ∫

f dµ = (µ⊗ λ)(G) ,

where λ is Lebesgue measure.

Part II, 2011 List of Questions

2011
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Paper 3, Section II

25K Probability and Measure

(i) State and prove Kolmogorov’s zero-one law.

(ii) Let (E, E , µ) be a finite measure space and suppose that (Bn)n>1 is a sequence of
events such that Bn+1 ⊂ Bn for all n > 1. Show carefully that µ(Bn) → µ(B),
where B = ∩∞

n=1Bn.

(iii) Let (Xi)i>1 be a sequence of independent and identically distributed random
variables such that E(X2

1 ) = σ2 < ∞ and E(X1) = 0. Let K > 0 and consider
the event An defined by

An =

{
Sn√
n
> K

}
, where Sn =

n∑

i=1

Xi .

Prove that there exists c > 0 such that for all n large enough, P(An) > c. Any
result used in the proof must be stated clearly.

(iv) Prove using the results above that An occurs infinitely often, almost surely. Deduce
that

lim sup
n→∞

Sn√
n
= ∞ ,

almost surely.

Paper 4, Section II

25K Probability and Measure

(i) State and prove Fatou’s lemma. State and prove Lebesgue’s dominated convergence
theorem. [You may assume the monotone convergence theorem.]

In the rest of the question, let fn be a sequence of integrable functions on some
measure space (E, E , µ), and assume that fn → f almost everywhere, where f is a
given integrable function. We also assume that

∫
|fn|dµ →

∫
|f |dµ as n → ∞.

(ii) Show that
∫
f+
n dµ →

∫
f+dµ and that

∫
f−
n dµ →

∫
f−dµ, where φ+ = max(φ, 0)

and φ− = max(−φ, 0) denote the positive and negative parts of a function φ.

(iii) Here we assume also that fn > 0. Deduce that
∫
|f − fn|dµ → 0.

Part II, 2011 List of Questions [TURN OVER
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Paper 1, Section II

26I Probability and Measure

State Carathéodory’s extension theorem. Define all terms used in the statement.

Let A be the ring of finite unions of disjoint bounded intervals of the form

A =

m⋃

i=1

(ai, bi]

where m ∈ Z+ and a1 < b1 < . . . < am < bm . Consider the set function µ defined on A
by

µ(A) =

m∑

i=1

(bi − ai) .

You may assume that µ is additive. Show that for any decreasing sequence (Bn : n ∈ N)
in A with empty intersection we have µ(Bn) → 0 as n → ∞ .

Explain how this fact can be used in conjunction with Carathéodory’s extension

theorem to prove the existence of Lebesgue measure.

Paper 2, Section II

26I Probability and Measure

Show that any two probability measures which agree on a π-system also agree on

the σ-algebra generated by that π-system.

State Fubini’s theorem for non-negative measurable functions.

Let µ denote Lebesgue measure on R2. Fix s ∈ [0, 1). Set c =
√
1− s2 and λ =

√
c .

Consider the linear maps f, g, h : R2 → R2 given by

f(x, y) = (λ−1x, λy) , g(x, y) = (x, sx+ y) , h(x, y) = (x− sy, y) .

Show that µ = µ ◦ f−1 and that µ = µ ◦ g−1. You must justify any assertion you make

concerning the values taken by µ.

Compute r = f ◦ h ◦ g ◦ f . Deduce that µ is invariant under rotations.

Part II, 2010 List of Questions
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Paper 3, Section II

25I Probability and Measure

Let (Xn : n ∈ N) be a sequence of independent random variables with common

density function

f(x) = 1
π(1 + x2)

.

Fix α ∈ [0, 1] and set

Yn = sgn(Xn)|Xn|α, Sn = Y1 + . . .+ Yn.

Show that for all α ∈ [0, 1] the sequence of random variables Sn/n converges in distribution

and determine the limit.

[Hint: In the case α = 1 it may be useful to prove that E(eiuX1) = e−|u|, for all u ∈ R.]

Show further that for all α ∈ [0, 1/2) the sequence of random variables Sn/
√
n

converges in distribution and determine the limit.

[You should state clearly any result about random variables from the course to which you

appeal. You are not expected to evaluate explicitly the integral

m(α) =

∫ ∞

0

xα

π(1 + x2)
dx. ]

Paper 4, Section II

25I Probability and Measure

Let (Xn : n ∈ N) be a sequence of independent normal random variables having

mean 0 and variance 1. Set Sn = X1 + . . . + Xn and Un = Sn − ⌊Sn⌋ . Thus Un is the

fractional part of Sn . Show that Un converges to U in distribution, as n → ∞ where U is

uniformly distributed on [0, 1].

Part II, 2010 List of Questions [TURN OVER
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Paper 1, Section II

26J Probability and Measure
Let (E, E , µ) be a measure space. Explain what is meant by a simple function on

(E, E , µ) and state the definition of the integral of a simple function with respect to µ.

Explain what is meant by an integrable function on (E, E , µ) and explain how the
integral of such a function is defined.

State the monotone convergence theorem.

Show that the following map is linear

f 7→ µ(f) : L1(E, E , µ) → R,

where µ(f) denotes the integral of f with respect to µ.

[You may assume without proof any fact concerning simple functions and their integrals.
You are not expected to prove the monotone convergence theorem.]

Paper 2, Section II

26J Probability and Measure
State Kolmogorov’s zero-one law.

State Birkhoff’s almost everywhere ergodic theorem and von Neumann’s Lp-ergodic
theorem.

State the strong law of large numbers for independent and identically distributed in-
tegrable random variables, and use the results above to prove it.

Paper 3, Section II

25J Probability and Measure
State and prove the first and second Borel–Cantelli lemmas.

Let (Xn : n ∈ N) be a sequence of independent Cauchy random variables. Thus,
each Xn is real-valued, with density function

f(x) =
1

π(1 + x2)
.

Show that

lim sup
n→∞

logXn

log n
= c, almost surely,

for some constant c, to be determined.

Part II, 2009 List of Questions

2009
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Paper 4, Section II

25J Probability and Measure
Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of F . Show that, for

any random variable X ∈ L2(P), there exists a G-measurable random variable Y ∈ L2(P)
such that E((X − Y )Z) = 0 for all G-measurable random variables Z ∈ L2(P).

[You may assume without proof the completeness of L2(P).]

Let (G,X) be a Gaussian random variable in R2, with mean (µ, ν) and covariance

matrix

(
u v
v w

)
. Assume that F = σ(G,X) and G = σ(G). Find the random variable Y

explicitly in this case.

Part II, 2009 List of Questions [TURN OVER
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1/II/25J Probability and Measure

State the Dominated Convergence Theorem.

Hence or otherwise prove Kronecker’s Lemma: if (aj) is a sequence of non-negative
reals such that ∞∑

j=1

aj
j
<∞,

then

n−1
n∑

j=1

aj → 0 (n→∞).

Let ξ1, ξ2, . . . be independent N(0, 1) random variables and set Sn = ξ1 + . . .+ ξn.
Let F0 be the collection of all finite unions of intervals of the form (a, b), where a and b
are rational, together with the whole line R. Prove that with probability 1 the limit

m(B) ≡ lim
n→∞

1

n

n∑

j=1

IB(Sj)

exists for all B ∈ F0, and identify it. Is it possible to extend m defined on F0 to a measure
on the Borel σ-algebra of R? Justify your answer.

2/II/25J Probability and Measure

Explain what is meant by a simple function on a measurable space (S,S).

Let (S,S, µ) be a finite measure space and let f : S → R be a non-negative Borel
measurable function. State the definition of the integral of f with respect to µ.

Prove that, for any sequence of simple functions (gn) such that 0 6 gn(x) ↑ f(x)
for all x ∈ S, we have ∫

gndµ ↑
∫
fdµ.

State and prove the Monotone Convergence Theorem for finite measure spaces.

Part II 2008
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3/II/24J Probability and Measure

(i) What does it mean to say that a sequence of random variables (Xn) converges
in probability to X? What does it mean to say that the sequence (Xn) converges in
distribution to X? Prove that if Xn → X in probability, then Xn → X in distribution.

(ii) What does it mean to say that a sequence of random variables (Xn) is uniformly
integrable? Show that, if (Xn) is uniformly integrable and Xn → X in distribution, then
E(Xn)→ E(X).

[Standard results from the course may be used without proof if clearly stated.]

4/II/25J Probability and Measure

(i) A stepfunction is any function s on R which can be written in the form

s(x) =
n∑

k=1

ckI(ak,bk](x), x ∈ R,

where ak, bk, ck are real numbers, with ak < bk for all k. Show that the set of all
stepfunctions is dense in L1(R,B, µ). Here, B denotes the Borel σ-algebra, and µ denotes
Lebesgue measure.

[You may use without proof the fact that, for any Borel set B of finite measure,
and any ε > 0, there exists a finite union of intervals A such that µ(A4B) < ε.]

(ii) Show that the Fourier transform

ŝ(t) =

∫

R
s(x)eitx dx

of a stepfunction has the property that ŝ(t)→ 0 as |t| → ∞.

(iii) Deduce that the Fourier transform of any integrable function has the same
property.

Part II 2008
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1/II/25J Probability and Measure

Let E be a set and E ⊆ P(E) be a set system.

(a) Explain what is meant by a π-system, a d-system and a σ-algebra.

(b) Show that E is a σ-algebra if and only if E is a π-system and a d-system.

(c) Which of the following set systems E1, E2, E3 are π-systems, d-systems or
σ-algebras? Justify your answers. (#(A) denotes the number of elements in A.)

E1 = {1, 2, . . . , 10} and E1 = {A ⊆ E1 : #(A) is even} ,
E2 = N = {1, 2, . . .} and E2 = {A ⊆ E2 : #(A) is even or #(A) = ∞} ,
E3 = R and E3 = {(a, b) : a, b ∈ R, a < b} ∪ {∅}.

(d) State and prove the theorem on the uniqueness of extension of a measure.

[You may use standard results from the lectures without proof, provided they are clearly
stated.]

2/II/25J Probability and Measure

(a) State and prove the first Borel–Cantelli lemma. State the second Borel–Cantelli
lemma.

(b) Let X1, X2, . . . be a sequence of independent random variables that converges in
probability to the limit X. Show that X is almost surely constant.

A sequence X1, X2, . . . of random variables is said to be completely convergent to X if

∑

n∈N
P
(
An(ε)

)
<∞ for all ε > 0 , where An(ε) =

{
|Xn −X| > ε

}
.

(c) Show that complete convergence implies almost sure convergence.

(d) Show that, for sequences of independent random variables, almost sure convergence
also implies complete convergence.

(e) Find a sequence of (dependent) random variables that converges almost surely but
does not converge completely.
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3/II/24J Probability and Measure

Let (E, E , µ) be a finite measure space, i.e. µ(E) <∞, and let 1 6 p 6 ∞.

(a) Define the Lp-norm ‖f‖p of a measurable function f : E → R, define the space
Lp(E, E , µ) and define convergence in Lp.

In the following you may use inequalities from the lectures without proof, provided they
are clearly stated.

(b) Let f, f1, f2, . . . ∈ Lp(E, E , µ). Show that fn → f in Lp implies ‖fn‖p → ‖f‖p.
(c) Let f : E → R be a bounded measurable function with ‖f‖∞ > 0. Let

Mn =

∫

E

|f |ndµ .

Show that Mn ∈ (0,∞) and Mn+1Mn−1 >M2
n.

By using Jensen’s inequality, or otherwise, show that

µ(E)−1/n‖f‖n 6Mn+1/Mn 6 ‖f‖∞.

Prove that lim
n→∞

Mn+1/Mn = ‖f‖∞.

[
Observe that |f | > 1{|f |>‖f‖∞−ε

}(‖f‖∞ − ε
)
.

]

4/II/25J Probability and Measure

Let (E, E , µ) be a measure space with µ(E) <∞ and let θ : E → E be measurable.

(a) Define an invariant set A ∈ E and an invariant function f : E → R.
What is meant by saying that θ is measure-preserving?
What is meant by saying that θ is ergodic?

(b) Which of the following functions θ1 to θ4 is ergodic? Justify your answer.

On the measure space
(
[0, 1],B([0, 1]), µ

)
with Lebesgue measure µ consider

θ1(x) = 1 + x , θ2(x) = x2 , θ3(x) = 1− x .

On the discrete measure space
(
{−1, 1},P({−1, 1}), 12δ−1 +

1
2δ1
)
consider

θ4(x) = −x .

(c) State Birkhoff’s almost everywhere ergodic theorem.

(d) Let θ be measure-preserving and let f : E → R be bounded.

Prove that
1

n

(
f + f ◦ θ + . . .+ f ◦ θn−1

)
converges in Lp for all p ∈ [1,∞).
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1/II/25J Probability and Measure

Let (Xn)n∈N be a sequence of (real-valued, Borel-measurable) random variables on
the probability space (Ω,A,P).

(a) Let (An)n∈N be a sequence of events in A.
What does it mean for the events (An)n∈N to be independent?
What does it mean for the random variables (Xn)n∈N to be independent?

(b) Define the tail σ-algebra T for a sequence (Xn)n∈N and state Kolmogorov’s 0 - 1
law.

(c) Consider the following events in A,

{Xn 6 0 eventually} ,
{ lim
n→∞

X1 + . . .+Xn exists} ,
{X1 + . . .+Xn 6 0 infinitely often} .

Which of them are tail events for (Xn)n∈N? Justify your answers.

(d) Let (Xn)n∈N be independent random variables with

P(Xn = 0) = P(Xn = 1) = 1
2 for all n ∈ N ,

and define Un = X1X2 +X2X3 + . . .+X2nX2n+1.
Show that Un/n→ c a.s. for some c ∈ R, and determine c.
[Standard results may be used without proof, but should be clearly stated.]
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2/II/25J Probability and Measure

(a) What is meant by saying that (Ω,A, µ) is a measure space? Your answer should
include clear definitions of any terms used.

(b) Consider the following sequence of Borel-measurable functions on the measure space
(R,L, λ), with the Lebesgue σ-algebra L and Lebesgue measure λ:

fn(x) =
{
1/n if 0 6 x 6 en;
0 otherwise

for n ∈ N .

For each p ∈ [1,∞], decide whether the sequence (fn)n∈N converges in Lp as
n→ ∞.
Does (fn)n∈N converge almost everywhere?
Does (fn)n∈N converge in measure?
Justify your answers.

For parts (c) and (d), let (fn)n∈N be a sequence of real-valued, Borel-measurable functions
on a probability space (Ω,A, µ).

(c) Prove that {x ∈ Ω : fn(x) converges to a finite limit} ∈ A.

(d) Show that fn → 0 almost surely if and only if sup
m>n

|fm| → 0 in probability.

3/II/24J Probability and Measure

Let X be a real-valued random variable. Define the characteristic function φX .
Show that φX(u) ∈ R for all u ∈ R if and only if X and −X have the same distribution.

For parts (a) and (b) below, let X and Y be independent and identically distributed
random variables.

(a) Show that X = Y almost surely implies that X is almost surely constant.

(b) Suppose that there exists ε > 0 such that |φX(u)| = 1 for all |u| < ε. Calculate
φX−Y to show that E

(
1− cos(u(X − Y ))

)
= 0 for all |u| < ε, and conclude that X

is almost surely constant.

(c) Let X,Y, and Z be independent N(0, 1) random variables. Calculate the charac-

teristic function of η = XY − Z , given that φX(u) = e−u2/2.
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4/II/25J Probability and Measure

Let (Ω,A, µ) be a measure space and f : Ω → R a measurable function.

(a) Explain what is meant by saying that f is integrable, and how the integral
∫
Ω
f dµ

is defined, starting with integrals of A-simple functions.

[Your answer should consist of clear definitions, including the ones for A-simple
functions and their integrals.]

(b) For f : Ω → [0,∞) give a specific sequence (gn)n∈N of A-simple functions such that
0 6 gn 6 f and gn(x) → f(x) for all x ∈ Ω. Justify your answer.

(c) Suppose that that µ(Ω) < ∞ and let f1, f2, . . . : Ω → R be measurable functions
such that fn(x) → 0 for all x ∈ Ω. Prove that, if

lim
c→∞

sup
n∈N

∫

|fn|>c

|fn| dµ = 0,

then
∫
Ω
fn dµ→ 0.

Give an example with µ(Ω) < ∞ such that fn(x) → 0 for all x ∈ Ω, but∫
Ω
fn dµ 6→ 0, and justify your answer.

(d) State and prove Fatou’s Lemma for a sequence of non-negative measurable func-
tions.

[Standard results on measurability and integration may be used without proof.]
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1/II/25J Probability and Measure

Let (Ω,F ,P) be a probability space. For G ⊆ F , what is meant by saying that G
is a π-system? State the ‘uniqueness of extension’ theorem for measures on σ(G) having
given values on G.

For G,H ⊆ F , we call G, H independent if

P(G ∩H) = P(G)P(H) for all G ∈ G, H ∈ H.

If G and H are independent π-systems, show that σ(G) and σ(H) are independent.

Let Y1, Y2, . . . , Ym, Z1, Z2, . . . , Zn be independent random variables on (Ω,F ,P).
Show that the σ-fields σ(Y ) = σ(Y1, Y2, . . . , Ym) and σ(Z) = σ(Z1, Z2, . . . , Zn) are
independent.

2/II/25J Probability and Measure

Let R be a family of random variables on the common probability space (Ω,F ,P).
What is meant by saying that R is uniformly integrable? Explain the use of uniform
integrability in the study of convergence in probability and in L1. [Clear definitions should
be given of any terms used, but proofs may be omitted.]

Let R1 and R2 be uniformly integrable families of random variables on (Ω,F ,P).
Show that the family R given by

R = {X + Y : X ∈ R1, Y ∈ R2}

is uniformly integrable.
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3/II/24J Probability and Measure

Let (Ω,F , µ) be a measure space. For a measurable function f : Ω → R, and
p ∈ [1,∞), let ||f ||p = [µ(|f |p)]1/p. Let Lp be the space of all such f with ||f ||p < ∞.
Explain what is meant by each of the following statements:

(a) A sequence of functions (fn : n > 1) is Cauchy in Lp.

(b) Lp is complete.

Show that Lp is complete for p ∈ [1,∞).

Take Ω = (1,∞), F the Borel σ-field of Ω, and µ the Lebesgue measure on (Ω,F).
For p = 1, 2, determine which if any of the following sequences of functions are Cauchy in
Lp:

(i) fn(x) = x−11(1,n)(x),

(ii) gn(x) = x−21(1,n)(x),

where 1A denotes the indicator function of the set A.

4/II/25J Probability and Measure

Let f : R2 → R be Borel-measurable. State Fubini’s theorem for the double integral

∫

y∈R

∫

x∈R

f(x, y) dx dy .

Let 0 < a < b. Show that the function

f(x, y) =
{
e−xy if x ∈ (0,∞), y ∈ [a, b]
0 otherwise

is measurable and integrable on R2.

Evaluate ∞∫

0

e−ax − e−bx

x
dx

by Fubini’s theorem or otherwise.
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