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Paper 4, Section II

29E Partial Differential Equations

(a) Show that the Cauchy problem for u(x, t) satisfying

ut + u = uxx

with initial data u(x, 0) = u0(x), which is a smooth 2π-periodic function of x, defines a
strongly continuous one parameter semi-group of contractions on the Sobolev space Hs

per

for any s ∈ {0, 1, 2, . . . } .
(b) Solve the Cauchy problem for the equation

utt + ut +
1

4
u = uxx

with u(x, 0) = u0(x) , ut(x, 0) = u1(x), where u0, u1 are smooth 2π-periodic functions of
x, and show that the solution is smooth. Prove from first principles that the solution
satisfies the property of finite propagation speed.

[In this question all functions are real-valued, and

Hs
per =

{
u =

∑

m∈Z
û(m)eimx ∈ L2 : ‖u‖2Hs =

∑

m∈Z
(1 +m2)s|û(m)|2 < ∞

}

are the Sobolev spaces of functions which are 2π-periodic in x, for s = 0, 1, 2, . . . .]

Part II, 2015 List of Questions

2015
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Paper 3, Section II

30E Partial Differential Equations

(a) Show that if f ∈ S(Rn) is a Schwartz function and u is a tempered distribution
which solves

−∆u+m2u = f

for some constant m 6= 0, then there exists a number C > 0 which depends only on m,
such that ‖u‖Hs+2 6 C‖f‖Hs for any s > 0 . Explain briefly why this inequality remains
valid if f is only assumed to be in Hs(Rn).

Show that if ǫ > 0 is given then ‖v‖2H1 6 ǫ‖v‖2H2 +
1
4ǫ‖v‖2H0 for any v ∈ H2(Rn).

[Hint: The inequality a 6 ǫa2 + 1
4ǫ holds for any positive ǫ and a ∈ R .]

Prove that if u is a smooth bounded function which solves

−∆u+m2u = u3 + α · ∇u

for some constant vector α ∈ Rn and constant m 6= 0, then there exists a number C ′ > 0
such that ‖u‖H2 6 C ′ and C ′ depends only on m,α, ‖u‖L∞ , ‖u‖L2 .

[You may use the fact that, for non-negative s, the Sobolev space of functions

Hs(Rn) = {f ∈ L2(Rn) : ‖f‖2Hs =

∫

Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2 dξ < ∞} .]

(b) Let u(x, t) be a smooth real-valued function, which is 2π-periodic in x and
satisfies the equation

ut = u2uxx + u3 .

Give a complete proof that if u(x, 0) > 0 for all x then u(x, t) > 0 for all x and t > 0.

Part II, 2015 List of Questions [TURN OVER

2015



74

Paper 2, Section II

30E Partial Differential Equations

Prove that if φ ∈ C(Rn) is absolutely integrable with
∫
φ(x) dx = 1, and

φǫ(x) = ǫ−nφ(x/ǫ) for ǫ > 0, then for every Schwartz function f ∈ S(Rn) the convolution

φǫ ∗ f(x) → f(x)

uniformly in x as ǫ ↓ 0.

Show that the function Nǫ ∈ C∞(R3) given by

Nǫ(x) =
1

4π
√

|x|2 + ǫ2

for ǫ > 0 satisfies

lim
ǫ→0

∫

R3

−∆Nǫ(x) f(x) dx = f(0)

for f ∈ S(Rn). Hence prove that the tempered distribution determined by the function
N(x) = (4π|x|)−1 is a fundamental solution of the operator −∆.

[You may use the fact that
∫∞
0 r2/(1 + r2)5/2 dr = 1/3 .]

Paper 1, Section II

30E Partial Differential Equations

(a) State the Cauchy–Kovalevskaya theorem, and explain for which values of a ∈ R
it implies the existence of solutions to the Cauchy problem

xux + yuy + auz = u , u(x, y, 0) = f(x, y) ,

where f is real analytic. Using the method of characteristics, solve this problem for these
values of a, and comment on the behaviour of the characteristics as a approaches any
value where the non-characteristic condition fails.

(b) Consider the Cauchy problem

uy = vx , vy = −ux

with initial data u(x, 0) = f(x) and v(x, 0) = 0 which are 2π-periodic in x. Give
an example of a sequence of smooth solutions (un, vn) which are also 2π-periodic in
x whose corresponding initial data un(x, 0) = fn(x) and vn(x, 0) = 0 are such that∫ 2π

0
|fn(x)|2dx → 0 while

∫ 2π

0
|un(x, y)|2dx → ∞ for non-zero y as n → ∞.

Comment on the significance of this in relation to the concept of well-posedness.

Part II, 2015 List of Questions

2015
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30D Partial Differential Equations
(a) Derive the solution of the one-dimensional wave equation

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (1)

with Cauchy data given by C2 functions uj = uj(x) , j = 0, 1, and where x ∈ R and
utt = ∂2t u etc. Explain what is meant by the property of finite propagation speed for the
wave equation. Verify that the solution to (1) satisfies this property.

(b) Consider the Cauchy problem

utt − uxx + x2u = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) . (2)

By considering the quantities

e = 1
2

(
u2t + u2x + x2u2

)
and p = −utux ,

prove that solutions of (2) also satisfy the property of finite propagation speed.

(c) Define what is meant by a strongly continuous one-parameter group of unitary
operators on a Hilbert space. Consider the Cauchy problem for the Schrödinger equation
for ψ(x, t) ∈ C:

iψt = −ψxx + x2ψ , ψ(x, 0) = ψ0(x) , −∞ < x <∞ . (3)

[In the following you may use without proof the fact that there is an orthonormal set
of (real-valued) Schwartz functions {fj(x)}∞j=1 which are eigenfunctions of the differential

operator P = −∂2x + x2 with eigenvalues 2j + 1, i.e.

Pfj = (2j + 1)fj , fj ∈ S(R) , (fj, fk)L2 =

∫

R
fj(x)fk(x)dx = δjk ,

and which have the property that any function u ∈ L2 can be written uniquely as a sum
u(x) =

∑
j(fj , u)L2fj(x) which converges in the metric defined by the L2 norm.]

Write down the solution to (3) in the case that ψ0 is given by a finite sum
ψ0 =

∑N
j=1(fj, ψ0)L2fj and show that your formula extends to define a strongly continuous

one-parameter group of unitary operators on the Hilbert space L2 of square-integrable
(complex-valued) functions, with inner product (f, g)L2 =

∫
R f(x)g(x)dx.

Part II, 2014 List of Questions

2014
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Paper 3, Section II

30D Partial Differential Equations
(a) Consider variable-coefficient operators of the form

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑

j=1

bj∂ju+ cu

whose coefficients are defined on a bounded open set Ω ⊂ Rn with smooth boundary ∂Ω.
Let ajk satisfy the condition of uniform ellipticity, namely

m‖ξ‖2 6
n∑

j,k=1

ajk(x)ξjξk 6 M‖ξ‖2 for all x ∈ Ω and ξ ∈ Rn

for suitably chosen positive numbers m,M .

State and prove the weak maximum principle for solutions of Pu = 0 . [Any results
from linear algebra and calculus needed in your proof should be stated clearly, but need
not be proved.]

(b) Consider the nonlinear elliptic equation

−∆u+ eu = f (1)

for u : Rn → R satisfying the additional condition

lim
|x|→∞

u(x) = 0 . (2)

Assume that f ∈ S(Rn). Prove that any two C2 solutions of (1) which also satisfy (2) are
equal.

Now let u ∈ C2(Rn) be a solution of (1) and (2). Prove that if f(x) < 1 for all x
then u(x) < 0 for all x. Prove that if maxx f(x) = L > 1 then u(x) 6 lnL for all x.

Part II, 2014 List of Questions [TURN OVER

2014
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30D Partial Differential Equations
State the Cauchy–Kovalevskaya theorem, including a definition of the term non-

characteristic.

For which values of the real number a, and for which functions f , does the Cauchy–
Kovalevskaya theorem ensure that the Cauchy problem

utt = uxx + auxxxx , u(x, 0) = 0 , ut(x, 0) = f(x) (1)

has a local solution?

Now consider the Cauchy problem (1) in the case that f(x) =
∑

m∈Z f̂(m)eimx is a
smooth 2π-periodic function.

(i) Show that if a 6 0 there exists a unique smooth solution u for all times, and
show that for all T > 0 there exists a number C = C(T ) > 0, independent of f , such that

∫ +π

−π
|u(x, t)|2dx 6 C

∫ +π

−π
|f(x)|2dx (2)

for all t : |t| 6 T .

(ii) If a = 1 does there exist a choice of C = C(T ) for which (2) holds? Give a full
justification for your answer.

Part II, 2014 List of Questions

2014



75

Paper 2, Section II

31D Partial Differential Equations
In this question, functions are all real-valued, and

Hs
per = {u =

∑

m∈Z
û(m)eimx ∈ L2 : ‖u‖2Hs =

∑

m∈Z
(1 +m2)s|û(m)|2 < ∞}

are the Sobolev spaces of functions 2π-periodic in x, for s = 0, 1, 2, . . . .

State Parseval’s theorem. For s = 0, 1 prove that the norm ‖u‖Hs is equivalent to
the norm ‖ ‖s defined by

‖u‖2s =
s∑

r=0

∫ +π

−π
(∂r

xu)
2 dx .

Consider the Cauchy problem

ut − uxx = f , u(x, 0) = u0(x) , t > 0 , (1)

where f = f(x, t) is a smooth function which is 2π-periodic in x, and the initial value u0
is also smooth and 2π-periodic. Prove that if u is a smooth solution which is 2π-periodic
in x, then it satisfies

∫ T

0
(u2t + u2xx ) dt 6 C

(
‖u0‖2H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dx dt

)

for some number C > 0 which does not depend on u or f .

State the Lax–Milgram lemma. Prove, using the Lax–Milgram lemma, that if

f(x, t) = eλtg(x)

with g ∈ H0
per and λ > 0, then there exists a weak solution to (1) of the form

u(x, t) = eλtφ(x) with φ ∈ H1
per. Does the same hold for all λ ∈ R? Briefly explain

your answer.

Part II, 2014 List of Questions [TURN OVER

2014
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30C Partial Differential Equations
(i) Show that an arbitrary C2 solution of the one-dimensional wave equation

utt − uxx = 0 can be written in the form u = F (x− t) +G(x+ t).

Hence, deduce the formula for the solution at arbitrary t > 0 of the Cauchy problem

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (∗)

where u0, u1 are arbitrary Schwartz functions.

Deduce from this formula a theorem on finite propagation speed for the one-
dimensional wave equation.

(ii) Define the Fourier transform of a tempered distribution. Compute the Fourier
transform of the tempered distribution Tt ∈ S ′(R) defined for all t > 0 by the function

Tt(y) =

{
1
2 if |y| 6 t,

0 if |y| > t,

that is, 〈Tt , f 〉 = 1
2

∫ +t
−t f(y) dy for all f ∈ S(R). By considering the Fourier transform

in x, deduce from this the formula for the solution of (∗) that you obtained in part (i) in
the case u0 = 0.

Part II, 2013 List of Questions

2013
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30C Partial Differential Equations
Define the parabolic boundary ∂parΩT of the domain ΩT = [0, 1]× (0, T ] for T > 0.

Let u = u(x, t) be a smooth real-valued function on ΩT which satisfies the inequality

ut − auxx + bux + cu 6 0 .

Assume that the coefficients a, b and c are smooth functions and that there exist positive
constants m,M such that m 6 a 6 M everywhere, and c > 0. Prove that

max
(x,t)∈ΩT

u(x, t) 6 max
(x,t)∈∂parΩT

u+(x, t) . (∗)

[Here u+ = max{u, 0} is the positive part of the function u.]

Consider a smooth real-valued function φ on ΩT such that

φt − φxx − (1− φ2)φ = 0 , φ(x, 0) = f(x)

everywhere, and φ(0, t) = 1 = φ(1, t) for all t > 0. Deduce from (∗) that if f(x) 6 1 for
all x ∈ [0, 1] then φ(x, t) 6 1 for all (x, t) ∈ ΩT . [Hint: Consider u = φ2 − 1 and compute
ut − uxx.]

Part II, 2013 List of Questions [TURN OVER

2013
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30C Partial Differential Equations
(i) Discuss briefly the concept of well-posedness of a Cauchy problem for a partial

differential equation.

Solve the Cauchy problem

∂2u+ x1∂1u = au2 , u(x1, 0) = φ(x1) ,

where a ∈ R, φ ∈ C1(R) and ∂i denotes the partial derivative with respect to xi for
i = 1, 2.

For the case a = 0 show that the solution satisfies max
x1∈R

|u(x1, x2)| = ‖φ‖C0 , where

the Cr norm on functions φ = φ(x1) of one variable is defined by

‖φ‖Cr =

r∑

i=0

max
x∈R

|∂i
1φ(x1)|.

Deduce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric
determined by the C0 norm).

(ii) State the Cauchy–Kovalevskaya theorem and deduce that the following Cauchy
problem for the Laplace equation,

∂2
1u+ ∂2

2u = 0 , u(x1, 0) = 0 , ∂2u(x1, 0) = φ(x1) , (∗)

has a unique analytic solution in some neighbourhood of x2 = 0 for any analytic function
φ = φ(x1). Write down the solution for the case φ(x1) = sin(nx1), and hence give a
sequence of initial data {φn(x1)}∞n=1 with the property that

‖φn‖Cr → 0 , as n → ∞, for each r ∈ N ,

whereas un, the corresponding solution of (∗), satisfies

max
x1∈R

|un(x1, x2)| → +∞ , as n → ∞,

for any x2 6= 0.

Part II, 2013 List of Questions

2013
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State the Lax–Milgram lemma.

Let V = V(x1, x2, x3) be a smooth vector field which is 2π-periodic in each
coordinate xj for j = 1, 2, 3. Write down the definition of a weak H1

per solution for
the equation

−∆u+
∑

j

Vj∂ju+ u = f (∗)

to be solved for u = u(x1, x2, x3) given f = f(x1, x2, x3) in H0, with both u and f also
2π-periodic in each co-ordinate. [In this question use the definition

Hs
per =

{
u =

∑

m∈Z3

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑

m∈Z3

(1 + ‖m‖2)s|û(m)|2 < ∞
}

for the Sobolev spaces of functions 2π-periodic in each coordinate xj and for s = 0, 1, 2, . . . .]

If the vector field is divergence-free, prove that there exists a unique weak H1
per

solution for all such f .

Supposing that V is the constant vector field with components (1, 0, 0), write down
the solution of (∗) in terms of Fourier series and show that there exists C > 0 such that

‖u‖H2 6 C‖f‖H0 .

Part II, 2013 List of Questions [TURN OVER

2013
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30B Partial Differential Equations
i) State the Lax–Milgram lemma.

ii) Consider the boundary value problem

∆2u−∆u+ u = f in Ω,

u = ∇u · γ = 0 on ∂Ω,

where Ω is a bounded domain in Rn with a smooth boundary, γ is the exterior unit normal
vector to ∂Ω, and f ∈ L2(Ω). Show (using the Lax–Milgram lemma) that the boundary
value problem has a unique weak solution in the space

H2
0 (Ω) :=

{
u : Ω → R;u = ∇u · γ = 0 on ∂Ω

}
.

[Hint. Show that

‖∆u‖2L2(Ω) =

n∑

i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
2

L2(Ω)
for all u ∈ C∞

0 (Ω),

and then use the fact that C∞
0 (Ω) is dense in H2

0 (Ω).]

Part II, 2012 List of Questions [TURN OVER

2012
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Paper 3, Section II

30B Partial Differential Equations
Consider the nonlinear partial differential equation for a function u(x, t), x ∈ Rn, t > 0,

ut = ∆u− α|∇u|2, (1)

subject to u(x, 0) = u0(x), (2)

where u0 ∈ L∞(Rn).

(i) Find a transformation w := F (u) such that w satisfies the heat equation

wt = ∆w, x ∈ Rn,

if (1) holds for u.

(ii) Use the transformation obtained in (i) (and its inverse) to find a solution to the initial
value problem (1), (2).
[Hint. Use the fundamental solution of the heat equation.]

(iii) The equation (1) is posed on a bounded domain Ω ⊆ Rn with smooth boundary,
subject to the initial condition (2) on Ω and inhomogeneous Dirichlet boundary conditions

u = uD on ∂Ω,

where uD is a bounded function. Use the maximum-minimum principle to prove that
there exists at most one classical solution of this boundary value problem.

Paper 1, Section II

30B Partial Differential Equations
Let u0 : R → R, u0 ∈ C1(R), u0(x) > 0 for all x ∈ R. Consider the partial differential
equation for u = u(x, y),

4yux + 3uy = u2, (x, y) ∈ R2

subject to the Cauchy condition u(x, 0) = u0(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x, y) ∈ R×
(
−∞,

3

supx∈R (u0(x))

)
.

Part II, 2012 List of Questions

2012
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31B Partial Differential Equations
Consider the elliptic Dirichlet problem on Ω ⊂ Rn, Ω bounded with a smooth boundary:

∆u− eu = f in Ω, u = uD on ∂Ω.

Assume that uD ∈ L∞(∂Ω) and f ∈ L∞(Ω).

(i) State the strong Minimum-Maximum Principle for uniformly elliptic operators.

(ii) Prove that there exists at most one classical solution of the boundary value problem.

(iii) Assuming further that f > 0 in Ω, use the maximum principle to obtain an upper
bound on the solution (assuming that it exists).

Part II, 2012 List of Questions [TURN OVER

2012
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30A Partial Differential Equations
Let H = H(x, v), x, v ∈ Rn, be a smooth real-valued function which maps R2n into

R. Consider the initial value problem for the equation

ft +∇vH · ∇xf −∇xH · ∇vf = 0, x, v ∈ Rn, t > 0 ,

f(x, v, t = 0) = fI(x, v), x, v ∈ Rn ,

for the unknown function f = f(x, v, t).

(i) Use the method of characteristics to solve the initial value problem, locally in time.

(ii) Let fI > 0 on R2n. Use the method of characteristics to prove that f remains
non-negative (as long as it exists).

(iii) Let F : R → R be smooth. Prove that

∫

R2n

F (f(x, v, t)) dx dv =

∫

R2n

F (fI(x, v)) dx dv ,

as long as the solution exists.

(iv) Let H be independent of x, namely H(x, v) = a(v), where a is smooth and real-
valued. Give the explicit solution of the initial value problem.

Part II, 2011 List of Questions [TURN OVER

2011
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31A Partial Differential Equations
Consider the Schrödinger equation

i∂tψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x) , x ∈ Rn, t > 0 ,

ψ(t = 0, x) = ψI(x) , x ∈ Rn ,

where V is a smooth real-valued function.

Prove that, for smooth solutions, the following equations are valid for all t > 0:

(i) ∫

Rn

|ψ(t, x)|2 dx =

∫

Rn

|ψI(x)|2 dx .

(ii)

∫

Rn

1

2
|∇ψ(t, x)|2 dx+

∫

Rn

V (x)|ψ(t, x)|2 dx

=

∫

Rn

1

2
|∇ψI(x)|2 dx+

∫

Rn

V (x)|ψI(x)|2 dx .

Paper 3, Section II

30A Partial Differential Equations

(a) State the local existence theorem of a classical solution of the Cauchy problem

a(x1, x2, u)
∂u

∂x1
+ b(x1, x2, u)

∂u

∂x2
= c(x1, x2, u) ,

u|Γ = u0 ,

where Γ is a smooth curve in R2.

(b) Solve, by using the method of characteristics,

2x1
∂u

∂x1
+ 4x2

∂u

∂x2
= u2 ,

u(x1, 2) = h ,

where h > 0 is a constant. What is the maximal domain of existence in which u is
a solution of the Cauchy problem?

Part II, 2011 List of Questions

2011
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30A Partial Differential Equations
Consider the functional

E(u) =
1

2

∫

Ω
|∇u|2 dx+

∫

Ω
F (u, x) dx ,

where Ω is a bounded domain in Rn with smooth boundary and F : R×Ω → R is smooth.
Assume that F (u, x) is convex in u for all x ∈ Ω and that there is a K > 0 such that

−K 6 F (v, x) 6 K
(
|v|2 + 1

)
∀v ∈ R, x ∈ Ω .

(i) Prove that E is well-defined on H1
0 (Ω), bounded from below and strictly convex.

Assume without proof that E is weakly lower-semicontinuous. State this property.
Conclude the existence of a unique minimizer of E.

(ii) Which elliptic boundary value problem does the minimizer solve?

Part II, 2011 List of Questions [TURN OVER

2011
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30E Partial Differential Equations
(a) Solve by using the method of characteristics

x1
∂

∂x1
u+ 2x2

∂

∂x2
u = 5u , u(x1, 1) = g(x1) ,

where g : R → R is continuous. What is the maximal domain in R2 in which u is a solution
of the Cauchy problem?

(b) Prove that the function

u(x, t) =





0 , x < 0 , t > 0 ,
x/t , 0 < x < t , t > 0 ,
1 , x > t > 0 ,

is a weak solution of the Burgers equation

∂

∂t
u+

1

2

∂

∂x
u2 = 0 , x ∈ R, t > 0 , (∗)

with initial data

u(x, 0) =

{
0 , x < 0 ,
1 , x > 0 .

(c) Let u = u(x, t), x ∈ R, t > 0 be a piecewise C1-function with a jump
discontinuity along the curve

Γ : x = s(t)

and let u solve the Burgers equation (∗) on both sides of Γ. Prove that u is a weak solution
of (1) if and only if

ṡ(t) =
1

2
(ul(t) + ur(t))

holds, where ul(t), ur(t) are the one-sided limits

ul(t) = lim
xրs(t)−

u(x, t) , ur(t) = lim
xցs(t)+

u(x, t) .

[Hint: Multiply the equation by a test function φ ∈ C∞
0 (R × [0,∞)), split the integral

appropriately and integrate by parts. Consider how the unit normal vector along Γ can be
expressed in terms of ṡ.]

Part II, 2010 List of Questions [TURN OVER

2010
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31E Partial Differential Equations
(a) State the Lax-Milgram lemma. Use it to prove that there exists a unique function

u in the space

H2
∂(Ω) =

{
u ∈ H2(Ω) ;u|∂Ω = ∂u/∂γ|∂Ω = 0

}
,

where Ω is a bounded domain in Rn with smooth boundary and γ its outwards unit normal
vector, which is the weak solution of the equations

∆2u = f in Ω ,

u =
∂u

∂γ
= 0 on ∂ Ω ,

for f ∈ L2(Ω), ∆ the Laplacian and ∆2 = ∆∆.

[Hint: Use regularity of the solution of the Dirichlet problem for the Poisson equation.]

(b) Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let u ∈ H1(Ω) and
denote

ū =

∫

Ω
u dnx

/∫

Ω
dnx .

The following Poincaré-type inequality is known to hold

‖u− ū‖L2 6 C‖∇u‖L2 ,

where C only depends on Ω. Use the Lax-Milgram lemma and this Poincaré-type inequality
to prove that the Neumann problem

∆u = f in Ω ,

∂u

∂γ
= 0 on ∂ Ω ,

has a unique weak solution in the space

H1
−(Ω) = H1(Ω) ∩ {u : Ω → R ; ū = 0}

if and only if f̄ = 0.

Part II, 2010 List of Questions

2010
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30E Partial Differential Equations
Consider the Schrödinger equation

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn , t > 0 ,

for complex-valued solutions Ψ(x, t) and where ∆ is the Laplacian.

(a) Derive, by using a Fourier transform and its inversion, the fundamental solution
of the Schrödinger equation. Obtain the solution of the initial value problem

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn, t > 0 ,

Ψ(x, 0) = f(x) , x ∈ Rn ,

as a convolution.

(b) Consider the Wigner-transform of the solution of the Schrödinger equation

w(x, ξ, t) =
1

(2π)n

∫

Rn

Ψ(x+ 1
2 y, t) Ψ̄(x− 1

2 y, t) e
−iy·ξ dny ,

defined for x ∈ Rn, ξ ∈ Rn, t > 0. Derive an evolution equation for w by using the
Schrödinger equation. Write down the solution of this evolution equation for given initial
data w(x, ξ, 0) = g(x, ξ).

Paper 4, Section II

30E Partial Differential Equations
a) Solve the Dirichlet problem for the Laplace equation in a disc in R2

∆u = 0 in G = {x2 + y2 < R2} ⊆ R2 , R > 0 ,

u = uD on ∂G ,

using polar coordinates (r, ϕ) and separation of variables, u(x, y) = R(r)Θ(ϕ). Then use
the ansatz R(r) = rα for the radial function.

b) Solve the Dirichlet problem for the Laplace equation in a square in R2

∆u = 0 in G = [0, a] × [0, a] ,

u(x, 0) = f1(x) , u(x, a) = f2(x) , u(0, y) = f3(y) , u(a, y) = f4(y) .
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Paper 1, Section II

30B Partial Differential Equations
Consider the initial value problem for the so-called Liouville equation

ft + v · ∇xf −∇V (x) · ∇vf = 0, (x, v) ∈ R2d, t ∈ R,

f(x, v, t = 0) = fI(x, v),

for the function f = f(x, v, t) on R2d×R. Assume that V = V (x) is a given function with
V , ∇xV Lipschitz continuous on Rd.

(i) Let fI(x, v) = δ(x − x0, v − v0), for x0, v0 ∈ Rd given. Show that a solution f is
given by

f(x, v, t) = δ(x− x̂(t, x0, v0), v − v̂(t, x0, v0)),

where (x̂, v̂) solve the Newtonian system

˙̂x = v̂, x̂(t = 0) = x0,

˙̂v = −∇V (x̂), v̂(t = 0) = v0.

(ii) Let fI ∈ L1
loc(R

2d), fI > 0. Prove (by using characteristics) that f remains non-
negative (as long as it exists).

(iii) Let fI ∈ Lp(R2d), fI > 0 on R2d. Show (by a formal argument) that

‖f(·, ·, t)‖Lp(R2d) = ‖fI‖Lp(R2d)

for all t ∈ R, 1 6 p < ∞.

(iv) Let V (x) = 1
2 |x|2. Use the method of characteristics to solve the initial value

problem for general initial data.
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Paper 2, Section II

31B Partial Differential Equations

(a) Solve the initial value problem for the Burgers equation

ut +
1

2
(u2)x = 0, x ∈ R, t > 0,

u(x, t = 0) = uI(x),

where

uI(x) =





1, x < 0,

1− x, 0 < x < 1,

0, x > 1.

Use the method of characteristics. What is the maximal time interval in which this
(weak) solution is well defined? What is the regularity of this solution?

(b) Apply the method of characteristics to the Burgers equation subject to the initial
condition

uI(x) =

{
1, x > 0,

0, x < 0.

In {(x, t) | 0 < x < t} use the ansatz u(x, t) = f(xt ) and determine f .

(c) Using the method of characteristics show that the initial value problem for the
Burgers equation has a classical solution defined for all t > 0 if uI is continuously
differentiable and

duI
dx

(x) > 0

for all x ∈ R.
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Paper 3, Section II

30B Partial Differential Equations

(a) Consider the nonlinear elliptic problem

{
∆u = f(u, x), x ∈ Ω ⊆ Rd,

u = uD, x ∈ ∂Ω.

Let ∂f
∂u(y, x) > 0 for all y ∈ R, x ∈ Ω. Prove that there exists at most one classical

solution.

[Hint: Use the weak maximum principle.]

(b) Let ϕ ∈ C∞
0 (Rn) be a radial function. Prove that the Fourier transform of ϕ is

radial too.

(c) Let ϕ ∈ C∞
0 (Rn) be a radial function. Solve

−∆u+ u = ϕ(x), x ∈ Rn

by Fourier transformation and prove that u is a radial function.

(d) State the Lax–Milgram lemma and explain its use in proving the existence and
uniqueness of a weak solution of

−∆u+ a(x)u = f(x), x ∈ Ω,

u = 0 on ∂Ω,

where Ω ⊆ Rd bounded, 0 6 a 6 a(x) 6 a < ∞ for all x ∈ Ω and f ∈ L2(Ω).
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Paper 4, Section II

30B Partial Differential Equations
Consider the two-dimensional domain

G = {(x, y) | R2
1 < x2 + y2 < R2

2},

where 0 < R1 < R2 < ∞. Solve the Dirichlet boundary value problem for the Laplace
equation

∆u = 0 in G,

u = u1(ϕ), r = R1,

u = u2(ϕ), r = R2,

where (r, ϕ) are polar coordinates. Assume that u1, u2 are 2π-periodic functions on the
real line and u1, u2 ∈ L2

loc(R).

[Hint: Use separation of variables in polar coordinates, u = R(r)Φ(ϕ), with periodic
boundary conditions for the function Φ of the angle variable. Use an ansatz of the form
R(r) = rα for the radial function.]
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1/II/29C Partial Differential Equations

(i) State the local existence theorem for the first order quasi-linear partial differen-
tial equation

n∑

j=1

aj(x, u)
∂u

∂xj
= b(x, u),

which is to be solved for a real-valued function with data specified on a hypersurface S.
Include a definition of “non-characteristic” in your answer.

(ii) Consider the linear constant-coefficient case (that is, when all the functions
a1, . . . , an are real constants and b(x, u) = cx+d for some c = (c1, . . . , cn) with c1, . . . , cn
real and d real) and with the hypersurface S taken to be the hyperplane x ·n = 0 . Explain
carefully the relevance of the non-characteristic condition in obtaining a solution via the
method of characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real-valued function u(x, y).
Describe the domain on which your solution is C1 and comment on this in relation to the
theorem stated in (i).

2/II/30C Partial Differential Equations

(i) Define the concept of “fundamental solution” of a linear constant-coefficient
partial differential operator and write down the fundamental solution for the operator −∆
on R3.

(ii) State and prove the mean value property for harmonic functions on R3.

(iii) Let u ∈ C2(R3) be a harmonic function which satisfies u(p) > 0 at every point
p in an open set Ω ⊂ R3. Show that if B(z, r) ⊂ B(w,R) ⊂ Ω , then

u(w) >
( r
R

)3

u (z) .

Assume that B(x, 4r) ⊂ Ω. Deduce, by choosing R = 3r and w, z appropriately, that

inf
B(x,r)

u > 3−3 sup
B(x,r)

u .

[In (iii), B(z, ρ) = {x ∈ R3 : ‖x − z‖ < ρ} is the ball of radius ρ > 0 centred at
z ∈ R3.]
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3/II/29C Partial Differential Equations

Let C∞per = {u ∈ C∞(R) : u(x + 2π) = u(x)} be the space of smooth 2π-periodic
functions of one variable.

(i) For f ∈ C∞per show that there exists a unique uf ∈ C∞per such that

− d2uf
dx2

+ uf = f.

(ii) Show that If [uf + φ] > If [uf ] for every φ ∈ C∞per which is not identically zero,
where If : C∞per → R is defined by

If [u] =
1

2

∫ +π

−π

[(
∂u

∂x

)2

+ u2 − 2f(x)u

]
dx.

(iii) Show that the equation

∂u

∂t
− ∂2u

∂x2
+ u = f(x),

with initial data u(0, x) = u0(x) ∈ C∞per has, for t > 0, a smooth solution u(t, x) such that
u(t, ·) ∈ C∞per for each fixed t > 0. Give a representation of this solution as a Fourier series
in x. Calculate limt→+∞ u(t, x) and comment on your answer in relation to (i).

(iv) Show that If [u(t, ·)] 6 If [u(s, ·)] for t > s > 0, and that If [u(t, ·)]→ If [uf ] as
t→ +∞.
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4/II/30C Partial Differential Equations

(i) Define the Fourier transform f̂ = F(f) of a Schwartz function f ∈ S(Rn), and
also of a tempered distribution u ∈ S ′(Rn).

(ii) From your definition, compute the Fourier transform of the distribution
Wt ∈ S ′(R3) given by

Wt(ψ) =< Wt, ψ >=
1

4πt

∫

‖y‖=t
ψ(y) dΣ(y)

for every Schwartz function ψ ∈ S(R3). Here dΣ(y) = t2dΩ(y) is the integration element
on the sphere of radius t.

Hence deduce the formula of Kirchoff for the solution of the initial value problem
for the wave equation in three space dimensions,

∂2u

∂t2
−∆u = 0,

with initial data u(0, x) = 0 and ∂u
∂t (0, x) = g(x), x ∈ R3, where g ∈ S(R3). Explain

briefly why the formula is also valid for arbitrary smooth g ∈ C∞(R3).

(iii) Show that any C2 solution of the initial value problem in (ii) is given by the
formula derived in (ii) (uniqueness).

(iv) Show that any two C2 solutions of the initial value problem for

∂2u

∂t2
+
∂u

∂t
−∆u = 0 ,

with the same initial data as in (ii), also agree for any t > 0 .
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1/II/29A Partial Differential Equations

(i) Consider the problem of solving the equation

n∑

j=1

aj(x)
∂u

∂xj
= b(x, u)

for a C1 function u = u(x) = u(x1, . . . , xn), with data specified on a C1

hypersurface S ⊂ Rn

u(x) = φ(x), ∀x ∈ S.
Assume that a1, . . . , an, φ, b are C

1 functions. Define the characteristic curves and
explain what it means for the non-characteristic condition to hold at a point on S.
State a local existence and uniqueness theorem for the problem.

(ii) Consider the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= x2u

with data u(x1, 0) = φ(x1, 0) = f(x1) specified on the axis {x ∈ R2 : x2 = 0}.
Obtain a formula for the solution.

(iii) Consider next the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= 0

with data u(g(s)) = φ(g(s)) = f(s) specified on the hypersurface S, which is given
parametrically as S ≡ {x ∈ R2 : x = g(s)} where g : R → R2 is defined by

g(s) = (s, 0), s < 0,

g(s) = (s, s2), s > 0.

Find the solution u and show that it is a global solution. (Here “global” means u
is C1 on all of R2.)

(iv) Consider next the equation
∂u

∂x1
+

∂u

∂x2
= 0

to be solved with the same data given on the same hypersurface as in (iii). Explain,
with reference to the characteristic curves, why there is generally no global C1

solution. Discuss the existence of local solutions defined in some neighbourhood of
a given point y ∈ S for various y. [You need not give formulae for the solutions.]
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2/II/30A Partial Differential Equations

Define (i) the Fourier transform of a tempered distribution T ∈ S ′(R3), and
(ii) the convolution T ∗ g of a tempered distribution T ∈ S ′(R3) and a Schwartz function
g ∈ S(R3). Give a formula for the Fourier transform of T ∗ g (“convolution theorem”).

Let t > 0. Compute the Fourier transform of the tempered distribution At ∈ S ′(R3)
defined by

〈At, φ〉 =
∫

‖y‖=t

φ(y)dΣ(y), ∀φ ∈ S(R3),

and deduce the Kirchhoff formula for the solution u(t, x) of

∂2u

∂t2
−∆u = 0,

u(0, x) = 0,
∂u

∂t
(0, x) = g(x), g ∈ S(R3) .

Prove, by consideration of the quantities e = 1
2 (u

2
t + |∇u|2) and p = −ut∇u, that any C2

solution is also given by the Kirchhoff formula (uniqueness).

Prove a corresponding uniqueness statement for the initial value problem

∂2w

∂t2
−∆w + V (x)w = 0,

w(0, x) = 0,
∂w

∂t
(0, x) = g(x), g ∈ S(R3)

where V is a smooth positive real-valued function of x ∈ R3 only.

Part II 2007

2007



66

3/II/29A Partial Differential Equations

Write down the formula for the solution u = u(t, x) for t > 0 of the initial value
problem for the heat equation in one space dimension

∂u

∂t
− ∂2u

∂x2
= 0 ,

u(0, x) = g(x) ,

for g : R → C a given smooth bounded function.

Define the distributional derivative of a tempered distribution T ∈ S ′(R). Define a
fundamental solution of a constant-coefficient linear differential operator P , and show that
the distribution defined by the function 1

2e
−|x| is a fundamental solution for the operator

P = − d2

dx2
+ 1.

For the equation
∂u

∂t
− ∂2u

∂x2
= etφ(x), (∗)

where φ ∈ S(R), prove that there is a unique solution of the form etv(x) with v ∈ S(R).
Hence write down the solution of (∗) with general initial data u(0, x) = f(x) and describe
the large time behaviour.

4/II/30A Partial Differential Equations

State and prove the mean value property for harmonic functions on R3.

Obtain a generalization of the mean value property for sub-harmonic functions on
R3, i.e. C2 functions for which

−∆u(x) 6 0

for all x ∈ R3.

Let φ ∈ C2(R3;C) solve the equation

−∆φ+ iV (x)φ = 0 ,

where V is a real-valued continuous function. By considering the function w(x) = |φ(x)|2
show that, on any ball B(y,R) = {x : ‖x− y‖ < R} ⊂ R3,

sup
x∈B(y,R)

|φ(x)| 6 sup
‖x−y‖=R

|φ(x)|.
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1/II/29A Partial Differential Equations

(a) State a local existence theorem for solving first order quasi-linear partial differential
equations with data specified on a smooth hypersurface.

(b) Solve the equation
∂u

∂x
+ x

∂u

∂y
= 0

with boundary condition u(x, 0) = f(x) where f ∈ C1(R), making clear the domain
on which your solution is C1. Comment on this domain with reference to the non-
characteristic condition for an initial hypersurface (including a definition of this
concept).

(c) Solve the equation

u2
∂u

∂x
+
∂u

∂y
= 0

with boundary condition u(x, 0) = x and show that your solution is C1 on some
open set containing the initial hypersurface y = 0. Comment on the significance of
this, again with reference to the non-characteristic condition.

2/II/30A Partial Differential Equations

Define a fundamental solution of a constant-coefficient linear partial differential
operator, and prove that the distribution defined by the function N : R3 → R

N(x) = (4π|x|)−1

is a fundamental solution of the operator −∆ on R3.

State and prove the mean value property for harmonic functions on R3 and deduce
that any two smooth solutions of

−∆u = f , f ∈ C∞(R3)

which satisfy the condition
lim

|x|→∞
u(x) = 0

are in fact equal.
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3/II/29A Partial Differential Equations

Write down the formula for the solution u = u(t, x) for t > 0 of the initial value
problem for the n-dimensional heat equation

∂u

∂t
−∆u = 0 ,

u(0, x) = g(x) ,

for g : Rn → C a given smooth bounded function.

State and prove the Duhamel principle giving the solution v(t, x) for t > 0 to the
inhomogeneous initial value problem

∂v

∂t
−∆v = f ,

v(0, x) = g(x) ,

for f = f(t, x) a given smooth bounded function.

For the case n = 4 and when f = f(x) is a fixed Schwartz function (independent
of t), find v(t, x) and show that w(x) = limt→+∞ v(t, x) is a solution of

−∆w = f .

[Hint: you may use without proof the fact that the fundamental solution of the Laplacian
on R4 is −1/(4π2|x|2).]

4/II/30A Partial Differential Equations

(a) State the Fourier inversion theorem for Schwartz functions S(R) on the real line.
Define the Fourier transform of a tempered distribution and compute the Fourier
transform of the distribution defined by the function F (x) = 1

2 for −t 6 x 6 +t
and F (x) = 0 otherwise. (Here t is any positive number.)

Use the Fourier transform in the x variable to deduce a formula for the solution to
the one dimensional wave equation

utt − uxx = 0 , with initial data u(0, x) = 0 , ut(0, x) = g(x) , (∗)
for g a Schwartz function. Explain what is meant by “finite propagation speed”
and briefly explain why the formula you have derived is in fact valid for arbitrary
smooth g ∈ C∞(R).

(b) State a theorem on the representation of a smooth 2π-periodic function g as a
Fourier series

g(x) =
∑

α∈Z
ĝ(α)eiαx

and derive a representation for solutions to (∗) as Fourier series in x.
(c) Verify that the formulae obtained in (a) and (b) agree for the case of smooth 2π-

periodic g.
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1/II/29C Partial Differential Equations

Consider the equation

x2
∂u

∂x1
− x1

∂u

∂x2
+ a

∂u

∂x3
= u, (∗)

where a ∈ R, to be solved for u = u(x1, x2, x3). State clearly what it means for a
hypersurface

Sφ =
{
(x1, x2, x3) : φ(x1, x2, x3) = 0

}
,

defined by a C1 function φ, to be non-characteristic for (∗). Does the non-characteristic
condition hold when φ(x1, x2, x3) = x3?

Solve (∗) for a > 0 with initial condition u(x1, x2, 0) = f(x1, x2) where f ∈ C1(R2).
For the case f(x1, x2) = x21 + x22 discuss the limiting behaviour as a→ 0+.

2/II/30C Partial Differential Equations

Define a fundamental solution of a linear partial differential operator P . Prove that
the function

G(x) = 1
2e

−|x|

defines a distribution which is a fundamental solution of the operator P given by

P u = −d
2u

dx2
+ u .

Hence find a solution u0 to the equation

−d
2u0
dx2

+ u0 = V (x) ,

where V (x) = 0 for |x| > 1 and V (x) = 1 for |x| 6 1.

Consider the functional

I[u] =

∫

R

{
1

2

[(du
dx

)2
+ u2

]
− V u

}
dx .

Show that I[u0 + φ] > I[u0] for all Schwartz functions φ that are not identically zero.
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3/II/29C Partial Differential Equations

Write down a formula for the solution u = u(t, x) of the n-dimensional heat equation

wt(t, x)−∆w = 0, w(0, x) = g(x),

for g : Rn → C a given Schwartz function; here wt = ∂tw and ∆ is taken in the variables
x ∈ Rn. Show that

w(t, x) 6
∫
|g(x)| dx
(4πt)n/2

.

Consider the equation
ut −∆u = eitf(x) , (∗)

where f : Rn → C is a given Schwartz function. Show that (∗) has a solution of the form

u(t, x) = eitv(x) ,

where v is a Schwartz function.

Prove that the solution u(t, x) of the initial value problem for (∗) with initial data
u(0, x) = g(x) satisfies

lim
t→+∞

∣∣u(t, x)− eitv(x)
∣∣ = 0 .

4/II/30C Partial Differential Equations

Write down the solution of the three-dimensional wave equation

utt −∆u = 0 , u(0, x) = 0 , ut(0, x) = g(x) ,

for a Schwartz function g. Here ∆ is taken in the variables x ∈ R3 and ut = ∂u/∂t
etc. State the “strong” form of Huygens principle for this solution. Using the method of
descent, obtain the solution of the corresponding problem in two dimensions. State the
“weak” form of Huygens principle for this solution.

Let u ∈ C2([0, T ]× R3) be a solution of

utt −∆u+ |x|2u = 0 , u(0, x) = 0 , ut(0, x) = 0 . (∗)

Show that
∂te+∇ · p = 0 , (∗∗)

where
e = 1

2

(
ut

2 + |∇u|2 + |x|2u2
)
, and p = −ut∇u .

Hence deduce, by integration of (∗∗) over the region

K =
{
(t, x) : 0 6 t 6 t0 − a 6 t0, |x− x0| 6 t0 − t

}

or otherwise, that (∗) satisfies the weak Huygens principle.
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