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Paper 1, Section II

41C Numerical Analysis
Consider the diffusion equation in 2D on a square domain (x, y) ∈ [0, 1]2

∂u

∂t
(x, y, t) = ∇2u(x, y, t), (1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian. We assume zero Dirichlet boundary
conditions u(x, 0, t) = u(x, 1, t) = u(0, y, t) = u(1, y, t) = 0 for all t > 0.

We discretize the domain [0, 1]2 by a regular grid (ih, jh) where 0 6 i, j 6 m + 1
and h = 1/(m+ 1).

(a) Show that if we discretize the Laplacian operator ∇2 by the five-point finite-
difference scheme, we get an ordinary differential equation of the form

du(t)

dt
=

1

h2
(Ax +Ay)u(t) u(t) ∈ Rm2

, (2)

where uij ≈ u(ih, jh), and Ax and Ay are two matrices of size m2 ×m2 that correspond
respectively to discretizations of ∂2/∂x2 and ∂2/∂y2. You should verify that your matrices
Ax and Ay commute, i.e., AxAy = AyAx.

(b) Consider the following time-stepping scheme for (2), where k > 0 is the time
step and µ = k/h2: {

un+1/2 = un + µAyu
n+1/2

un+1 = un+1/2 + µAxu
n+1/2.

(i) Explain why un+1 can be computed from un using at most O(m2) arithmetic
operations.
(ii) Show that un+1 = Cun for some matrix C that you should make explicit. Deduce
conditions on µ for the method to be stable.

[Hint: For (ii), you can use the fact that Ax and Ay are diagonalizable in the

same orthogonal basis of eigenvectors (v(p,q))16p,q6m where v(p,q) ∈ Rm2
, and that

Axv
(p,q) = λpv

(p,q) and Ayv
(p,q) = λqv

(p,q) and λp = −4 sin2(pπh/2).]

(c) We consider the following modified discretization method to compute un+1 from
un: 




ũn+1/2 = un + µAyũ
n+1/2

ũn+1 = ũn+1/2 + µAxũ
n+1/2

un+1 = ũn+1 + µAx(un+1 − un).

By writing the method as un+1 = Dun for some matrix D, and analyzing the eigenvalues
of D, show that this method is stable for any choice of µ > 0.

Part II, Paper 1 [TURN OVER]
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Paper 2, Section II

41C Numerical Analysis
Consider the variable coefficient advection equation

∂u

∂t
(x, t) + c(x)

∂u

∂x
(x, t) = 0 (1)

where x ∈ (−∞,∞) and t > 0. Assume that c(x) > 0 is 2-periodic, i.e., c(x + 2) = c(x).
We will seek a 2-periodic solution u(x, t) that satisfies u(x, t) = u(x+ 2, t) for all t.

(a) Assume c(x) has a finite decomposition in a Fourier basis

c(x) =
d∑

n=−d
ĉne

iπnx (ĉi = 0 for |i| > d).

Give an expression for ĉn in terms of c(x). Using the fact that c(x) > 0 for all x, show
that the (2d+ 1)× (2d+ 1) matrix [ĉn−m]−d6n,m6d is Hermitian positive definite.

(b) We seek a solution u(x, t) of (1) of the form

u(x, t) =
d∑

n=−d
ûn(t)eiπnx.

Let û(t) = (ûn(t))|n|6d ∈ C2d+1. Applying the spectral method to (1) derive an ODE of
the form

dû(t)

dt
= iπBû(t) (2)

for some matrix B of size (2d+ 1)× (2d+ 1) that you should specify.

(c) Explain why the eigenvalues of B are all real. Deduce that the explicit Euler
discretization of (2) is unstable.

[Hint: you can assume, without proof, that if P and Q are two Hermitian matrices
and P is positive definite, then the eigenvalues of PQ are all real.]

(d) Consider the case c(x) = 2+cos(πx)−(1/2) sin(πx) and d = 1. Form the matrix
B and compute its eigenvalues.

Part II, Paper 1
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Paper 3, Section II

40C Numerical Analysis
Let A be an n × n real symmetric positive definite matrix and consider the linear

system of equations Ax = b, with b,x ∈ Rn. Let F (x) = (1/2)xTAx− bTx.

(a) Define the steepest descent method with exact line search to minimize F . Show
that for the 2× 2 linear system

A =

(
1 0
0 γ

)
, b = 0 ∈ R2 (γ > 1), (1)

with the starting point x(0) = (γ, 1), the k-th iterate of this method satisfies

‖x(k) − x∗‖2
‖x(0) − x∗‖2

=

(
κ− 1

κ+ 1

)k

(2)

where κ is the condition number of A that you should define.

Define the conjugate gradient method. If the conjugate gradient method is applied
to this example, at most how many iterations will be needed to reach x∗?

(b) Return to the case of general n×n A as specified at the beginning of the question.
The heavy-ball method to minimize F (x) is defined by the following iterations

x(k+1) = x(k) − α∇F (x(k)) + β(x(k) − x(k−1)), (3)

for some constants α, β > 0, with the initial point x(0) = 0. Show that r(k) ∈ Kk(A,b)
where r(k) = b− Ax(k) is the residual at the kth iterate, and Kk(A,b) is the kth Krylov
subspace of A with respect to b.

(c) Let e(k) = x∗−x(k) be the error for the iterates of the heavy-ball method. Show
that we can find a matrix M of size 2n× 2n such that

(
e(k+1)

e(k)

)
= M

(
e(k)

e(k−1)

)
.

Your matrix M should be explicit, and depend only on A, α and β. Assuming A is
diagonal, show that M can be made block diagonal with 2 × 2 blocks by an appropriate
permutation of its rows and columns (i.e. there is a permutation matrix P such that
PMP T is block diagonal).

(d) Compute the spectral radius of M for the particular A and b given in (1) and
the choice α = 1/γ and β = (1−

√
1/γ)2. Compare your result with the rate in (2) when

γ � 1. [ Hint: To simplify the algebra you may find it helpful to write α in terms of β. ]

Part II, Paper 1 [TURN OVER]
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Paper 4, Section II

40C Numerical Analysis
(a) Define the Rayleigh quotient of a matrix A ∈ Rn×n at a vector x ∈ Rn. Describe

the method of Rayleigh quotient iteration to compute an eigenvalue of a matrix.

In the remainder of the question A ∈ Rn×n and λ ∈ R is a simple eigenvalue of A.
u,v ∈ Rn, with ‖u‖2 = ‖v‖2 = 1, are respectively the left and right eigenvectors of A
associated with the eigenvalue λ. We define s(λ) = 1/|uTv| to be the sensitivity of the
eigenvalue λ.

When A is to be regarded as depending on a parameter t the notation A(t) will be
used, with corresponding use of λ(t), u(t) and v(t).

(b) Let E ∈ Rn×n be a perturbation matrix and let λ(t) be an eigenvalue of
A(t) = A(0) + tE with t ∈ R. Assuming λ(t) is differentiable at t = 0, show that

|λ′(0)| 6 ‖E‖2
|u(0)Tv(0)| , (1)

where ‖E‖2 is the operator norm of E.

[Hint: consider u(0)TA(t)v(t).]

(c) What can you say about the sensitivity s(λ) if A is a symmetric matrix? More
generally, what can you say if A is a normal matrix?

(d) Let

A =




λ1 1
λ2 1

. . . 1
λn


 ,

where λ1 = 1, and λi = 1 − 1/i for i > 2. Show that for the eigenvalue λ = λ1 = 1, the
sensitivity s(λ) is at least n!.

(e) Consider applying Rayleigh quotient iterations to compute the eigenvalue λ of
a matrix A. Upon termination of the algorithm, we obtain ṽ ∈ Rn, ‖ṽ‖2 = 1 and λ̃ ∈ R
such that

‖Aṽ − λ̃ṽ‖2 = ε

where ε is the machine precision. Show that |λ̃− λ| . εs(λ).

[Hint: construct a perturbation matrix E such that (A + E)ṽ = λ̃ṽ and use the
approximation |λ(1)− λ(0)| ≈ |λ′(0)|.]

Part II, Paper 1
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Paper 1, Section II
41C Numerical Analysis

(a) Let H ∈ Rn×n be diagonalisable. Show that the sequence defined by z(k+1) =
Hz(k) converges to 0 for all initial vectors z(0) ∈ Cn if, and only if, ρ(H) < 1 where ρ(H)
is the spectral radius of H.

Let A ∈ Rn×n be a symmetric positive definite matrix, and let b ∈ Rn.

(b) Prove that the solution to Ax = b is the unique minimiser of the function
f(x) = (1/2)xTAx− bTx.

(c) The steepest descent method with constant step size α is defined by

x(k+1) = x(k) − α∇f(x(k)).

Applying the method to the function f given in (b), write down the iterations explicitly in
terms of A and b. Under what conditions on α does the sequence x(k) converge to A−1b?

(d) Consider the steepest descent method with exact line search, where at each
iteration k, the constant α = α(k) is chosen so that f(x(k+1)) is as small as possible.
Give an explicit expression for the step size α(k). Show that, in this case, the residuals
r(k) = b−Ax(k) satisfy (r(k))T r(k+1) = 0 for all k.

Part II, Paper 1

2022
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Paper 2, Section II
41C Numerical Analysis

(a) Consider a linear recurrence relation

s∑

k=r

aku
n+1
m+k =

s∑

k=r

bku
n
m+k n > 0, m ∈ Z ,

where (ak) and (bk) are fixed coefficients.

(i) Show that if we define the Fourier transform of un = (unm)m∈Z by ûn(θ) =∑
m∈Z e

−imθunm, then the linear recurrence relation takes the form

ûn+1(θ) = H(θ)ûn(θ) ,

where H(θ) is a function that you should specify.

(ii) Show that the sequence (un)n>0 is bounded in the `2 norm, for all u0, if and
only if |H(θ)| 6 1 for all θ ∈ [−π, π].

[You may assume Parseval’s identity:

‖u‖2`2 =
∑

m∈Z
|um|2 =

1

2π

∫ π

−π
|û(θ)|2 dθ. ]

(b) Consider the following three recurrence relations:

(i) un+1
m = unm + µ(unm − unm−1)

(ii) un+1
m = 1

2µ(1 + µ)unm−1 + (1− µ2)unm − 1
2µ(1− µ)unm+1

(iii) un+1
m − 1

2(µ−α)(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2(µ+α)(unm−1−2unm+unm+1)

where n ∈ N is the time discretization index, m ∈ Z is the spatial discretization index,
µ > 0 is the Courant number, and, for (iii), α > 0 is a parameter. In each case give an
expression for the amplification factor H(θ), and deduce the set of values µ (and α for
(iii)) for which we have stability.
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Paper 3, Section II
40C Numerical Analysis

Let A ∈ Rn×n be a symmetric matrix with real eigenvalues λ1, . . . , λn ordered by
their magnitudes in nonincreasing order, |λ1| > |λ2| > . . . > |λn|.

(a) Define the power method to compute the leading eigenvalue of A. Show that,
under suitable assumptions, the iterates (xk) of the power method satisfy

r(xk)− λ1 = O(|λ2/λ1|2k)

as k →∞, where r(x) = xTAx/xTx is the Rayleigh quotient.

(b) Let

A =




5 1 3
1 7 1
3 1 5




to which we apply the power method with starting vector x0 = (1/
√

2,−1/
√

2, 0).
Compute xk and r(xk) explicitly, and find the limit value limk→∞ r(xk). Compare with
the result in (a) and comment. [Hint: The eigenvalues of A are 9, 6 and 2.]

(c) Define the inverse iteration with shift, and describe (without proof) the conver-
gence of the method, clearly stating the assumptions.

Part II, Paper 1
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Paper 4, Section II
40C Numerical Analysis

(a) State and prove the Gershgorin circle theorem.

(b) Consider the diffusion equation on the square [0, 1]2

∂u

∂t
=

∂

∂x

(
a(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
a(x, y)

∂

∂y
u(x, y)

)
,

where 0 < a(x, y) < amax for all (x, y) ∈ [0, 1]2 is the diffusion coefficient, and with
Dirichlet boundary conditions u(x, y, t) = 0 for (x, y) on the boundary of [0, 1]2.

Consider a uniform grid of size M × M with step h = 1/(M + 1) and let
ui,j = u(ih, jh) for 1 6 i 6M and 1 6 j 6M .

(i) Using finite differences, show that the right-hand side of the diffusion equation
can be discretised by an expression of the form

1

h2
(αui−1,j + βui+1,j + γui,j−1 + δui,j+1 − (α+ β + γ + δ)ui,j)

for some α, β, γ, δ which you should specify, and which depend on i, j and the
diffusion coefficient. Show that the error of this discretisation is O(h2).

(ii) The time derivative is discretised using a forward Euler scheme with a time
step ∆t = k. Use Gershgorin’s theorem, clearly justifying all your steps, to
show that the resulting scheme is stable when 0 < µ 6 1/(4amax), where
µ = k/h2 is the Courant number.

Part II, Paper 1 [TURN OVER]
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Paper 1, Section II

41E Numerical Analysis
Let A ∈ Rn×n with n > 2 and define Spec(A) = {λ ∈ C |A − λI is not invertible}.

The QR algorithm for computing Spec(A) is defined as follows. Set A0 = A. For
k = 0, 1, . . . compute the QR factorization Ak = QkRk and set Ak+1 = RkQk. (Here
Qk is an n× n orthogonal matrix and Rk is an n× n upper triangular matrix.)

(a) Show that Ak+1 is related to the original matrix A by the similarity trans-
formation Ak+1 = Q̄TkAQ̄k, where Q̄k = Q0Q1 · · ·Qk is orthogonal and Q̄kR̄k is the QR
factorization of Ak+1 with R̄k = RkRk−1 · · ·R0.

(b) Suppose that A is symmetric and that its eigenvalues satisfy

|λ1| < |λ2| < · · · < |λn−1| = |λn| .

Suppose, in addition, that the first two canonical basis vectors are given by e1 =
∑n

i=1 biwi,
e2 =

∑n
i=1 ciwi, where bi 6= 0, ci 6= 0 for i = 1, . . . , n and {wi}ni=1 are the normalised

eigenvectors of A.

Let Bk ∈ R2×2 be the 2×2 upper left corner of Ak. Show that dH
(
Spec(Bk), S

)
→ 0

as k →∞, where S = {λn} ∪ {λn−1} and dH denotes the Hausdorff metric

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|

}
, X, Y ⊂ C .

[Hint: You may use the fact that for real symmetric matrices U, V we have
dH
(
Spec(U),Spec(V )

)
6 ‖U − V ‖2.]

Part II, 2021 List of Questions

2021



79

Paper 2, Section II

41E Numerical Analysis
(a) Let x ∈ RN and define y ∈ R2N by

yn =

{
xn, 0 6 n 6 N − 1

x2N−n−1, N 6 n 6 2N − 1.

Let Y ∈ C2N be defined as the discrete Fourier transform (DFT) of y, i.e.

Yk =
2N−1∑

n=0

ynω
nk
2N , ω2N = exp (−πi/N) , 0 6 k 6 2N − 1.

Show that

Yk = 2ω
−k/2
2N

N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 6 k 6 2N − 1.

(b) Define the discrete cosine transform (DCT) CN : RN → RN by

z = CNx, where zk =
N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, . . . , N − 1 .

For N = 2p with p ∈ N, show that, similar to the Fast Fourier Transform (FFT), there
exists an algorithm that computes the DCT of a vector of length N , where the number of
multiplications required is bounded by CN logN , where C is some constant independent
of N .

[You may not assume that the FFT algorithm requires O(N logN) multiplications
to compute the DFT of a vector of length N . If you use this, you must prove it. ]

Part II, 2021 List of Questions [TURN OVER]
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Paper 3, Section II

40E Numerical Analysis
Consider discretisation of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 t 6 1 , (∗)

by the Crank–Nicholson method:

un+1
m − 1

2µ(un+1
m−1−2un+1

m +un+1
m+1) = unm+ 1

2µ(unm−1−2unm+unm+1) , n = 0 , . . . , N , (†)

where µ= k
h2

is the Courant number, h is the step size in the space discretisation, k = 1
N+1

is the step size in the time discretisation, and unm ≈ u(mh, nk), where u(x, t) is the solution
of (∗). The initial condition u(x, 0) = u0(x) is given.

(a) Consider the Cauchy problem for (∗) on the whole line, x ∈ R (thus m ∈ Z),
and derive the formula for the amplification factor of the Crank–Nicholson method (†).
Use the amplification factor to show that the Crank–Nicholson method is stable for the
Cauchy problem for all µ > 0.

[You may quote basic properties of the Fourier transform mentioned in lectures, but
not the theorem on sufficient and necessary conditions on the amplification factor to have
stability.]

(b) Consider (∗) on the interval 0 6 x 6 1 (thus m = 1, . . . ,M and h = 1
M+1) with

Dirichlet boundary conditions u(0, t) = φ0(t) and u(1, t) = φ1(t), for some sufficiently
smooth functions φ0 and φ1. Show directly (without using the Lax equivalence theorem)
that, given sufficient smoothness of u, the Crank–Nicholson method is convergent, for any
µ > 0, in the norm defined by ‖η‖2,h =

(
h
∑M

m=1 |ηm|2
)
1/2 for η ∈ RM .

[You may assume that the Trapezoidal method has local order 3, and that the
standard three-point centred discretisation of the second derivative (as used in the Crank–
Nicholson method) has local order 2.]
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Paper 4, Section II

40E Numerical Analysis
(a) Show that if A and B are real matrices such that both A and A−B−BT are

symmetric positive definite, then the spectral radius of H = −(A−B)−1B is strictly less
than 1.

(b) Consider the Poisson equation∇2u = f (with zero Dirichlet boundary condition)
on the unit square, where f is some smooth function. Given m ∈ N and an equidistant
grid on the unit square with stepsize h = 1/(m + 1), the standard five-point method is
given by

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2fi,j , i, j = 1, . . . ,m , (∗)

where fi,j = f(ih, jh) and u0,j = um+1,j = ui,0 = ui,m+1 = 0. Equation (∗) can be written

as a linear system Ax = b, where A ∈ Rm2×m2
and b ∈ Rm2

both depend on the chosen
ordering of the grid points.

Use the result in part (a) to show that the Gauss–Seidel method converges for the
linear system Ax = b described above, regardless of the choice of ordering of the grid
points.

[You may quote convergence results – based on the spectral radius of the iteration
matrix – mentioned in the lecture notes.]
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Paper 1, Section II

41E Numerical Analysis
Let A ∈ Rn×n be a real symmetric matrix with distinct eigenvalues λ1 < λ2 < · · · <

λn and a corresponding orthonormal basis of real eigenvectors {wi}ni=1. Given a unit norm
vector x(0) ∈ Rn, and a set of parameters sk ∈ R, consider the inverse iteration algorithm

(A− skI)y = x(k), x(k+1) = y/‖y‖, k > 0 .

(a) Let sk = s = const for all k. Assuming that x(0) =
n∑

i=1

ciwi with all ci 6= 0,

prove that
s < λ1 ⇒ x(k) → w1 or x(k) → −w1 (k →∞) .

Explain briefly what happens to x(k) when λm < s < λm+1 for some m ∈ {1, 2, . . . , n−1},
and when λn < s.

(b) Let sk = (Ax(k),x(k)) for k > 0. Assuming that, for some k, some ai ∈ R and
for a small ε,

x(k) = c−1
(
w1 + ε

∑

i>2

aiwi

)
,

where c is the appropriate normalising constant. Show that sk = λ1 −Kε2 + O(ε4) and
determine the value of K. Hence show that

x(k+1) = c−1
1

(
w1 + ε3

∑

i>2

biwi +O(ε5)
)
,

where c1 is the appropriate normalising constant, and find expressions for bi.

Part II, 2020 List of Questions [TURN OVER]
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Paper 2, Section II

40E Numerical Analysis
(a) For A ∈ Rn×n and nonzero v ∈ Rn, define the m-th Krylov subspace Km(A,v)

of Rn. Prove that if A has n linearly independent eigenvectors with at most s distinct
eigenvalues, then

dimKm(A,v) 6 s ∀m.

(b) Define the term residual in the conjugate gradient (CG) method for solving a
system Ax = b with a symmetric positive definite A. State two properties of the method
regarding residuals and their connection to certain Krylov subspaces, and hence show that,
for any right-hand side b, the method finds the exact solution after at most s iterations,
where s is the number of distinct eigenvalues of A.

(c) The preconditioned CG-method PAP T x̂ = Pb is applied for solving Ax = b,
with

A =




2 1

1 2
. . .

. . .
. . . 1

1 2


 , P−1 = Q =




1

1 1
. . .

. . .

1 1


 .

Prove that the method finds the exact solution after two iterations at most.

(d) Prove that, for any symmetric positive definite A, we can find a preconditioner
P such that the preconditioned CG-method for solving Ax = b would require only one
step. Explain why this preconditioning is of hardly any use.

Part II, 2020 List of Questions
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Paper 3, Section II

40E Numerical Analysis
(a) Give the definition of a normal matrix. Prove that if A is normal, then the

(Euclidean) matrix `2-norm of A is equal to its spectral radius, i.e., ‖A‖2 = ρ(A).

(b) The advection equation

ut = ux , 0 6 x 6 1, 0 6 t <∞,

is discretized by the Crank–Nicolson scheme

un+1
m − unm = 1

4
µ(un+1

m+1 − un+1
m−1) + 1

4
µ(unm+1 − unm−1), m = 1, 2, . . . ,M , n ∈ Z+ .

Here, µ = k
h is the Courant number, with k = ∆t, h = ∆x = 1

M+1 , and unm is an
approximation to u(mh, nk).

Using the eigenvalue analysis and carefully justifying each step, determine conditions
on µ > 0 for which the method is stable. [Hint: All M ×M Toeplitz anti-symmetric
tridiagonal (TAT) matrices have the same set of orthogonal eigenvectors, and a TAT
matrix with the elements aj,j = a and aj,j+1 = −aj,j−1 = b has the eigenvalues
λk = a+ 2ib cos πk

M+1 where i =
√
−1. ]

(c) Consider the same advection equation for the Cauchy problem (x ∈ R, 0 6 t 6
T ). Now it is discretized by the two-step leapfrog scheme

un+1
m = µ (unm+1 − unm−1) + un−1

m .

Applying the Fourier technique, find the range of µ > 0 for which the method is stable.

Part II, 2020 List of Questions [TURN OVER]
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Paper 4, Section II

40E Numerical Analysis
(a) For a function f = f(x, y) which is real analytic in R2 and 2-periodic in each

variable, its Fourier expansion is given by the formula

f(x, y) =
∑

m,n∈Z
f̂m,ne

iπmx+iπny, f̂m,n =
1

4

∫ 1

−1

∫ 1

−1
f(t, θ)e−iπmt−iπnθ dtdθ .

Derive expressions for the Fourier coefficients of partial derivatives fx, fy and those of the

product h(x, y) = f(x, y)g(x, y) in terms of f̂m,n and ĝm,n.

(b) Let u(x, y) be the 2-periodic solution in R2 of the general second-order elliptic
PDE

(aux)x + (auy)y = f,

where a and f are both real analytic and 2-periodic, and a(x, y) > 0. We impose the
normalisation condition

∫ 1
−1

∫ 1
−1 u dxdy = 0 and note from the PDE

∫ 1
−1

∫ 1
−1 f dxdy = 0.

Construct explicitly the infinite-dimensional linear algebraic system that arises from
the application of the Fourier spectral method to the above equation, and explain how to
truncate this system to a finite-dimensional one.

(c) Specify the truncated system for the unknowns {ûm,n} for the case

a(x, y) = 5 + 2 cosπx+ 2 cosπy ,

and prove that, for any ordering of the Fourier coefficients {ûm,n} into one-dimensional
array, the resulting system is symmetric and positive definite. [You may use the Gershgorin
theorem without proof.]
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For a 2-periodic analytic function f , its Fourier expansion is given by the formula

f(x) =
∞∑

n=−∞
f̂ne

iπnx, f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt .

(a) Consider the two-point boundary value problem

− 1

π2
(1 + 2 cos πx)u′′ + u = 1 +

∞∑

n=1

2

n2 + 1
cos πnx, −1 6 x 6 1 ,

with periodic boundary conditions u(−1) = u(1). Construct explicitly the infinite
dimensional linear algebraic system that arises from the application of the Fourier spectral
method to the above equation, and explain how to truncate the system to a finite-
dimensional one.

(b) A rectangle rule is applied to computing the integral of a 2-periodic analytic
function h: ∫ 1

−1
h(t) dt ≈ 2

N

N/2∑

k=−N/2+1

h

(
2k

N

)
. (∗)

Find an expression for the error eN (h) := LHS− RHS of (∗), in terms of ĥn, and show
that eN (h) has a spectral rate of decay as N → ∞. [In the last part, you may quote a
relevant theorem about ĥn.]
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The Poisson equation on the unit square, equipped with zero boundary conditions,

is discretized with the 9-point scheme:

−10
3 ui,j +

2
3(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+ 1
6(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1) = h2fi,j ,

where 1 6 i, j 6 m, ui,j ≈ u(ih, jh), and (ih, jh) are the grid points with h = 1
m+1 . We

also assume that u0,j = ui,0 = um+1,j = ui,m+1 = 0.

(a) Prove that all m×m tridiagonal symmetric Toeplitz (TST-) matrices

H = [β, α, β] :=




α β

β α
. . .

. . .
. . . β
β α


 ∈ Rm×m (1)

share the same eigenvectors qk with the components (sin jkπh)mj=1 for k = 1, ...,m.
Find expressions for the corresponding eigenvalues λk for k = 1, ...,m. Deduce that
H = QDQ−1, where D = diag{λk} and Q is the matrix (sin ijπh)mi,j=1.

(b) Show that, by arranging the grid points (ih, jh) into a one-dimensional array
by columns, the 9-points scheme results in the following system of linear equations of the
form

Au = b ⇔




B C

C B
. . .

. . .
. . . C
C B







u1

u2

...
um


 =




b1
b2
...

bm


 , (2)

where A ∈ Rm2×m2
, the vectors uk, bk ∈ Rm are portions of u, b ∈ Rm2

, respectively, and
B,C are m×m TST-matrices whose elements you should determine.

(c) Using vk = Q−1uk, ck = Q−1bk, show that (2) is equivalent to




D E

E D
. . .

. . .
. . . E
E D







v1

v2

...
vm


 =




c1
c2
...

cm


 , (3)

where D and E are diagonal matrices.

(d) Show that, by appropriate reordering of the grid, the system (3) is reduced to
m uncoupled m×m systems of the form

Λkv̂k = ĉk, k = 1, . . . ,m.

Determine the elements of the matrices Λk.
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The diffusion equation

ut = uxx, 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and boundary conditions u(0, t) =
u(1, t) = 0, is discretised by unm ≈ u(mh,nk) with k = ∆t, h = ∆x = 1/(1 +M). The
Courant number is given by µ = k/h2.

(a) The system is solved numerically by the method

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1, 2, ...,M, n > 0 .

Prove directly that µ 6 1/2 implies convergence.

(b) Now consider the method

aun+1
m − 1

4
(µ− c)

(
un+1
m−1 − 2un+1

m + un+1
m+1

)
= aunm + 1

4
(µ+ c)

(
unm−1 − 2unm + unm+1

)
,

where a and c are real constants. Using an eigenvalue analysis and carefully justifying
each step, determine conditions on µ, a and c for this method to be stable.

[You may use the notation [β, α, β] for the tridiagonal matrix with α along the diag-
onal, and β along the sub- and super-diagonals and use without proof any relevant theorems
about such matrices.]

Paper 1, Section II

40C Numerical Analysis
(a) Describe the Jacobi method for solving a system of linear equations Ax = b as

a particular case of splitting, and state the criterion for its convergence in terms of the
iteration matrix.

(b) For the case when

A =




1 α α
α 1 α
α α 1


 ,

find the exact range of the parameter α for which the Jacobi method converges.

(c) State the Householder-John theorem and deduce that the Jacobi method con-
verges if A is a symmetric positive-definite tridiagonal matrix.
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40E Numerical Analysis
The inverse discrete Fourier transform F−1n : Rn → Rn is given by the formula

x = F−1n y, where xℓ =
n−1∑

j=0

ωjℓ
n yj, ℓ = 0, . . . , n−1.

Here, ωn = exp 2πi
n is the primitive root of unity of degree n and n = 2p, p = 1, 2, . . ..

(a) Show how to assemble x = F−12my in a small number of operations if the Fourier
transforms of the even and odd parts of y,

x(E) = F−1m y(E), x(O) = F−1m y(O),

are already known.

(b) Describe the Fast Fourier Transform (FFT) method for evaluating x, and draw
a diagram to illustrate the method for n = 8.

(c) Find the cost of the FFT method for n = 2p (only multiplications count).

(d) For n = 4 use the FFT method to find x = F−1n y when:

(i) y = (1,−1, 1,−1), (ii) y = (1, 1,−1,−1).
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The Poisson equation d2u

dx2 = f in the unit interval [0, 1], with u(0) = u(1) = 0, is
discretised with the formula

ui−1 − 2ui + ui+1 = h2fi, 1 6 i 6 n,

where u0 = un+1 = 0, h = (n+ 1)−1, the grid points are at x = ih and ui ≈ u(ih).

(a) Write the above system of equations in the vector form Au = b and describe
the relaxed Jacobi method with relaxation parameter ω for solving this linear system.

(b) For x∗ and x(ν) being the exact and the iterated solution, respectively, let
e(ν) := x(ν) − x∗ be the error and Hω be the iteration matrix, so that

e(ν+1) = Hω e
(ν) .

Express Hω in terms of the matrix A and the relaxation parameter ω. Using the fact that
for any n × n Toeplitz symmetric tridiagonal matrix, the eigenvectors vk (k = 1, . . . , n)
have the form:

vk = (sin ikx)ni=1, x = π
n+1

,

find the eigenvalues λk(A) of A. Hence deduce the eigenvalues λk(ω) of Hω.

(c) For A as above, let

e(ν) =

n∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors (vk) of Hω.

Find the range of the parameter ω which provides convergence of the method for
any n, and prove that, for any such ω, the rate of convergence e(ν) → 0 is not faster than
(1− c/n2)ν when n is large.

(d) Show that, for an appropriate range of ω, the high frequency components a
(ν)
k

(n+1
2 6 k 6 n) of the error e(ν) tend to zero much faster than the rate obtained in

part (c). Determine the optimal parameter ω∗ which provides the largest supression of the
high frequency components per iteration, and find the corresponding attenuation factor µ∗
assuming n is large. That is, find the least µω such that |a(ν+1)

k | 6 µω|a(ν)k | for n+1
2 6 k 6 n.
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(a) Suppose that A is a real n×n matrix, and w ∈ Rn and λ1 ∈ R are given so that

Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce(1), where e(1) is
the first coordinate vector and c 6= 0.

Let Â = SAS−1. Prove that the eigenvalues of A are λ1 together with the
eigenvalues of the bottom right (n− 1)× (n− 1) submatrix of Â.

Explain briefly how, given a vector w, an orthogonal matrix S such that Sw = ce(1)

can be constructed.

(b) Suppose that A is a real n × n matrix, and two linearly independent vectors
v,w ∈ Rn are given such that the linear subspace L{v,w} spanned by v andw is invariant
under the action of A, i.e.,

x ∈ L{v,w} ⇒ Ax ∈ L{v,w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let S be a
non-singular matrix such that R = SV is upper triangular:

SV = S ×




v1 w1

v2 w2

v3 w3

: :
vn wn



=




r11 r12
0 r22
0 0
: :
0 0



. (∗)

Again, let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the top left
2× 2 submatrix of Â together with the eigenvalues of the bottom right (n− 2) × (n− 2)
submatrix of Â.

Explain briefly how, for given vectors v, w, an orthogonal matrix S which satisfies
(∗) can be constructed.
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41E Numerical Analysis
The diffusion equation for u(x, t):

∂u

∂t
=
∂2u

∂x2
, x ∈ R, t > 0,

is solved numerically by the difference scheme

un+1
m = unm + 3

2
µ(unm−1 − 2unm + unm+1)− 1

2
µ(un−1m−1 − 2un−1m + un−1m+1) .

Here µ = k
h2 is the Courant number, with k = ∆t, h = ∆x, and unm ≈ u(mh,nk).

(a) Prove that, as k → 0 with constant µ, the local error of the method is O(k2).

(b) Applying the Fourier stability analysis, show that the method is stable if and
only if µ 6 1

4 . [Hint: If a polynomial p(x) = x2 − 2αx+ β has real roots, then those roots
lie in [a, b] if and only if p(a)p(b) > 0 and α ∈ [a, b].]

(c) Prove that, for the same equation, the leapfrog scheme

un+1
m = un−1m + 2µ(unm−1 − 2unm + unm+1)

is unstable for any choice of µ > 0.
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38A Numerical Analysis
The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], equipped with

the zero Dirichlet boundary conditions on ∂Ω, is discretized with the nine-point formula:

Γ9[ui,j] := −10

3
ui,j +

2

3
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+
1

6
(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1) = h2fi,j,

where 1 6 i, j 6 m, ui,j ≈ u(ih, jh), and (ih, jh) are the grid points with h = 1
m+1 .

(i) Find the order of the local truncation error ηi,j of the approximation.

(ii) Prove that the order of the truncation error is smaller if f satisfies the Laplace
equation ∇2f = 0.

(iii) Show that the modified nine-point scheme

Γ9[ui,j] = h2fi,j +
1

12
h2Γ5[fi,j]

:= h2fi,j +
1

12
h2(fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j)

has a truncation error of the same order as in part (ii).

(iv) Let (ui,j)
m
i,j=1 be a solution to the m2 × m2 system of linear equations Au = b

arising from the modified nine-point scheme in part (iii). Further, let u(x, y) be the
exact solution and let ei,j := ui,j − u(ih, jh) be the error of approximation at grid
points. Prove that there exists a constant c such that

‖e‖2 :=




m∑

i,j=1

|ei,j |2


1/2

< ch3, h→ 0.

[Hint: The nine-point discretization of ∇2u can be written as

Γ9[u] = (Γ5 +
1
6
∆2

x∆
2
y)u = (∆2

x +∆2
y +

1
6
∆2

x∆
2
y)u ,

where Γ5[u] = (∆2
x +∆2

y)u is the five-point discretization and

∆2
x u(x, y) := u(x− h, y)− 2u(x, y) + u(x+ h, y),

∆2
y u(x, y) := u(x, y − h)− 2u(x, y) + u(x, y + h) .

]

[Hint: The matrix A of the nine-point scheme is symmetric, with the eigenvalues

λk,ℓ = − 4 sin2 kπh
2

− 4 sin2 ℓπh
2

+ 8
3
sin2 kπh

2
sin2 ℓπh

2
, 1 6 k, ℓ 6 m.

]
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State the Householder–John theorem and explain how it can be used in designing

iterative methods for solving a system of linear equations Ax = b. [You may quote other
relevant theorems if needed.]

Consider the following iterative scheme for solving Ax = b. Let A = L + D + U ,
where D is the diagonal part of A, and L and U are the strictly lower and upper triangular
parts of A, respectively. Then, with some starting vector x(0), the scheme is as follows:

(D + ωL)x(k+1) =
[
(1− ω)D − ωU

]
x(k) + ωb .

Prove that if A is a symmetric positive definite matrix and ω ∈ (0, 2), then, for any x(0),
the above iteration converges to the solution of the system Ax = b.

Which method corresponds to the case ω = 1?
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39A Numerical Analysis
Let A be a real symmetric n × n matrix with real and distinct eigenvalues

0 = λ1 < · · · < λn−1 = 1 < λn and a corresponding orthogonal basis of normalized
real eigenvectors (wi)

n
i=1.

To estimate the eigenvector wn of A whose eigenvalue is λn, the power method with
shifts is employed which has the following form:

y = (A− skI)x
(k), x(k+1) = y/‖y‖ , sk ∈ R, k = 0, 1, 2, . . .

Three versions of this method are considered:

(i) no shift: sk ≡ 0;

(ii) single shift: sk ≡ 1
2 ;

(iii) double shift: s2ℓ ≡ s0 =
1
4(2 +

√
2), s2ℓ+1 ≡ s1 =

1
4 (2−

√
2).

Assume that λn = 1+ ǫ, where ǫ > 0 is very small, so that the terms O(ǫ2) are negligible,
and that x(0) contains substantial components of all the eigenvectors.

By considering the approximation after 2m iterations in the form

x(2m) = ±wn +O(ρ2m) (m→ ∞),

find ρ as a function of ǫ for each of the three versions of the method.

Compare the convergence rates of the three versions of the method, with reference
to the number of iterations needed to achieve a prescribed accuracy.
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39A Numerical Analysis

(a) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − 1

2
µ
(
un+1
m−1 − 2un+1

m + un+1
m+1

)
= unm +

1

2
µ
(
unm−1 − 2unm + unm+1

)
,

with m = 1, . . . ,M . Here µ = k/h2, k = ∆t, h = ∆x = 1
M+1 , and unm is an

approximation to u(mh,nk). Assuming that u(0, t) = u(1, t) = 0, show that the
above scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 T/k − 1 ,

where un = [un1 , . . . , u
n
M ]T and the real matrices B and C should be found. Using

matrix analysis, find the range of µ > 0 for which the scheme is stable.

[Hint: All Toeplitz symmetric tridiagonal (TST) matrices have the same set of
orthogonal eigenvectors, and a TST matrix with the elements ai,i = a and ai,i±1 = b
has the eigenvalues λk = a+ 2b cos πk

M+1 . ]

(b) The wave equation
∂2u

∂t2
=
∂2u

∂x2
, x ∈ R, t > 0,

with given initial conditions for u and ∂u/∂t, is approximated by the scheme

un+1
m − 2unm + un−1

m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number now µ = k2/h2. Applying the Fourier technique, find the
range of µ > 0 for which the method is stable.
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38B Numerical Analysis
(a) Describe an implementation of the power method for determining the eigenvalue

of largest modulus and its associated eigenvector for a matrix that has a unique eigenvalue
of largest modulus.

Now let A be a real n × n matrix with distinct eigenvalues satisfying |λn| = |λn−1|
and |λn| > |λi|, i = 1, . . . , n − 2. The power method is applied to A, with an initial
condition x(0) =

∑n
i=1 ciwi such that cn−1cn 6= 0, where wi is the eigenvector associated

with λi. Show that the power method does not converge. Explain why x(k), x(k+1) and
x(k+2) become linearly dependent as k → ∞.

(b) Consider the following variant of the power method, called the two-stage power
method, applied to the matrix A of part (a):

0. Pick x(0) ∈ Rn satisfying ‖x(0)‖ = 1. Let 0 < ε ≪ 1. Set k = 0 and
x(1) = Ax(0).

1. Calculate x(k+2) = Ax(k+1) and calculate α, β that minimise

f(α, β) = ‖x(k+2)+αx(k+1)+βx(k)‖.

2. If f(α, β) 6 ε, solve λ2+αλ+β = 0 and let the roots be λ1 and λ2. They are
accepted as eigenvalues of A, and the corresponding eigenvectors are estimated
as x(k+1)−λ2x(k) and x(k+1)−λ1x(k).

3. Otherwise, divide x(k+2) and x(k+1) by the current value of ‖x(k+1)‖, increase
k by 1 and return to Step 1.

Explain the justification behind Step 2 of the algorithm.

(c) Let n = 3, and suppose that, for a large value of k, the two-stage power method
yields the vectors

yk = x(k) =




1
1
1


 , yk+1 = Ax(k) =




2
3
4


 , yk+2 = A2x(k) =




2
4
6


 .

Find two eigenvalues of A and the corresponding eigenvectors.
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38B Numerical Analysis
(a) The advection equation

ut = ux, 0 6 x 6 1, t > 0

is discretised using an equidistant grid with stepsizes ∆x = h and ∆t = k. The
spatial derivatives are approximated with central differences and the resulting ODEs are
approximated with the trapezoidal rule. Write down the relevant difference equation for
determining (un+1

m ) from (unm). What is the name of this scheme? What is the local
truncation error?

The boundary condition is periodic, u(0, t) = u(1, t). Explain briefly how to write
the discretised scheme in the form Bun+1 = Cun, where the matrices B and C, to be
identified, have a circulant form. Using matrix analysis, find the range of µ = ∆t/∆x
for which the scheme is stable. [Standard results may be used without proof if quoted
carefully.]

[Hint: An n× n circulant matrix has the form

A =




a0 a1 . . . an−1

an−1
. . .

. . .
...

...
. . .

. . . a1
a1 . . . an−1 a0




.

All such matrices have the same set of eigenvectors vℓ =
(
ωjℓ
)n−1

j=0
, ℓ = 0, 1, . . . , n−1,

where ω = e2πi/n, and the corresponding eigenvalues are λℓ =
∑n−1

k=0 akω
kℓ. ]

(b) Consider the advection equation on the unit square

ut = aux + buy, 0 6 x, y 6 1, t > 0 ,

where u satisfies doubly periodic boundary conditions, u(0, y) = u(1, y), u(x, 0) = u(x, 1),
and a(x, y) and b(x, y) are given doubly periodic functions. The system is discretised
with the Crank–Nicolson scheme, with central differences for the space derivatives, using
an equidistant grid with stepsizes ∆x = ∆y = h and ∆t = k. Write down the relevant
difference equation, and show how to write the scheme in the form

un+1 = (I − 1
4µA)

−1(I + 1
4µA)u

n , (∗)

where the matrix A should be identified. Describe how (∗) can be approximated by Strang
splitting, and explain the advantages of doing so.

[Hint: Inversion of the matrix B in part (a) has a similar computational cost to that of a
tridiagonal matrix. ]
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38B Numerical Analysis
(a) Consider the periodic function

f(x) = 5 + 2 cos
(
2πx− π

2

)
+ 3cos(4πx)

on the interval [0, 1]. The N -point discrete Fourier transform of f is defined by

FN (n) =
1

N

N−1∑

k=0

fk ω
−nk
N , n = 0, 1, . . . , N − 1, (∗)

where ωN = e2πi/N and fk = f(k/N). Compute F4(n), n = 0, . . . , 3, using the Fast Fourier
Transform (FFT). Compare your result with what you get by computing F4(n) directly
from (∗). Carefully explain all your computations.

(b) Now let f be any analytic function on R that is periodic with period 1. The
continuous Fourier transform of f is defined by

f̂n =

∫ 1

0
f(τ) e−2πinτ dτ , n ∈ Z .

Use integration by parts to show that the Fourier coefficients f̂n decay spectrally.

Explain what it means for the discrete Fourier transform of f to approximate the
continuous Fourier transform with spectral accuracy. Prove that it does so.

What can you say about the behaviour of FN (N − n) as N → ∞ for fixed n?
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38B Numerical Analysis
(a) Define the Jacobi and Gauss–Seidel iteration schemes for solving a linear

system of the form Au = b, where u,b ∈ RM and A ∈ RM×M , giving formulae for
the corresponding iteration matrices HJ and HGS in terms of the usual decomposition
A = L0 +D + U0.

Show that both iteration schemes converge when A results from discretization of
Poisson’s equation on a square with the five-point formula, that is when

A =




S I
I S I

. . .
. . .

. . .

I S I
I S


 , S =




−4 1
1 −4 1

. . .
. . .

. . .

1 −4 1
1 −4


 ∈ Rm×m (∗)

and M = m2. [You may state the Householder–John theorem without proof.]

(b) For the matrix A given in (∗):

(i) Calculate the eigenvalues of HJ and deduce its spectral radius ρ(HJ).

(ii) Show that each eigenvector q of HGS is related to an eigenvector p of HJ

by a transformation of the form qi,j = αi+jpi,j for a suitable value of α.

(iii) Deduce that ρ(HGS) = ρ2(HJ). What is the significance of this result for
the two iteration schemes?

[
Hint: You may assume that the eigenvalues of the matrix A in (∗) are

λk,ℓ = −4
(
sin2

x

2
+ sin2

y

2

)
, where x =

kπh

m+ 1
, y =

ℓπh

m+ 1
, k, ℓ = 1, . . . ,m,

with corresponding eigenvectors v = (vi,j) , vi,j = sin ix sin jy , i, j = 1, . . . ,m .
]
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(a) Define the mth Krylov space Km(A, v) for A ∈ Rn×n and 0 6= v ∈ Rn. Letting δm be
the dimension of Km(A, v), prove the following results.

(i) There exists a positive integer s 6 n such that δm = m for m 6 s and δm = s
for m > s.

(ii) If v =
∑s′

i=1 ciwi, where wi are eigenvectors of A for distinct eigenvalues and all
ci are nonzero, then s = s′.

(b) Define the term residual in the conjugate gradient (CG) method for solving a system
Ax = b with symmetric positive definite A. Explain (without proof) the connection
to Krylov spaces and prove that for any right-hand side b the CG method finds an
exact solution after at most t steps, where t is the number of distinct eigenvalues of A.
[You may use without proof known properties of the iterates of the CG method.]

Define what is meant by preconditioning, and explain two ways in which precondi-
tioning can speed up convergence. Can we choose the preconditioner so that the CG
method requires only one step? If yes, is it a reasonable method for speeding up the
computation?
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(a) The boundary value problem −∆u + cu = f on the unit square [0, 1]2 with zero
boundary conditions and scalar constant c > 0 is discretised using finite differences as

−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j + ch2ui,j = h2f(ih, jh),

i, j = 1, . . . ,m,

with h = 1/(m+1). Show that for the resulting system Au = b, for a suitable matrix
A and vectors u and b, both the Jacobi and Gauss–Seidel methods converge. [You may
cite and use known results on the discretised Laplace operator and on the convergence
of iterative methods.]

Define the Jacobi method with relaxation parameter ω. Find the eigenvalues λk,l of
the iteration matrix Hω for the above problem and show that, in order to ensure
convergence for all h, the condition 0 < ω 6 1 is necessary.

[Hint: The eigenvalues of the discretised Laplace operator in two dimensions are
4
(
sin2 πkh

2 + sin2 πlh
2

)
for integers k, l.]

(b) Explain the components and steps in a multigrid method for solving the Poisson
equation, discretised as Ahuh = bh. If we use the relaxed Jacobi method within the
multigrid method, is it necessary to choose ω 6= 1 to get fast convergence? Explain
why or why not.
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(a) Given the finite-difference recurrence

s∑

k=r

aku
n+1
m+k =

s∑

k=r

bku
n
m+k, m ∈ Z, n ∈ Z+,

that discretises a Cauchy problem, the amplification factor is defined by

H(θ) =

(
s∑

k=r

bke
ikθ

)/(
s∑

k=r

ake
ikθ

)
.

Show how H(θ) acts on the Fourier transform ûn of un. Hence prove that the method
is stable if and only if |H(θ)| 6 1 for all θ ∈ [−π, π].

(b) The two-dimensional diffusion equation

ut = uxx + cuyy

for some scalar constant c > 0 is discretised with the forward Euler scheme

un+1
i,j = uni,j + µ(uni+1,j − 2uni,j + uni−1,j + cuni,j+1 − 2cuni,j + cuni,j−1).

Using Fourier stability analysis, find the range of values µ > 0 for which the scheme
is stable.
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(a) The diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
in 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x) in 0 6 x 6 1 and zero boundary conditions
at x = 0 and x = 1, is solved by the finite-difference method

un+1
m = unm + µ

[
am− 1

2
unm−1 − ( am− 1

2
+ am+ 1

2
)unm + am+ 1

2
unm+1

]
,

m = 1, 2, . . . ,M,

where µ = k/h2, k = ∆t, h = 1/(M + 1), unm ≈ u(mh,nk), and aα = a(αh).

Assuming that the function a and the exact solution are sufficiently smooth, prove
that the exact solution satisfies the numerical scheme with error O(h3) for constant µ.

(b) For the problem in part (a), assume that there exist 0 < a− < a+ < ∞ such that
a− 6 a(x) 6 a+ for all 0 6 x 6 1. State (without proof) the Gershgorin theorem and
prove that the method is stable for 0 < µ 6 1/(2a+).
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Let A be a real symmetric n× n matrix with n distinct real eigenvalues λ1 < λ2 <

· · · < λn and a corresponding orthogonal basis of normalized real eigenvectors {wi}ni=1 .

(i) Let s ∈ R satisfy s < λ1. Given a unit vector x(0) ∈ Rn, the iteration scheme

(A− sI)y = x(k),

x(k+1) = y/‖y‖ ,

generates a sequence of vectors x(k+1) for k = 0, 1, 2, . . . . Assuming that x(0) =
∑

ciwi

with c1 6= 0, prove that x(k) tends to ±w1 as k → ∞. What happens to x(k) if s > λ1?
[Consider all cases.]

(ii) Describe how to implement an inverse-iteration algorithm to compute the
eigenvalues and eigenvectors of A, given some initial estimates for the eigenvalues.

(iii) Let n = 2. For iterates x(k) of an inverse-iteration algorithm with a fixed value
of s 6= λ1, λ2, show that if

x(k) = (w1 + ǫkw2)/(1 + ǫ2k)
1/2 ,

where |ǫk| is small, then |ǫk+1| is of the same order of magnitude as |ǫk|.
(iv) Let n = 2 still. Consider the iteration scheme

sk =
(
x(k) , Ax(k)

)
, (A− skI)y = x(k), x(k+1) = y/‖y‖

for k = 0, 1, 2, . . . , where ( , ) denotes the inner product. Show that with this scheme
|ǫk+1| = |ǫk|3 .

Part II, 2014 List of Questions

2014



67

Paper 2, Section II

39D Numerical Analysis
Consider the one-dimensional advection equation

ut = ux , −∞ < x < ∞ , t > 0 ,

subject to an initial condition u(x, 0) = ϕ(x). Consider discretization of this equation
with finite differences on an equidistant space-time {(mh,nk), m ∈ Z, n ∈ Z+} with
step size h > 0 in space and step size k > 0 in time. Define the Courant number µ and
explain briefly how such a discretization can be used to derive numerical schemes in which
solutions unm ≈ u(mh,nk), m ∈ Z and n ∈ Z+ satisfy equations of the form

s∑

i=r

aiu
n+1
m+i =

s∑

i=r

biu
n
m+i , (1)

where the coefficients ai, bi are independent of m,n.

(i) Define the order of a numerical scheme such as (1). Define what a convergent
numerical scheme is. Explain the notion of stability and state the Lax equivalence
theorem that connects convergence and stability of numerical schemes for linear
partial differential equations.

(ii) Consider the following example of (1):

un+1
m = unm +

µ

2
(unm+1 − unm−1) +

µ2

2
(unm+1 − 2unm + unm−1) . (2)

Determine conditions on µ such that the scheme (2) is stable and convergent. What
is the order of this scheme?
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Consider the linear system

Ax = b , (1)

where A ∈ Rn×n and b, x ∈ Rn.

(i) Define the Jacobi iteration method with relaxation parameter ω for solving (1).

(ii) Assume that A is a symmetric positive-definite matrix whose diagonal part D is
such that the matrix 2D−A is also positive definite. Prove that the relaxed Jacobi
iteration method always converges if the relaxation parameter ω is equal to 1.

(iii) Let A be the tridiagonal matrix with diagonal elements aii = α and off-diagonal
elements ai+1,i = ai,i+1 = β, where 0 < β < 1

2α. For which values of ω (expressed in
terms of α and β) does the relaxed Jacobi iteration method converge? What choice
of ω gives the optimal convergence speed?

[You may quote without proof any relevant results about the convergence of iterative
methods and about the eigenvalues of matrices.]
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(i) Consider the numerical approximation of the boundary-value problem

u′′ = f , u : [0, 1] → R ,

u(0) = ϕ0 , u(1) = ϕ1 ,

where ϕ0, ϕ1 are given constants and f is a given smooth function on [0, 1]. A grid
{x1, x2, . . . , xN}, N > 3, on [0, 1] is given by

x1 = α1h , xi = xi−1 + h for i = 2, . . . , N − 1 , xN = 1− α2h ,

where 0 < α1, α2 < 1, α1 + α2 = 1 and h = 1/N . Derive finite-difference approximations
for u′′(xi), for i = 1, . . . , N , using at most one neighbouring grid point of xi on each
side. Hence write down a numerical scheme to solve the problem, displaying explicitly
the entries of the system matrix A in the resulting system of linear equations Au = b,
A ∈ RN×N , u, b ∈ RN . What is the overall order of this numerical scheme? Explain
briefly one strategy by which the order could be improved with the same grid.

(ii) Consider the numerical approximation of the boundary-value problem

∇2u = f , u : Ω → R ,

u(x) = 0 for all x ∈ ∂Ω ,

where Ω ⊂ R2 is an arbitrary, simply connected bounded domain with smooth boundary
∂Ω, and f is a given smooth function. Define the 9-point formula used to approximate the
Laplacian. Using this formula and an equidistant grid inside Ω, define a numerical scheme
for which the system matrix is symmetric and negative definite. Prove that the system
matrix of your scheme has these properties for all choices of ordering of the grid points.
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Consider the solution of the two-point boundary value problem

(2− sinπx)u′′ + u = 1, −1 6 x 6 1,

with periodic boundary conditions at x = −1 and x = 1. Construct explicitly the
linear algebraic system that arises from the application of a spectral method to the above
equation.

The Fourier coefficients of u are defined by

ûn =
1

2

∫ 1

−1
u(τ)e−iπnτ dτ.

Prove that the computation of the Fourier coefficients for the truncated system with
−N/2 + 1 6 n 6 N/2 (where N is an even and positive integer, and assuming that
ûn = 0 outside this range of n) reduces to the solution of a tridiagonal system of algebraic
equations, which you should specify.

Explain the term convergence with spectral speed and justify its validity for the
derived approximation of u.
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Consider the advection equation ut = ux on the unit interval x ∈ [0, 1] and t > 0,

where u = u(x, t), subject to the initial condition u(x, 0) = ϕ(x) and the boundary
condition u(1, t) = 0, where ϕ is a given smooth function on [0, 1].

(i) We commence by discretising the advection equation above with finite differences
on the equidistant space-time grid {(m∆x, n∆t), m = 0, . . . ,M + 1, n = 0, . . . , T}
with ∆x = 1/(M + 1) and ∆t > 0. We obtain an equation for unm ≈ u(m∆x, n∆t)
that reads

un+1
m = unm +

1

2
µ(unm+1 − unm−1), m = 1, . . . ,M, n ∈ Z+,

with the condition un0 = 0 for all n ∈ Z+ and µ = ∆t/∆x.

What is the order of approximation (that is, the order of the local error) in space
and time of the above discrete solution to the exact solution of the advection
equation? Write the scheme in matrix form and deduce for which choices of µ this
approximation converges to the exact solution. State (without proof) any theorems
you use. [You may use the fact that for a tridiagonal M ×M matrix




α β 0 0

−β
. . .

. . . 0

0
. . .

. . . β
0 0 −β α




the eigenvalues are given by λℓ = α+ 2iβ cos ℓπ
M+1 .]

(ii) How does the order change when we replace the central difference approximation
of the first derivative in space by forward differences, that is unm+1 − unm instead of
(unm+1 − unm−1)/2? For which choices of µ is this new scheme convergent?

(iii) Instead of the approximation in (i) we consider the following method for numerically
solving the advection equation,

un+1
m = µ(unm+1 − unm−1) + un−1

m ,

where we additionally assume that u1m is given. What is the order of this method
for a fixed µ?
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(i) Suppose that A is a real n×n matrix, and that w ∈ Rn and λ1 ∈ R are given so that
Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce1, where e1 is
the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove that the eigenvalues
of A are λ1 together with the eigenvalues of the bottom right (n − 1) × (n − 1)
submatrix of Â.

(ii) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v,w ∈ Rn are given such that the linear subspace L{v,w} spanned by v
and w is invariant under the action of A, that is

x ∈ L{v,w} ⇒ Ax ∈ L{v,w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is

R = SV = S ×




v1 w1

v2 w2
...

...
vn wn


 =




r11 r12
0 r22
0 0
...

...
0 0




.

Again, let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.
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Let

A(α) =




1 α α
α 1 α
α α 1


 , α ∈ R .

(i) For which values of α is A(α) positive definite?

(ii) Formulate the Gauss–Seidel method for the solution x ∈ R3 of a system

A(α)x = b ,

with A(α) as defined above and b ∈ R3. Prove that the Gauss–Seidel method
converges to the solution of the above system whenever A is positive definite. [You
may state and use the Householder–John theorem without proof.]

(iii) For which values of α does the Jacobi iteration applied to the solution of the above
system converge?
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(i) Formulate the conjugate gradient method for the solution of a system Ax = b with
A ∈ Rn×n and b ∈ Rn, n > 0.

(ii) Prove that if the conjugate gradient method is applied in exact arithmetic then, for
any x(0) ∈ Rn, termination occurs after at most n iterations.

(iii) The polynomial p(x) = xm +
∑m−1

i=0 cix
i is the minimal polynomial of the n × n

matrix A if it is the polynomial of lowest degree that satisfies p(A) = 0. [Note
that m 6 n.] Give an example of a 3× 3 symmetric positive definite matrix with a
quadratic minimal polynomial.

Prove that (in exact arithmetic) the conjugate gradient method requires at most m
iterations to calculate the exact solution of Ax = b, where m is the degree of the
minimal polynomial of A.

Paper 2, Section II

39D Numerical Analysis

(i) The diffusion equation

∂u

∂t
=

∂2u

∂x2
, 0 6 x 6 1, t > 0 ,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and with zero boundary
conditions at x = 0 and x = 1, can be solved numerically by the method

un+1
m = unm + µ(unm−1 − 2unm + unm+1), m = 1, 2, . . . ,M, n > 0 ,

where ∆x = 1/(M + 1), µ = ∆t/(∆x)2, and unm ≈ u(m∆x, n∆t). Prove that
µ 6 1/2 implies convergence.

(ii) By discretising the diffusion equation and employing the same notation as in (i)
above, determine [without using Fourier analysis] conditions on µ and the constant
α such that the method

un+1
m − 1

2
(µ− α)(un+1

m−1 − 2un+1
m + un+1

m+1) = unm +
1

2
(µ + α)(unm−1 − 2unm + unm+1)

is stable.
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The inverse discrete Fourier transform F−1

n : Rn → Rn is given by the formula

x = F−1
n y, where xl =

n−1∑

j=0

ωjl
n yj, l = 0, . . . , n− 1 .

Here, ωn = exp(2πi/n) is the primitive root of unity of degree n and n = 2p, p = 1, 2, . . .

(i) Show how to assemble x = F−1
2my in a small number of operations if the Fourier

transforms of the even and odd parts of y,

x(E) = F−1
m y(E), x(O) = F−1

m y(O) ,

are already known.

(ii) Describe the Fast Fourier Transform (FFT) method for evaluating x, and draw a
relevant diagram for n = 8.

(iii) Find the costs of the FFT method for n = 2p (only multiplications count).

(iv) For n = 4 use the FFT method to find x = F−1
4 y when:

(a) y = (1, 1,−1,−1),

(b) y = (1,−1, 1,−1).
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The Poisson equation uxx = f in the unit interval Ω = [0, 1], u = 0 on ∂Ω is

discretised with the formula

ui−1 + ui+1 − 2ui = h2fi ,

where 1 6 i 6 n, ui ≈ u(ih) and ih are the grid points.

(i) Define the above system of equations in vector form Au = b and describe the
relaxed Jacobi method with relaxation parameter ω for solving this linear system.
For x∗ and x(ν) being the exact solution and the iterated solution respectively, let
e(ν) = x(ν) − x∗ be the error and Hω the iteration matrix, so that

e(ν+1) = Hωe
(ν) .

Express Hω in terms of the matrix A, the diagonal part D of A and ω, and find the
eigenvectors vk and the eigenvalues λk(ω) of Hω.

(ii) For A as above, let

e(ν) =

n∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors of Hω. Derive
conditions on ω such that the method converges for any n, and prove that, for
any such ω, the rate of convergence of e(ν) → 0 is not faster than (1− c/n2)ν .

(iii) Show that, for some ω, the high frequency components (n+1
2 6 k 6 n) of the error

e(ν) tend to zero much faster than (1 − c/n2)ν . Determine the optimal parameter
ω∗ which provides the largest suppression of the high frequency components per
iteration, and find the corresponding attenuation factor µ∗ (i.e., the least µω such

that |a(ν+1)
k | 6 µω|a(ν)k | for n+1

2 6 k 6 n).
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The nine-point method for the Poisson equation ∇2u = f (with zero Dirichlet

boundary conditions) in a square, reads

2

3
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) +

1

6
(ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1)

− 10

3
ui,j = h2fi,j, i, j = 1, . . . ,m,

where u0,j = um+1,j = ui,0 = ui,m+1 = 0, for all i, j = 0, . . . ,m+ 1.

(i) By arranging the two-dimensional arrays {ui,j}i,j=1,...,m and {fi,j}i,j=1,...,m into

column vectors u ∈ Rm2
and b ∈ Rm2

respectively, the linear system above takes
the matrix form Au = b. Prove that, regardless of the ordering of the points on the
grid, the matrix A is symmetric and negative definite.

(ii) Formulate the Jacobi method with relaxation for solving the above linear system.

(iii) Prove that the iteration converges if the relaxation parameter ω is equal to 1.

[You may quote without proof any relevant result about convergence of iterative
methods.]
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Let A ∈ Rn×n be a real matrix with n linearly independent eigenvectors. The

eigenvalues of A can be calculated from the sequence x(k), k = 0, 1, . . ., which is generated
by the power method

x(k+1) =
Ax(k)

‖Ax(k)‖ ,

where x(0) is a real nonzero vector.

(i) Describe the asymptotic properties of the sequence x(k) in the case that the
eigenvalues λi of A satisfy |λi| < |λn|, i = 1, . . . , n − 1, and the eigenvectors are of
unit length.

(ii) Present the implementation details for the power method for the setting in (i) and
define the Rayleigh quotient.

(iii) Let A be the 3× 3 matrix

A = λI + P , P =




0 0 0
1 0 0
0 1 0


 ,

where λ is real and nonzero. Find an explicit expression for Ak, k = 1, 2, 3, . . . .

Let the sequence x(k) be generated by the power method as above. Deduce from
your expression for Ak that the first and second components of x(k+1) tend to zero
as k → ∞. Further show that this implies Ax(k+1) − λx(k+1) → 0 as k → ∞.
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(i) The difference equation

un+1
i = uni +

3

2
µ
(
uni−1 − 2uni + uni+1

)
− 1

2
µ
(
un−1
i−1 − 2un−1

i + un−1
i+1

)
,

where µ = ∆t/(∆x)2, is the basic equation used in the second-order Adams–
Bashforth method and can be employed to approximate a solution of the diffusion
equation ut = uxx. Prove that, as ∆t → 0 with constant µ, the local error of the
method is O(∆t)2.

(ii) By applying the Fourier stability test, show that the above method is stable if and
only if µ 6 1/4.

(iii) Define the leapfrog scheme to approximate the diffusion equation and prove that it
is unstable for every choice of µ > 0.
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(i) Consider the Poisson equation

∇2u = f , −1 6 x, y 6 1 ,

with the periodic boundary conditions

u(−1, y) = u(1, y) , ux(−1, y) = ux(1, y) , −1 6 y 6 1 ,

u(x,−1) = u(x, 1) , uy(x,−1) = uy(x, 1) , −1 6 x 6 1

and the normalization condition

∫ 1

−1

∫ 1

−1
u(x, y) dx dy = 0 .

Moreover, f is analytic and obeys the periodic boundary conditions f(−1, y) =
f(1, y), f(x,−1) = f(x, 1), −1 6 x, y 6 1.

Derive an explicit expression of the approximation of a solution u by means of a
spectral method. Explain the term convergence with spectral speed and state its
validity for the approximation of u.

(ii) Consider the second-order linear elliptic partial differential equation

∇ · (a∇u) = f , −1 6 x, y 6 1 ,

with the periodic boundary conditions and normalization condition specified in (i).
Moreover, a and f are given by

a(x, y) = cos(πx) + cos(πy) + 3 , f(x, y) = sin(πx) + sin(πy) .

[Note that a is a positive analytic periodic function.]

Construct explicitly the linear algebraic system that arises from the implementation
of a spectral method to the above equation.

Part II, 2011 List of Questions [TURN OVER

2011



63

Paper 1, Section II

39A Numerical Analysis
(a) State the Householder–John theorem and explain its relation to the convergence

analysis of splitting methods for solving a system of linear equations Ax = b with a positive
definite matrix A.

(b) Describe the Jacobi method for solving a system Ax = b, and deduce from the
above theorem that if A is a symmetric positive definite tridiagonal matrix,

A =




a1 c1
c1 a2 c2 0

. . .
. . .

. . .

0 cn−2 an−1 cn−1

cn−1 an




,

then the Jacobi method converges.

[Hint: At the last step, you may find it useful to consider two vectors x = (x1, x2, . . . , xn)
and y = ((−1)x1, (−1)2x2, . . . , (−1)nxn).]
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The inverse discrete Fourier transform F−1

n : Rn → Rn is given by the formula

x = F −1
n y , where xℓ =

n−1∑

j=0

ω jℓ
n yj , ℓ = 0, . . . , n− 1 .

Here, ωn = exp(2πi/n) is the primitive root of unity of degree n, and n = 2p, p = 1, 2, . . . .

(1) Show how to assemble x = F −1
2m y in a small number of operations if we already

know the Fourier transforms of the even and odd portions of y:

x(E) = F −1
m y(E) , x(O) = F −1

m y(O) .

(2) Describe the Fast Fourier Transform (FFT) method for evaluating x and draw
a relevant diagram for n = 8 .

(3) Find the costs of the FFT for n = 2 p (only multiplications count).

(4) For n = 4, using the FFT technique, find

x = F −1
4 y , for y = [1, 1,−1,−1] , and y = [1,−1, 1,−1] .

Paper 3, Section II

39A Numerical Analysis
The Poisson equation ∇2u = f in the unit square Ω = [0, 1]× [0, 1] , u = 0 on ∂ Ω ,

is discretized with the five-point formula

ui, j−1 + ui, j+1 + ui+1, j + ui−1, j − 4u i, j = h2fi, j ,

where 1 6 i, j 6 M , ui, j ≈ u(ih, jh) and (ih, jh) are grid points.

Let u(x, y) be the exact solution, and let ei, j = ui, j − u(ih, jh) be the error of the
five-point formula at the (i, j)th grid point. Justifying each step, prove that

‖e‖ =




M∑

i,j=1

| e i, j |2


1/2

6 ch for sufficiently small h > 0 ,

where c is some constant independent of h.

Part II, 2010 List of Questions
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Paper 4, Section II

39A Numerical Analysis
An s-stage explicit Runge–Kutta method of order p, with constant step size h > 0,

is applied to the differential equation y′ = λ y, t > 0.

(a) Prove that
yn+1 = Ps(λh) yn .

where Ps is a polynomial of degree s.

(b) Prove that the order p of any s-stage explicit Runge–Kutta method satisfies the
inequality p 6 s and, for p = s, write down an explicit expression for Ps.

(c) Prove that no explicit Runge–Kutta method can be A-stable.

Part II, 2010 List of Questions [TURN OVER

2010
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Paper 1, Section II

39B Numerical Analysis
(i) Define the Jacobi method with relaxation for solving the linear system Ax = b.

(ii) For x∗ and x(ν) being the exact and the iterated solution, respectively, let
e(ν) := x(ν) − x∗ be the error and Hω the iteration matrix, so that

e(ν+1) = Hωe
(ν) .

Express Hω in terms of the matrix A, its diagonal part D and the relaxation parameter
ω, and find the eigenvectors vk and the eigenvalues λk(ω) of Hω for the n× n tridiagonal
matrix

A =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



.

[Hint: The eigenvectors and eigenvalues of A are

(uk)i = sin kiπ
n+1

, i = 1, . . . , n, λk(A) = 4 sin2 kπ
2(n+1)

, k = 1, . . . , n . ]

(iii) For A as above, let

e(ν) =

n∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors (vk) of Hω.

Find the range of parameter ω which provides convergence of the method for any
n, and prove that, for any such ω, the rate of convergence e(ν) → 0 is not faster than
(1− c/n2)ν .

(iv) Show that, for some ω, the high frequency components (n+1
2 6 k 6 n) of

the error e(ν) tend to zero much faster. Determine the optimal parameter ω∗ which
provides the largest suppression of the high frequency components per iteration, and find

the corresponding attenuation factor µ∗ (i.e. the least µω such that |a(ν+1)
k | 6 µω|a(ν)k | for

n+1
2 6 k 6 n).

Part II, 2009 List of Questions [TURN OVER

2009
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Paper 2, Section II

39B Numerical Analysis
The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], equipped with

appropriate boundary conditions on ∂Ω, is discretized with the nine-point formula:

Γ9[um,n] := −10

3
um,n +

2

3
(um+1,n + um−1,n + um,n+1 + um,n−1)

+
1

6
(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1) = h2fm,n,

where 1 6 m,n 6 M , um,n ≈ u(mh,nh), and (mh,nh) are grid points.

(i) Find the local error of approximation.

(ii) Prove that the error is smaller if f happens to satisfy the Laplace equation
∇2f = 0.

(iii) Hence show that the modified nine-point scheme

Γ9[um,n] = h2fm,n +
1

12
h2Γ5[fm,n]

:= h2fm,n +
1

12
h2(fm+1,n + fm−1,n + fm,n+1 + fm,n−1 − 4fm,n)

has the same smaller error as in (ii).

[Hint. The nine-point discretization of ∇2u can be written as

Γ9[u] = (Γ5 +
1
6
∆2

x∆
2
y)u = (∆2

x +∆2
y +

1
6
∆2

x∆
2
y)u

where Γ5[u] = (∆2
x +∆2

y)u is the five-point discretization and

∆2
x u(x, y) := u(x− h, y) − 2u(x, y) + u(x+ h, y),

∆2
y u(x, y) := u(x, y − h)− 2u(x, y) + u(x, y + h) . ]

Part II, 2009 List of Questions

2009



65

Paper 3, Section II

39B Numerical Analysis
Prove that all Toeplitz tridiagonal M ×M matrices A of the form

A =




a b
−b a b

. . .
. . .

. . .

−b a b
−b a




share the same eigenvectors (v(k))Mk=1, with the components v
(k)
m = im sin kmπ

M+1 , m =

1, . . . ,M , where i =
√
−1, and find their eigenvalues.

The advection equation

∂u

∂t
=

∂u

∂x
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − unm =

1

4
µ
(
un+1
m+1 − un+1

m−1

)
+

1

4
µ
(
unm+1 − unm−1

)
,

where µ = ∆t
(∆x)2

, ∆x = 1
M+1 , and unm is an approximation to u(m∆x, n∆t). Assuming

that u(0, t) = u(1, t) = 0, show that the above scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 T/∆t− 1,

where un = [un1 , . . . , u
n
M ]T and the real matrices B and C should be found. Using matrix

analysis, find the range of µ for which the scheme is stable. [Fourier analysis is not
acceptable.]

Paper 4, Section II

39B Numerical Analysis
(a) For the s-step s-order Backward Differentiation Formula (BDF) for ordinary

differential equations,
s∑

m=0

amyn+m = hfn+s,

express the polynomial ρ(w) =
∑s

m=0 amwm in a convenient explicit form.

(b) Prove that the interval (−∞, 0) belongs to the linear stability domain of the
2-step BDF method.

Part II, 2009 List of Questions [TURN OVER

2009
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1/II/38C Numerical Analysis

The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], with zero
boundary conditions on ∂Ω, is discretized with the nine-point formula

10

3
um,n −

2

3
(um+1,n + um−1,n + um,n+1 + um,n−1)

− 1

6
(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1) = −h2fm,n,

where 1 6 m,n 6M , um,n ≈ u(mh, nh), and (mh, nh) are grid points.

(a) Prove that, for any ordering of the grid points, the method can be written as
Au = b with a symmetric positive-definite matrix A.

(b) Describe the Jacobi method for solving a linear system of equations, and prove
that it converges for the above system.

[You may quote without proof the corollary of the Householder–John theorem
regarding convergence of the Jacobi method.]

2/II/38C Numerical Analysis

The advection equation

ut = ux, x ∈ R, t > 0,

is solved by the leapfrog scheme

un+1
m = µ

(
unm+1 − unm−1

)
+ un−1

m ,

where n > 1 and µ = ∆t/∆x is the Courant number.

(a) Determine the local error of the method.

(b) Applying the Fourier technique, find the range of µ > 0 for which the method
is stable.

Part II 2008

2008
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3/II/38C Numerical Analysis

(a) A numerical method for solving the ordinary differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0,

generates for every h > 0 a sequence {yn}, where yn is an approximation to y(tn) and
tn = nh. Explain what is meant by the convergence of the method.

(b) Prove from first principles that if the function f is sufficiently smooth and
satisfies the Lipschitz condition

|f(t, x)− f(t, y)| 6 λ|x− y|, x, y ∈ R, t ∈ [0, T ] ,

for some λ > 0, then the trapezoidal rule

yn+1 = yn +
1

2
h [f(tn, yn) + f(tn+1, yn+1)]

converges.

4/II/39C Numerical Analysis

Let A ∈ Rn×n be a real matrix with n linearly independent eigenvectors. When
calculating eigenvalues of A, the sequence x(k), k = 0, 1, 2, . . ., is generated by the power
method x(k+1) = Ax(k)/‖Ax(k)‖, where x(0) is a real nonzero vector.

(a) Describe the asymptotic properties of the sequence x(k), both in the case where
the eigenvalues λi of A satisfy |λi| < |λn|, i = 1, . . . , n − 1, and in the case where
|λi| < |λn−1| = |λn|, i = 1, . . . , n−2. In the latter case explain how the (possibly complex-
valued) eigenvalues λn−1, λn and their corresponding eigenvectors can be determined.

(b) Let n = 3, and suppose that, for a large k, we obtain the vectors

yk = xk =




1
1
1


 , yk+1 = Axk =




2
3
4


 , yk+2 = A2xk =




2
4
6


 .

Find two eigenvalues of A and their corresponding eigenvectors.

Part II 2008

2008
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1/II/38C Numerical Analysis

(a) For a numerical method to solve y′ = f(t, y), define the linear stability domain and
state when such a method is A-stable.

(b) Determine all values of the real parameter a for which the Runge–Kutta method

k1 = f
(
tn + ( 12 − a)h, yn + h

[
1
4k1 + ( 14 − a)k2

])
,

k2 = f
(
tn + ( 12 + a)h, yn + h

[
( 14 + a)k1 +

1
4k2
])
,

yn+1 = yn + 1
2h(k1 + k2)

is A-stable.

2/II/38C Numerical Analysis

(a) State the Householder–John theorem and explain how it can be used to design
iterative methods for solving a system of linear equations Ax = b .

(b) Let A = L+D+U where D is the diagonal part of A, and L and U are, respectively,
the strictly lower and strictly upper triangular parts of A. Given a vector b, consider
the following iterative scheme:

(D + ωL)x(k+1) = (1− ω)Dx(k) − ωUx(k) + ωb .

Prove that if A is a symmetric positive definite matrix, and ω ∈ (0, 2), then the
above iteration converges to the solution of the system Ax = b.

Part II 2007

2007
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3/II/38C Numerical Analysis

(a) Prove that all Toeplitz symmetric tridiagonal M ×M matrices

A =




a b 0 · · · 0

b a b
. . .

...

0
. . .

. . .
. . . 0

...
. . . b a b

0 · · · 0 b a




share the same eigenvectors (v(k))Mk=1 with components v
(k)
i = sin

kiπ

M + 1
,

i = 1, . . . ,M , and eigenvalues to be determined.

(b) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − 1

2µ
(
un+1
m−1 − 2un+1

m + un+1
m+1

)
= unm + 1

2µ
(
unm−1 − 2unm + unm+1

)
,

for m = 1, . . . ,M,

where µ = ∆t/(∆x)2, ∆x = 1/(M + 1), and unm is an approximation to
u(m∆x, n∆t). Assuming that u(0, t) = u(1, t) = 0, ∀t, show that the above
scheme can be written in the form

Bun+1 = Cun, 0 6 n 6 (T/∆t)− 1

where un = [un1 , . . . , u
n
M ]T and the real matrices B and C should be found. Using

matrix analysis, find the range of µ for which the scheme is stable. [Do not use
Fourier analysis.]

Part II 2007

2007
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4/II/39C Numerical Analysis

(a) Suppose that A is a real n × n matrix, and that w ∈ Rn and λ1 ∈ R are given so
that Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce(1),
where e(1) is the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove
that the eigenvalues of A are λ1 together with the eigenvalues of the bottom right
(n− 1)× (n− 1) submatrix of Â.

(b) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v, w ∈ Rn are given such that the linear subspace L{v, w} spanned by v
and w is invariant under the action of A, i.e.,

x ∈ L{v, w} ⇒ Ax ∈ L{v, w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is,

R = SV = S ×




v1 w1

v2 w2

v3 w3

: :
vn wn


 =




r11 r12
0 r22
0 0
: :
0 0


 .

Again let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.

Part II 2007
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1/II/38C Numerical Analysis

(a) Define the Jacobi method with relaxation for solving the linear system Ax = b.

(b) Let A be a symmetric positive definite matrix with diagonal part D such that the
matrix 2D − A is also positive definite. Prove that the iteration always converges
if the relaxation parameter ω is equal to 1.

(c) Let A be the tridiagonal matrix with diagonal elements aii = 1 and off-diagonal
elements ai+1,i = ai,i+1 = 1/4. Prove that convergence occurs if ω satisfies
0 < ω 6 4/3. Explain briefly why the choice ω = 1 is optimal.

[You may quote without proof any relevant result about the convergence of iterative methods
and about the eigenvalues of matrices.]

2/II/38C Numerical Analysis

In the unit square the Poisson equation ∇2u = f , with zero Dirichlet boundary
conditions, is being solved by the five-point formula using a square grid of mesh size
h = 1/(M + 1),

ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j = h2fi,j .

Let u(x, y) be the exact solution, and let ei,j = ui,j−u(ih, jh) be the error of the five-point
formula at the (i, j)th grid point. Justifying each step, prove that




M∑

i,j=1

|ei,j |2


1/2

6 ch, h→ 0 ,

where c is some constant.

Part II 2006
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3/II/38C Numerical Analysis

(a) For the equation y′ = f(t, y), consider the following multistep method with s steps,

s∑

i=0

ρiyn+i = h
s∑

i=0

σif(tn+i, yn+i) ,

where h is the step size and ρi, σi are specified constants with ρs = 1. Prove that
this method is of order p if and only if

s∑

i=0

ρiQ(tn+i) = h
s∑

i=0

σiQ
′(tn+i)

for any polynomial Q of degree 6 p. Deduce that there is no s-step method of order
2s+ 1.

[You may use the fact that, for any ai, bi, the Hermite interpolation problem

Q(xi) = ai, Q′(xi) = bi, i = 0, . . . , s

is uniquely solvable in the space of polynomials of degree 2s+ 1.]

(b) State the Dahlquist equivalence theorem regarding the convergence of a multistep
method. Determine all the values of the real parameter a 6= 0 for which the
multistep method

yn+3 + (2a− 3)[yn+2 − yn+1]− yn = ha [fn+2 + fn+1]

is convergent, and determine the order of convergence.

4/II/39C Numerical Analysis

The difference equation

un+1
m = unm + 3

2µ
(
unm−1 − 2unm + unm+1

)
− 1

2µ
(
un−1
m−1 − 2un−1

m + un−1
m+1

)
,

where µ = ∆t/(∆x)2, is used to approximate a solution of the diffusion equation ut = uxx.

(a) Prove that, as ∆t→ 0 with constant µ, the local error of the method is O(∆t)2.

(b) Applying the Fourier stability test, show that the method is stable if and only if
µ 6 1

4 .

Part II 2006
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1/II/38A Numerical Analysis

Let
µ

4
un+1
m−1 + un+1

m − µ

4
un+1
m+1 = −µ

4
unm−1 + unm +

µ

4
unm+1,

where n is a positive integer and m ranges over all integers, be a finite-difference method
for the advection equation

∂u

∂t
=
∂u

∂x
, −∞ < x <∞, t > 0.

Here µ = ∆t
∆x is the Courant number.

(a) Show that the local error of the method is O((∆x)3).

(b) Determine the range of µ > 0 for which the method is stable.

2/II/38A Numerical Analysis

Define a Krylov subspace Kn(A, v).

Let dn be the dimension of Kn(A, v). Prove that the sequence {dm}m=1,2,...

increases monotonically. Show that, moreover, there exists an integer k with the following
property: dm = m for m = 1, 2, . . . , k, while dm = k for m > k. Assuming that A has a
full set of eigenvectors, show that k is equal to the number of eigenvectors of A required
to represent the vector v.

3/II/38A Numerical Analysis

Consider the Runge–Kutta method

k1 = f(yn),

k2 = f(yn + (1− a)hk1 + ahk2),

yn+1 = yn +
h

2
(k1 + k2)

for the solution of the scalar ordinary differential equation y′ = f(y). Here a is a real
parameter.

(a) Determine the order of the method.

(b) Find the range of values of a for which the method is A-stable.

Part II 2005
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4/II/39A Numerical Analysis

An n×n skew-symmetric matrix A is converted into an upper-Hessenberg form B,
say, by Householder reflections.

(a) Describe each step of the procedure and observe that B is tridiagonal. Your
algorithm should take advantage of the special form of A to reduce the number of
computations.

(b) Compare the cost (counting only products and looking only at the leading
term) of converting a skew-symmetric and a symmetric matrix to an upper-Hessenberg
form using Householder reflections.

Part II 2005

2005


