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Paper 1, Section I

6C Mathematical Biology
Consider a birth-death process in which births always give rise to 3 offspring, with

rate λ, while the death rate per individual is β. Draw a transition diagram and write
down the master equation for this system.

Show that the population mean is given by

〈n〉 =
3λ

β

(
1− e−βt

)
+ n0e

−βt,

where n0 is the initial population mean, and that the population variance satisfies

σ2 → 6λ

β
as t→∞.

Paper 2, Section I

6C Mathematical Biology
In an SIR model for an infectious disease the population N is divided into susceptible

S(t), infected I(t) and recovered (non-infectious) R(t). The disease is assumed to be non-
lethal, so the total population does not change in time.

Consider the following SIR model,

dS

dt
= fR− βIS, dI

dt
= βIS − νI, dR

dt
= νI − fR,

and explain the meaning of each of the terms in the equations. Assume that at t = 0,
S ' N , while I,R� N .

(a) Setting f = 0, show that if βN < ν no epidemic occurs.

(b) Now take f > 0 and suppose that there is an epidemic. Show that the system has a
nontrivial fixed point and that it is stable for small disturbances. Show that the eigenvalues
of the Jacobian matrix are complex for sufficiently small f but real for sufficiently large
f . Give a qualitative sketch of I(t) in the two cases.

Part II, Paper 1

2023



65

Paper 3, Section I

6C Mathematical Biology
A gene product with concentration g is produced by a chemical S of concentration

s, is autocatalysed and degrades linearly according to the kinetic equation

dg

dt
= f(g, s) = s+ k

g2

1 + g2
− g,

where k > 2 is a constant.

First consider the case s = 0. Show that there are two positive steady states, and
determine their stability. Sketch the reaction rate f(g, 0).

The system starts in the steady state g = 0 with s = 0. The value of s is then
increased to the value s1, held at this value for a long time, and then reduced to zero. Show
that, if s1 is greater than a value sc(k), a biochemical switch can be achieved to a state
g = g∗ > 0 whose value you should determine. Give a clear mathematical specification of
the value sc(k). [An explicit formula is not needed.]

For the case k � 1, use a suitable approximate form of f(g, s) to show that
sc(k) ' Ck−1 where C is a constant that you should derive.

Paper 4, Section I

6C Mathematical Biology
The concentration C(x, t) of a morphogen obeys the differential equation

∂C

∂t
= D

∂2C

∂x2
+ f(C),

in the domain 0 6 x 6 L, with boundary conditions C(0, t) = 0 and ∂C(L, t)/∂x = 0, with
D a positive constant and f(C) a nonlinear function of C with f(0) = 0 and f ′(0) > 0.
Linearising the dynamics around C = 0, and representing C(x, t) as a suitable Fourier
expansion, find the condition on L such that the system is linearly stable. Express your
answer in terms of D and f ′(0).

Part II, Paper 1 [TURN OVER]
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Paper 3, Section II

13C Mathematical Biology
Consider the reaction-diffusion system in one spatial dimension −∞ < x <∞,

∂u

∂t
= D

∂2u

∂x2
+ f(u) + ρ(u− v), (1)

ε
∂v

∂t
=

∂2v

∂x2
+ u− v, (2)

where D > 0 is the activator diffusion constant, ρ > 0 is a constant, and 0 < ε � 1 so
that the inhibitor v is a fast variable relative to the activator u. The nonlinear function
f(u) is taken to have the properties f(0) = 0 and f ′(0) = −r with 0 6 r 6 1.

(a) Setting ε = 0, show that the inhibitor dynamics can be solved to express the
Fourier amplitude v̂(k, t) of the inhibitor in terms of the Fourier amplitude û(k, t) of the
activator.

(b) Using the relation found in part (a), and linearising around the state u = 0, find
the dynamics of perturbations around u = 0 and thus the growth rate σ(k) as a function
of the wavenumber k.

(c) From the result in (b), show that the threshold of a pattern-forming instability
lies along a curve in the r − ρ plane given by

ρc(r) =
(√

r +
√
D
)2
, (3)

along which the critical wavenumber is

kc =
( r
D

)1/4
. (4)

Part II, Paper 1
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Paper 4, Section II

14C Mathematical Biology
Consider a population subject to the following birth-death process. When the

number of individuals in the population is n, the probability of an increase from n to
n+1 per unit time is γ+βn and the probability of a decrease from n to n−1 is αn(n−1),
where α, β, and γ are constants.

Draw a transition diagram and show that the master equation for P (n, t), the
probability that at time t the population has n members, is

∂P

∂t
= αn(n+1)P (n+1, t)− [αn(n− 1) + γ + βn]P (n, t)+[γ + β(n− 1)]P (n−1, t). (1)

Show that 〈n〉, the mean number of individuals in the population, satisfies

d〈n〉
dt

= −α〈n2〉+ (α+ β)〈n〉+ γ.

Deduce that, in a steady state,

〈n〉 =
α+ β

2α
±
√

(α+ β)2

4α2
+
γ

α
− (∆n)2,

where ∆n is the standard deviation of n. Given the form of the expression above, when
is the choice of the minus sign not admissible?

Show that, under conditions to be specified, the master equation (1) may be
approximated by a Fokker-Planck equation of the form

∂P

∂t
=

∂

∂n
[g(n)P (n, t)] +

1

2

∂2

∂n2
[h(n)P (n, t)] .

Find the functions g(n) and h(n).

In the case α� γ and α� β, find the leading-order approximation to n∗ such that
g(n∗) = 0. Defining the new variable x = n − n∗, explain how an approximate form of
P (x) may be obtained in the neighbourhood of x = 0 in the steady-state limit, showing
clearly the dependence of P (x) on the properties of the functions g(n) and h(n) at n = n∗.
Deduce leading order estimates for 〈n〉 and (∆n)2 in terms of α, β and γ.

Compare your results to those obtained from the master equation above and give
justification of why the conditions for applicability of the Fokker-Planck equation hold in
this case.

Part II, Paper 1 [TURN OVER]
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Paper 1, Section I
6C Mathematical Biology

Consider the discrete delay equation

xn+1 = xn exp [r (1− xn−1)] ,

with r > 0 a constant.

(a) Find the positive fixed point x∗ of the model. Setting xn = x∗ + un, with
|un| � 1, determine the linearised stability equation for un.

(b) Find the range of r for which the fixed point x∗ is stable and for which
perturbations decay monotonically in time.

(c) Find the range of r for which the decay of perturbations to x∗ is oscillatory.

(d) Find the critical value r∗ for x∗ to become unstable, and show that at that value
of r the system exhibits oscillations of period p > 1. Find p.

Paper 2, Section I
6C Mathematical Biology

Two species with populations N1 and N2 compete according to the equations

dN1

dt
= r1N1

(
1 − N1

K1
− b12

N2

K1

)

dN2

dt
= r2N2

(
1 − b21

N1

K2

)
,

so that only species 1 has limited carrying capacity. Assume that the parameters
r1, r2,K1,K2, b12, and b21 are all strictly positive.

(a) Rescale the variables N1, N2 and t to leave three parameters, ρ = r1/r2,
α = b12K2/K1 and β = b21K1/K2 and determine the steady states.

(b) Assuming β > 1, investigate the stability of the biologically relevant steady
states and sketch the phase plane trajectories.

(c) Assuming β > 1, show that irrespective of the size of the parameters the principle
of competitive exclusion holds. Briefly describe under what ecological circumstances
species 2 becomes extinct.

Part II, Paper 1

2022



59

Paper 3, Section I
6C Mathematical Biology

A biological population contains n individuals. The population increases or de-
creases according to the transition rates

n
λ−→ n+ 1 n

βn2

−−→ n− 2 .

(a) Derive the master equation for P (n, t), the probability that the population
contains n individuals at time t, and a corresponding equation for 〈n〉. What condition
does the latter imply on the steady state?

(b) The Fokker-Planck equation has the form:

∂

∂t
P (n, t) = − ∂

∂n

[
A(n)P (n, t)

]
+ 1

2

∂2

∂n2
[
B(n)P (n, t)

]
. (1)

Derive the Fokker-Planck equation from your master equation. Deduce the forms
of A(n) and B(n) for this system.

(c) Give brief arguments why in the steady state (1) has the approximate solution
(2πσ2)−1/2 exp(−(n− µ)2/2σ2) and derive the corresponding values of σ and µ.

(d) Comment on the relation to the steady-state condition you have derived in (a).
Under what conditions on β and λ is the Fokker-Planck equation likely to give an accurate
description of the steady state?

Part II, Paper 1 [TURN OVER]
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Paper 4, Section I
6C Mathematical Biology

An allosteric enzyme E reacts with substrate S to produce a product P according
to the mechanism

E + S
k1−−⇀↽−−
k−1

C1

C1 + S
k2−→ C2

k3−→ C1 + P ,

where the kis are rate constants, and C1 and C2 are enzyme-substrate complexes.

(a) With lowercase letters denoting concentrations, write down the differential
equation model based on the Law of Mass Action for the dynamics of e, s, c1, c2 and
p.

(b) Show that the quantity c1 + c2 + e is conserved and comment on its physical
meaning.

(c) Using the result in (b), assuming initial conditions s(0) = s0, e(0) = e0,
c1(0) = c2(0) = p(0) = 0, and rescaling with ε = e0/s0, τ = k1e0t, u = s/s0, and
vi = ci/e0, show that the reaction mechanism can be reduced to

du

dτ
= f(u, v1, v2) ,

ε
dv1
dτ

= g1(u, v1, v2) ,

ε
dv2
dτ

= g2(u, v1, v2) .

Determine f , g1 and g2 and express them in terms of the three dimensionless quantities
α = k−1/k1s0, β = k2/k1 and γ = k3/k1s0.

(d) On time scales τ � ε, show that the rate of production of P can be expressed
in terms of the rescaled substrate concentration u in the form

dp

dt
= A

u2

α+ u+ (β/γ)u2
,

where A is a constant. Compare this relation to the Michaelis-Menten form by means of
a sketch.

Part II, Paper 1
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Paper 3, Section II
13C Mathematical Biology

A chemical species of concentration C(x, t) diffuses in a two-dimensional stationary
medium with diffusivity D(C). Write down an expression for the diffusive flux J that
enters Fick’s law and then show that C obeys the partial differential equation

∂C

∂t
= ∇ · (D(C)∇C) . (1)

Suppose that at time t = 0 an amount 2πM of the chemical is deposited at the
origin and diffuses outward in a circularly symmetric manner, so that C = C(r, t) for
r > 0, t > 0, where r is the radial coordinate. Assume the diffusivity is D = kC for some
constant k. Show, by dimensional analysis or otherwise, that an appropriate similarity
solution has the form

C =
Mα

(kt)β
F (ξ) , ξ =

r

(Mkt)γ
and

∫ ∞

0
ξF (ξ) dξ = 1 ,

where the exponents α, β, γ are to be determined, and derive the ordinary differential
equation satisfied by F .

Solve this ordinary differential equation, subject to appropriate boundary condi-
tions, and deduce that the chemical occupies a finite circular region of radius

r0(t) = (NMkt)1/4 ,

with N a constant which you should find.

Still assuming that D = kC, show that if a term αC is added to the right-hand side
of (1), a solution of the form C(r, t) = G(r, τ)eαt can be found, where τ(t) is a time-like
variable satisfying τ(0) = 0. Show that a suitable choice of τ reduces the dynamics to

∂G

∂τ
= k∇ · (G∇G) ,

and that the previous analysis can be applied to find the concentration. Describe the
evolution in the cases α = 0, α > 0, and α < 0.

[Hint: In plane polar coordinates

∇C(r, t) ≡
(
∂C

∂r
, 0, 0

)
and ∇ · (V (r, t), 0, 0) ≡ 1

r

∂

∂r
(rV ) .

]

Part II, Paper 1 [TURN OVER]

2022



62

Paper 4, Section II
14C Mathematical Biology

Consider the standard system of reaction-diffusion equations

ut = Du∇2u+ f(u, v)

vt = Dv∇2v + g(u, v) ,

where Du and Dv are diffusion constants and f(u, v) and g(u, v) are such that the system
has a stable homogeneous fixed point at (u, v) = (u∗, v∗).

(a) Show that the condition for a Turing instability can be expressed as

fu + dgv > 2
√
dJ ,

where d = Du/Dv is the diffusivity ratio and J = fugv − fvgu > 0 is the determinant of
the stability matrix of the homogeneous system evaluated at (u∗, v∗).

(b) Show that this result implies that a Turing instability at equal diffusivities
(d = 1) is not possible.

(c) Show that the result in (b) also follows directly from the structure of the reaction-
diffusion equations linearised about the homogeneous fixed point in the case Du = Dv.

(d) Using the example (
−1 −1

1 + δ 1− δ

)
,

for the stability matrix of the homogeneous system, show that the diffusivity ratio at which
Turing instability occurs can be made as close to unity as desired by taking δ sufficiently
small.

Part II, Paper 1
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Paper 1, Section I

6E Mathematical Biology
(a) Consider a population of size N(t) whose per capita rates of birth and death are

be−aN and d, respectively, where b > d and all parameters are positive constants.

(i) Write down the equation for the rate of change of the population.

(ii) Show that a population of size N∗ =
1

a
log

b

d
is stationary and that it is

asymptotically stable.

(b) Consider now a disease introduced into this population, where the number of
susceptibles and infectives, S and I, respectively, satisfy the equations

dS

dt
= be−aSS − βSI − dS ,

dI

dt
= βSI − (d+ δ)I .

(i) Interpret the biological meaning of each term in the above equations and com-
ment on the reproductive capacity of the susceptible and infected individuals.

(ii) Show that the disease-free equilibrium, S = N∗ and I = 0, is linearly unstable
if

N∗ >
d+ δ

β
.

(iii) Show that when the disease-free equilibrium is unstable there exists an
endemic equilibrium satisfying

βI + d = be−aS

and that this equilibrium is linearly stable.

Part II, 2021 List of Questions [TURN OVER]
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Paper 2, Section I

6E Mathematical Biology
Consider a stochastic birth–death process in a population of size n(t), where deaths

occur in pairs for n > 2. The probability per unit time of a birth, n→ n+ 1 for n > 0, is
b, that of a pair of deaths, n → n − 2 for n > 2, is dn, and that of the death of a lonely
singleton, 1→ 0, is D.

(a) Write down the master equation for pn(t), the probability of a population of size
n at time t, distinguishing between the cases n > 2, n = 0 and n = 1.

(b) For a function f(n), n > 0, show carefully that

d

dt
〈f(n)〉 = b

∞∑

n=0

(fn+1 − fn)pn − d
∞∑

n=2

(fn − fn−2)npn −D(f1 − f0)p1 ,

where fn = f(n).

(c) Deduce the evolution equation for the mean µ(t) = 〈n〉, and simplify it for the
case D = 2d .

(d) For the same value of D, show that

d

dt
〈n2〉 = b(2µ+ 1)− 4d

(
〈n2〉 − µ

)
− 2dp1

Deduce that the variance σ2 in the stationary state for b, d > 0 satisfies

3b

4d
− 1

2
< σ2 <

3b

4d
.

Part II, 2021 List of Questions
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Paper 3, Section I

6E Mathematical Biology
The population density n(a, t) of individuals of age a at time t satisfies the partial

differential equation
∂n

∂t
+
∂n

∂a
= −d(a)n(a, t) (1)

with the boundary condition

n(0, t) =

∫ ∞

0
b(a)n(a, t) da , (2)

where b(a) and d(a) are, respectively, the per capita age-dependent birth and death rates.

(a) What is the biological interpretation of the boundary condition?

(b) Solve equation (1) assuming a separable form of solution, n(a, t) = A(a)T (t).

(c) Use equation (2) to obtain a necessary condition for the existence of a separable
solution to the full problem.

(d) For a birth rate b(a) = βe−λa with λ > 0 and an age-independent death rate d,
show that a separable solution to the full problem exists and find the critical value of β
above which the population density grows with time.

Paper 4, Section I

6E Mathematical Biology
A marine population grows logistically and disperses by diffusion. It is moderately

predated on up to a distance L from a straight coast. Beyond that distance, predation is
sufficiently excessive to eliminate the population. The density n(x, t) of the population at
a distance x < L from the coast satisfies

∂n

∂t
= rn

(
1 − n

K

)
− δn+D

∂2n

∂x2
, (∗)

subject to the boundary conditions

∂n

∂x
= 0 at x = 0 , n = 0 at x = L .

(a) Interpret the terms on the right-hand side of (∗), commenting on their depend-
ence on n. Interpret the boundary conditions.

(b) Show that a non-zero population is viable if r > δ and

L >
π

2

√
D

r − δ
.

Interpret these conditions.

Part II, 2021 List of Questions [TURN OVER]
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Paper 3, Section II

13E Mathematical Biology
Consider an epidemic spreading in a population that has been aggregated by age

into groups numbered i = 1, . . . ,M . The ith age group has size Ni and the numbers of
susceptible, infective and recovered individuals in this group are, respectively, Si, Ii and
Ri. The spread of the infection is governed by the equations

dSi
dt

= −λi(t)Si ,
dIi
dt

= λi(t)Si − γIi , (1)

dRi
dt

= γIi ,

where

λi(t) = β

M∑

j=1

Cij
Ij
Nj

, (2)

and Cij is a matrix satisfying NiCij = NjCji , for i, j = 1, . . . ,M .

(a) Describe the biological meaning of the terms in equations (1) and (2), of the
matrix Cij and the condition it satisfies, and of the lack of dependence of β and γ on i.

State the condition on the matrix Cij that would ensure the absence of any
transmission of infection between age groups.

(b) In the early stages of an epidemic, Si ≈ Ni and Ii � Ni. Use this information
to linearise the dynamics appropriately, and show that the linearised system predicts

I(t) = exp [γ(L− 1)t] I(0) ,

where I(t) = [I1(t), . . . , IM (t)] is the vector of infectives at time t, 1 is the M ×M identity
matrix and L is a matrix that should be determined.

(c) Deduce a condition on the eigenvalues of the matrix C that allows the epidemic
to grow.

Part II, 2021 List of Questions
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Paper 4, Section II

14E Mathematical Biology
The spatial density n(x, t) of a population at location x and time t satisfies

∂n

∂t
= f(n) +D

∂2n

∂x2
, (∗)

where f(n) = −n(n− r)(n− 1), 0 < r < 1 and D > 0.

(a) Give a biological example of the sort of phenomenon that this equation describes.

(b) Show that there are three spatially homogeneous and stationary solutions to
(∗), of which two are linearly stable to homogeneous perturbations and one is linearly
unstable.

(c) For r = 1
2 , find the stationary solution to (∗) subject to the conditions

lim
x→−∞

n(x) = 1, lim
x→∞

n(x) = 0 and n(0) =
1

2
.

(d) Write down the differential equation that is satisfied by a travelling-wave solution
to (∗) of the form n(x, t) = u(x − ct). Let n0(x) be the solution from part (c). Verify
that n0(x− ct) satisfies this differential equation for r 6= 1

2 , provided the speed c is chosen
appropriately. [Hint: Consider the change to the equation from part (c).]

(e) State how the sign of c depends on r, and give a brief qualitative explanation
for why this should be the case.

Part II, 2021 List of Questions [TURN OVER]
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Paper 1, Section I

6B Mathematical Biology
Consider a bivariate diffusion process with drift vector Ai(x) = aijxj and diffusion

matrix bij where

aij =

(
−1 1
−2 −1

)
, bij =

(
1 0
0 1

)
,

x = (x1, x2) and i, j = 1, 2.

(i) Write down the Fokker–Planck equation for the probability P (x1, x2, t).

(ii) Plot the drift vector as a vector field around the origin in the region |x1| < 1,
|x2| < 1.

(iii) Obtain the stationary covariances Cij = 〈xixj〉 in terms of the matrices aij and
bij and hence compute their explicit values.

Paper 2, Section I

6B Mathematical Biology
Consider the system of predator-prey equations

dN1

dt
= −ε1N1 + αN1N2 ,

dN2

dt
= ε2N2 − αN1N2 ,

where ε1, ε2 and α are positive constants.

(i) Determine the non-zero fixed point (N∗
1 , N

∗
2 ) of this system.

(ii) Show that the system can be written in the form

dxi
dt

=
2∑

j=1

Kij
∂H

∂xj
, i = 1, 2 ,

where xi = log(Ni/N
∗
i ) and a suitable 2× 2 antisymmetric matrix Kij and scalar function

H(x1, x2) are to be identified.

(iii) Hence, or otherwise, show that H is constant on solutions of the predator-prey
equations.

Part II, 2020 List of Questions
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Paper 3, Section I

6B Mathematical Biology
Consider a model for the common cold in which the population is partitioned into

susceptible (S), infective (I), and recovered (R) categories, which satisfy

dS

dt
= αR− βSI ,

dI

dt
= βSI − γI ,

dR

dt
= γI − αR ,

where α, β and γ are positive constants.

(i) Show that the sum N ≡ S + I +R does not change in time.

(ii) Determine the condition, in terms of β, γ and N , for an endemic steady state
to exist, that is, a time-independent state with a non-zero number of infectives.

(iii) By considering a reduced set of equations for S and I only, show that the
endemic steady state identified in (ii) above, if it exists, is stable.

Paper 4, Section I

6B Mathematical Biology
Consider a population process in which the probability of transition from a state

with n individuals to a state with n+ 1 individuals in the interval (t, t+ ∆t) is λn∆t for
small ∆t.

(i) Write down the master equation for the probability, Pn(t), of the state n at time
t for n > 1.

(ii) Assuming an initial distribution

Pn(0) =

{
1 , if n = 1 ,

0 , if n > 1 ,

show that
Pn(t) = exp(−λt)(1 − exp(−λt))n−1 .

(iii) Hence, determine the mean of n for t > 0.

Part II, 2020 List of Questions [TURN OVER]
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Paper 3, Section II

13B Mathematical Biology
The larva of a parasitic worm disperses in one dimension while laying eggs at rate

λ > 0. The larvae die at rate µ and have diffusivity D, so that their density, n(x, t), obeys

∂n

∂t
= D

∂2n

∂x2
− µn , (D > 0, µ > 0).

The eggs do not diffuse, so that their density, e(x, t), obeys

∂e

∂t
= λn .

At t = 0 there are no eggs and N larvae concentrated at x = 0, so that n(x, 0) = Nδ(x).

(i) Determine n(x, t) for t > 0. Show that n(x, t)→ 0 as t→∞.

(ii) Determine the limit of e(x, t) as t→∞.

(iii) Provide a physical explanation for the remnant density of the eggs identified in
part (ii).

[You may quote without proof the results

∫ ∞

−∞
exp(−x2)dx =

√
π

∫ ∞

−∞

exp(ikx)

k2 + α2
dk = π exp(−α|x|)/α , α > 0 . ]

Part II, 2020 List of Questions
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Paper 4, Section II

14B Mathematical Biology
Consider the stochastic catalytic reaction

E � ES, ES → E + P

in which a single enzyme E complexes reversibly to ES (at forward rate k1 and reverse
rate k′1) and decomposes into product P (at forward rate k2), regenerating enzyme E.
Assume there is sufficient substrate S so that this catalytic cycle can continue indefinitely.
Let P (E,n) be the probability of the state with enzyme E and n products and P (ES, n)
the probability of the state with complex ES and n products, these states being mutually
exclusive.

(i) Write down the master equation for the probabilities P (E,n) and P (ES, n) for
n > 0.

(ii) Assuming an initial state with zero products, solve the master equation for
P (E, 0) and P (ES, 0).

(iii) Hence find the probability distribution f(τ) of the time τ taken to form the
first product.

(iv) Obtain the mean of τ .

Part II, 2020 List of Questions [TURN OVER]

2020



64

Paper 4, Section I

6C Mathematical Biology
(a) A variant of the classic logistic population model is given by:

dx(t)

dt
= α

[
x(t)− x(t− T )2

]

where α, T > 0.

Show that for small T , the constant solution x(t) = 1 is stable.

Allow T to increase. Express in terms of α the value of T at which the constant
solution x(t) = 1 loses stability.

(b) Another variant of the logistic model is given by this equation:

dx(t)

dt
= αx(t− T ) [1− x(t)]

where α, T > 0. When is the constant solution x(t) = 1 stable for this model?

Paper 3, Section I

6C Mathematical Biology
A model of wound healing in one spatial dimension is given by

∂S

∂t
= rS(1− S) +D

∂2S

∂x2
,

where S(x, t) gives the density of healthy tissue at spatial position x at time t and r and
D are positive constants.

By setting S(x, t) = f(ξ) where ξ = x − ct, seek a steady travelling wave solution
where f(ξ) tends to one for large negative ξ and tends to zero for large positive ξ. By
linearising around the leading edge, where f ≈ 1, find the possible wave speeds c of the
system. Assuming that the full nonlinear system will settle to the slowest possible speed,
express the wave speed as a function of D and r.

Consider now a situation where the tissue is destroyed in some window of length
W , i.e. S(x, 0) = 0 for 0 < x < W for some constant W > 0 and S(x, 0) is equal to one
elsewhere. Explain what will happen for subsequent times, illustrating your answer with
sketches of S(x, t). Determine approximately how long it will take for this wound to heal (in
the sense that S is close to one everywhere).
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An activator–inhibitor system for u(x, t) and v(x, t) is described by the equations

∂u

∂t
= uv2 − a+D

∂2u

∂x2
,

∂v

∂t
= v − uv2 +

∂2v

∂x2
,

where a,D > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0.

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) to the equilibrium solution found above. Give a condition on D
in terms of a for the system to have a Turing instability (a spatial instability).

Paper 1, Section I

6C Mathematical Biology
An animal population has annual dynamics, breeding in the summer and hibernating

through the winter. At year t, the number of individuals alive who were born a years ago
is given by na,t. Each individual of age a gives birth to ba offspring, and after the summer
has a probability µa of dying during the winter. [You may assume that individuals do not
give birth during the year in which they are born.]

Explain carefully why the following equations, together with initial conditions, are
appropriate to describe the system:

n0,t =

∞∑

a=1

na,tba

na+1,t+1 = (1− µa)na,t ,

Seek a solution of the form na,t = raγ
t where γ and ra, for a = 1, 2, 3 . . ., are

constants. Show γ must satisfy φ(γ) = 1 where

φ(γ) =

∞∑

a=1

(
a−1∏

i=0

(1− µi)

)
γ−aba .

Explain why, for any reasonable set of parameters µi and bi, the equation φ(γ) = 1
has a unique solution. Explain also how φ(1) can be used to determine if the population will
grow or shrink.
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(a) A stochastic birth-death process has a master equation given by

dpn
dt

= λ(pn−1 − pn) + β [(n+ 1)pn+1 − npn] ,

where pn(t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and pn = 0 for n < 0.

(i) Give a brief interpretation of λ and β.

(ii) Derive an equation for ∂φ
∂t , where φ is the generating function

φ(s, t) =
∞∑

n=0

snpn(t).

(iii) Assuming that the generating function φ takes the form

φ(s, t) = e(s−1) f(t) ,

find f(t) and hence show that, as t→ ∞, both the mean 〈n〉 and variance σ2

of the population size tend to constant values, which you should determine.

(b) Now suppose an extra process is included: k individuals are added to the
population at rate ǫ(n).

(i) Write down the new master equation, and explain why, for k > 1, the approach
used in part (a) will fail.

(ii) By working with the master equation directly, find a differential equation for
the rate of change of the mean population size 〈n〉.

(iii) Now take ǫ(n) = an+ b for positive constants a and b. Show that for β > ak
the mean population size tends to a constant, which you should determine.
Briefly describe what happens for β < ak.

Part II, 2019 List of Questions

2019



67

Paper 4, Section II
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A model of an infectious disease in a plant population is given by

Ṡ = (S + I)− (S + I)S − βIS , (1)

İ = −(S + I)I + βIS (2)

where S(t) is the density of healthy plants and I(t) is the density of diseased plants at
time t and β is a positive constant.

(a) Give an interpretation of what each of the terms in equations (1) and (2)
represents in terms of the dynamics of the plants. What does the coefficient β represent?
What can you deduce from the equations about the effect of the disease on the plants?

(b) By finding all fixed points for S > 0 and I > 0 and analysing their stability,
explain what will happen to a healthy plant population if the disease is introduced. Sketch
the phase diagram, treating the cases β < 1 and β > 1 separately.

(c) Define new variables N(t) for the total plant population density and θ(t) for the
proportion of the population that is diseased. Starting from equations (1) and (2) above,
derive equations for Ṅ and θ̇ purely in terms of N , θ and β. Without carrying out a full
fixed point analysis, explain how this system can be used directly to show the same results
you had in part (b). [Hint: start by considering the dynamics of N(t) alone.]

(d) Suppose now that in an attempt to control disease, plants are culled at a rate k
per capita, independently of whether the plants are healthy or diseased. Write down the
modified versions of equations (1) and (2). Use these to build updated equations for Ṅ and
θ̇. Without carrying out a detailed fixed point analysis, what can you deduce about the
effect of culling? Give the range of k for which culling can effectively control the disease.

Part II, 2019 List of Questions [TURN OVER

2019



62

Paper 1, Section I
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Consider a birth-death process in which the birth and death rates in a population

of size n are, respectively, Bn and Dn, where B and D are per capita birth and death
rates.

(a) Write down the master equation for the probability, pn(t), of the population
having size n at time t.

(b) Obtain the differential equations for the rates of change of the mean µ(t) = 〈n〉
and the variance σ2(t) = 〈n2〉 − 〈n〉2 in terms of µ, σ, B and D.

(c) Compare the equations obtained above with the deterministic description of the
evolution of the population size, dn/dt = (B −D)n. Comment on why B and D cannot
be uniquely deduced from the deterministic model but can be deduced from the stochastic
description.

Paper 2, Section I

6C Mathematical Biology
Consider a model of an epidemic consisting of populations of susceptible, S(t), in-

fected, I(t), and recovered, R(t), individuals that obey the following differential equations

dS

dt
= aR− bSI,

dI

dt
= bSI − cI,

dR

dt
= cI − aR,

where a, b and c are constant. Show that the sum of susceptible, infected and recovered
individuals is a constant N . Find the fixed points of the dynamics and deduce the con-
dition for an endemic state with a positive number of infected individuals. Expressing
R in terms of S, I and N , reduce the system of equations to two coupled differential
equations and, hence, deduce the conditions for the fixed point to be a node or a focus.
How do small perturbations of the populations relax to the steady state in each case?
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6C Mathematical Biology
Consider a nonlinear model for the axisymmetric dispersal of a population in two

spatial dimensions whose density, n(r, t), obeys

∂n

∂t
= D∇ · (n∇n) ,

where D is a positive constant, r is a radial polar coordinate, and t is time.

Show that

2π

∫ ∞

0
n(r, t)rdr = N

is constant. Interpret this condition.

Show that a similarity solution of the form

n(r, t) =

(
N

Dt

)1/2

f

(
r

(NDt)1/4

)

is valid for t > 0 provided that the scaling function f(x) satisfies

d

dx

(
xf

df

dx
+

1

4
x2f

)
= 0 .

Show that there exists a value x0 (which need not be evaluated) such that f(x) > 0 for
x < x0 but f(x) = 0 for x > x0. Determine the area within which n(r, t) > 0 at time t in
terms of x0.

[
Hint: The gradient and divergence operators in cylindrical polar coordinates act on

radial functions f and g as

∇f(r) =
∂f

∂r
r̂ , ∇ · [g(r)r̂] = 1

r

∂

∂r
(rg(r)).

]
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Consider a model of a population Nτ in discrete time

Nτ+1 =
rNτ

(1 + bNτ )2
,

where r, b > 0 are constants and τ = 1, 2, 3, . . .. Interpret the constants and show that for
r > 1 there is a stable fixed point.

Suppose the initial condition is N1 = 1/b and that r > 4. Show, using a cobweb
diagram, that the population Nτ is bounded as

4r2

(4 + r)2b
6 Nτ 6 r

4b

and attains the bounds.
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Consider fluctuations of a population described by the vector x = (x1, x2, . . . , xN ).

The probability of the state x at time t, P (x, t), obeys the multivariate Fokker–Planck
equation

∂P

∂t
= − ∂

∂xi

(
Ai(x)P

)
+

1

2

∂2

∂xi∂xj

(
Bij(x)P

)
,

where P = P (x, t), Ai is a drift vector and Bij is a symmetric positive-definite diffusion
matrix, and the summation convention is used throughout.

(a) Show that the Fokker–Planck equation can be expressed as a continuity equation

∂P

∂t
+∇ · J = 0,

for some choice of probability flux J which you should determine explicitly. Here,
∇ = ( ∂

∂x1
, ∂
∂x2

, . . . , ∂
∂xN

) denotes the gradient operator.

(b) Show that the above implies that an initially normalised probability distribution
remains normalised, ∫

P (x, t)dV = 1,

at all times, where the volume element dV = dx1dx2 . . . dxN .

(c) Show that the first two moments of the probability distribution obey

d

dt
〈xk〉 = 〈Ak〉

d

dt
〈xkxl〉 = 〈xlAk + xkAl +Bkl〉.

(d) Now consider small fluctuations with zero mean, and assume that it is possible to
linearise the drift vector and the diffusion matrix as Ai(x) = aijxj and Bij(x) = bij where
aij has real negative eigenvalues and bij is a symmetric positive-definite matrix. Express
the probability flux in terms of the matrices aij and bij and assume that it vanishes in the
stationary state.

(e) Hence show that the multivariate normal distribution,

P (x) =
1

Z
exp(−1

2
Dijxixj),

where Z is a normalisation and Dij is symmetric, is a solution of the linearised Fokker–
Planck equation in the stationary state, and obtain an equation that relates Dij to the
matrices aij and bij .

(f) Show that the inverse of the matrix Dij is the matrix of covariances Cij = 〈xixj〉
and obtain an equation relating Cij to the matrices aij and bij .
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An activator-inhibitor reaction diffusion system is given, in dimensionless form, by

∂u

∂t
= d

∂2u

∂x2
+
u2

v
− 2bu,

∂v

∂t
=
∂2v

∂x2
+ u2 − v,

where d and b are positive constants. Which symbol represents the concentration of
activator and which the inhibitor? Determine the positive steady states and show, by
an examination of the eigenvalues in a linear stability analysis of the spatially uniform
situation, that the reaction kinetics are stable if b < 1

2 .

Determine the conditions for the steady state to be driven unstable by diffusion,
and sketch the (b, d) parameter space in which the diffusion-driven instability occurs.
Find the critical wavenumber kc at the bifurcation to such a diffusion-driven instability.
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6B Mathematical Biology
A model of insect dispersal and growth in one spatial dimension is given by

∂N

∂t
= D

∂

∂x

(
N2 ∂N

∂x

)
+ αN , N(x, 0) = N0δ(x),

where α, D and N0 are constants, D > 0, and α may be positive or negative.

By setting N(x, t) = R(x, τ) eαt, where τ(t) is some time-like variable satisfying
τ(0) = 0, show that a suitable choice of τ yields

Rτ = (R2Rx)x , R(x, 0) = N0 δ(x) ,

where subscript denotes differentiation with respect to x or τ .

Consider a similarity solution of the form R(x, τ) = F (ξ)/τ
1
4 where ξ = x/τ

1
4 . Show

that F must satisfy

−1

4
(Fξ)′ = (F 2F ′)′ and

∫ +∞

−∞
F (ξ)dξ = N0 .

[You may use the fact that these are solved by

F (ξ) =

{
1
2

√
ξ20 − ξ2 for |ξ| < ξ0

0 otherwise

where ξ0 =
√

4N0/π.]

For α < 0, what is the maximum distance from the origin that insects ever reach?
Give your answer in terms of D, α and N0.
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6B Mathematical Biology
A bacterial nutrient uptake model is represented by the reaction system

2S + E
k1−−−−−→ C

C
k2−−−−−→ 2S + E

C
k3−−−−−→ E + 2P

where the ki are rate constants. Let s, e, c and p represent the concentrations of S, E, C
and P respectively. Initially s = s0, e = e0, c = 0 and p = 0. Write down the governing
differential equation system for the concentrations.

Either by using the differential equations or directly from the reaction system above,
find two invariant quantities. Use these to simplify the system to

ṡ = −2k1s
2(e0 − c) + 2k2c ,

ċ = k1s
2(e0 − c)− (k2 + k3)c .

By setting u = s/s0 and v = c/e0 and rescaling time, show that the system can be
written as

u′ = −2u2(1− v) + 2(µ − λ)v ,

ǫv′ = u2(1− v)− µv ,

where ǫ = e0/s0 and µ and λ should be given. Give the initial conditions for u and v.

[Hint: Note that 2X is equivalent to X+X in reaction systems.]
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A stochastic birth-death process has a master equation given by

dp(n, t)

dt
= λ [p(n− 1, t)− p(n, t)] + β [(n + 1) p(n + 1, t)− n p(n, t)] ,

where p(n, t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and p(n, t) = 0 for n < 0.

Give the corresponding Fokker–Planck equation for this system.

Use this Fokker–Planck equation to find expressions for d
dt〈x〉 and d

dt〈x2〉.
[Hint: The general form for a Fokker–Planck equation in P (x, t) is

∂P

∂t
= − ∂

∂x
(AP ) +

1

2

∂2

∂x2
(BP ) .

You may use this general form, stating how A(x) and B(x) are constructed. Alternatively,
you may derive a Fokker–Plank equation directly by working from the master equation.]

Part II, 2017 List of Questions

2017



65

Paper 4, Section I

6B Mathematical Biology
Consider an epidemic model with host demographics (natural births and deaths).

The system is given by

dS

dt
= −βIS − µS + µN ,

dI

dt
= +βIS − νI − µI ,

where S(t) are the susceptibles, I(t) are the infecteds, N is the total population size
and the parameters β, µ and ν are positive. The basic reproduction ratio is defined as
R0 = βN/(µ + ν).

Show that the system has an endemic equilibrium (where the disease is present) for
R0 > 1. Show that the endemic equilibrium is stable.

Interpret the meaning of the case ν ≫ µ and show that in this case the approximate
period of (decaying) oscillation around the endemic equilibrium is given by

T =
2π√

µν(R0 − 1)
.

Suppose now a vaccine is introduced which is given to some proportion of the
population at birth, but not enough to eradicate the disease. What will be the effect
on the period of (decaying) oscillations?
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12B Mathematical Biology
In a discrete-time model, adults and larvae of a population at time n are represented

by an and bn respectively. The model is represented by the equations

an+1 = (1− k)an +
bn

1 + an
,

bn+1 = µan .

You may assume that k ∈ (0, 1) and µ > 0. Give an explanation of what each of
the terms represents, and hence give a description of the population model.

By combining the equations to describe the dynamics purely in terms of the adults,
find all equilibria of the system. Show that the equilibrium with the population absent
(a = 0) is unstable exactly when there exists an equilibrium with the population present
(a > 0).

Give the condition on µ and k for the equilibrium with a > 0 to be stable, and
sketch the corresponding region in the (k, µ) plane.

What happens to the population close to the boundaries of this region?

If this model was modified to include stochastic effects, briefly describe qualitatively
the likely dynamics near the boundaries of the region found above.
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An activator-inhibitor system is described by the equations

∂u

∂t
= u(c+ u− v) +

∂2u

∂x2
,

∂v

∂t
= v(au− bv) + d

∂2v

∂x2
,

where a, b, c, d > 0.

Find and sketch the range of a, b for which the spatially homogeneous system has
a stable stationary solution with u > 0 and v > 0.

Considering spatial perturbations of the form cos(kx) about the solution found
above, find conditions for the system to be unstable. Sketch this region in the (a, b)-plane
for fixed d (for a value of d such that the region is non-empty).

Show that kc, the critical wavenumber at the onset of the instability, is given by

kc =

√
2ac

d− a
.
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6B Mathematical Biology
A stochastic birth–death process is given by the master equation

dpn
dt

= λ(pn−1 − pn) + µ [ (n− 1)pn−1 − npn ] + β [ (n+ 1)pn+1 − npn ] ,

where pn(t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and pn = 0 for n < 0. Give a brief interpretation of λ, µ and β.

Derive an equation for
∂φ

∂t
, where φ is the generating function

φ(s, t) =

∞∑

n=0

snpn(t) .

Now assume that β > µ. Show that at steady state

φ =

(
β − µ

β − µs

)λ/µ

and find the corresponding mean and variance.

Paper 3, Section I

6B Mathematical Biology
A delay model for a population of size Nt at discrete time t is given by

Nt+1 = max
{
(r −N2

t−1)Nt , 0
}
.

Show that for r > 1 there is a non-trivial equilibrium, and analyse its stability. Show that,
as r is increased from 1, the equilibrium loses stability at r = 3/2 and find the approximate
periodicity close to equilibrium at this point.
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6B Mathematical Biology
(a) The populations of two competing species satisfy

dN1

dt
= N1[ b1 − λ(N1 +N2) ] ,

dN2

dt
= N2[ b2 − λ(N1 +N2) ] ,

where b1 > b2 > 0 and λ > 0. Sketch the phase diagram (limiting attention to N1, N2 > 0).

The relative abundance of species 1 is defined by U = N1/(N1 +N2). Show that

dU

dt
= AU(1− U) ,

where A is a constant that should be determined.

(b) Consider the spatial system

∂u

∂t
= u(1− u) + D

∂2u

∂x2
,

and consider a travelling-wave solution of the form u(x, t) = f(x − ct) representing one
species (u = 1) invading territory previously occupied by another species (u = 0). By
linearising near the front of the invasion, show that the wave speed is given by c = 2

√
D.

[You may assume that the solution to the full nonlinear system will settle to the
slowest possible linear wave speed.]

Part II, 2016 List of Questions [TURN OVER

2016



60

Paper 1, Section I
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Consider an epidemic model where susceptibles are vaccinated at per capita rate v,

but immunity (from infection or vaccination) is lost at per capita rate b. The system is
given by

dS

dt
= −rIS + b(N − I − S) − vS ,

dI

dt
= rIS − aI ,

where S(t) are the susceptibles, I(t) are the infecteds, N is the total population size and
all parameters are positive. The basic reproduction ratio R0 = rN/a satisfies R0 > 1.

Find the critical vaccination rate vc, in terms of b and R0, such that the system has
an equilibrium with the disease present if v < vc. Show that this equilibrium is stable
when it exists.

Find the long-term outcome for S and I if v > vc.

Paper 3, Section II

12B Mathematical Biology
The Fitzhugh–Nagumo model is given by

u̇ = c
(
v + u− 1

3u
3 + z(t)

)

v̇ = −1

c
(u− a+ b v) ,

where (1− 2
3b) < a < 1, 0 < b 6 1 and c≫ 1.

For z(t) = 0, by considering the nullclines in the (u, v)-plane, show that there is a
unique equilibrium. Sketch the phase diagram.

At t = 0 the system is at the equilibrium, and z(t) is then ‘switched on’ to be
z(t) = −V0 for t > 0, where V0 is a constant. Describe carefully how suitable choices of
V0 > 0 can represent a system analogous to (i) a neuron firing once, and (ii) a neuron
firing repeatedly. Illustrate your answer with phase diagrams and also plots of v against
t for each case. Find the threshold for V0 that separates these cases. Comment briefly
from a biological perspective on the behaviour of the system when a = 1 − 2

3b + ǫb and
0 < ǫ≪ 1.
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The population densities of two types of cell are given by U(x, t) and V (x, t). The

system is described by the equations

∂U

∂t
= αU(1− U) + χ

∂

∂x

(
U
∂V

∂x

)
+D

∂2U

∂x2
,

∂V

∂t
= V (1− V )− β UV +

∂2V

∂x2
,

where α, β, χ and D are positive constants.

(a) Identify the terms which involve interaction between the cell types, and briefly
describe what each of these terms might represent.

(b) Consider the system without spatial dynamics. Find the condition on β for
there to be a non-trivial spatially homogeneous solution that is stable to spatially invariant
disturbances.

(c) Consider now the full spatial system, and consider small spatial perturbations
proportional to cos(kx) of the solution found in part (b). Show that for sufficiently large
χ (the precise threshold should be found) the spatially homogeneous solution is stable to
perturbations with either small or large wavenumber, but is unstable to perturbations at
some intermediate wavenumber.
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5E Mathematical Biology

(i) A variant of the classic logistic population model is given by the Hutchinson–
Wright equation

dx(t)

dt
= αx(t) [ 1− x(t− T ) ]

where α, T > 0. Determine the condition on α (in terms of T ) for the constant solution
x(t) = 1 to be stable.

(ii) Another variant of the logistic model is given by the equation

dx(t)

dt
= α

[
x(t− T )− x(t)2

]
,

where α, T > 0. Give a brief interpretation of what this model represents.

Determine the condition on α (in terms of T ) for the constant solution x(t) = 1 to
be stable in this model.

Paper 3, Section I

5E Mathematical Biology

The number of a certain type of annual plant in year n is given by xn. Each plant
produces k seeds that year and then dies before the next year. The proportion of seeds
that germinate to produce a new plant the next year is given by e−γ xn where γ > 0.
Explain briefly why the system can be described by

xn+1 = k xne
−γ xn .

Give conditions on k for a stable positive equilibrium of the plant population size
to be possible.

Winters become milder and now a proportion s of all plants survive each year
(s ∈ (0, 1)). Assume that plants produce seeds as before while they are alive. Show that
a wider range of k now gives a stable positive equilibrium population.
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An activator-inhibitor system is described by the equations

∂u

∂t
= 2u + u2 − u v +

∂2u

∂x2
,

∂v

∂t
= a

(
u2 − v

)
+ d

∂2v

∂x2
,

where a, d > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0.

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) to the equilibrium solution found above. Show that the system
has a Turing instability when

d >
(
7
2 + 2

√
3
)
a .

Paper 1, Section I

5E Mathematical Biology

The population density n(a, t) of individuals of age a at time t satisfies

∂n

∂t
+

∂n

∂a
= −µ(a)n(a, t), n(0, t) =

∫ ∞

0
b(a)n(a, t) da

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a. Show that this may be solved with a similarity solution of the form n(a, t) = eγtr(a) if
the growth rate γ satisfies φ(γ) = 1 where

φ(γ) =

∫ ∞

0
b(a) e−γa−

∫ a
0 µ(s) ds da.

Suppose now that the birth rate is given by b(a) = Bape−λa with B,λ > 0 and p is
a positive integer, and the death rate is constant in age (i.e. µ(a) = µ). Find the average
number of offspring per individual.

Find the similarity solution, and find the threshold B∗ for the birth parameter B
so that B > B∗ corresponds to a growing population.
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11E Mathematical Biology

In a stochastic model of multiple populations, P = P (x, t) is the probability that
the population sizes are given by the vector x at time t. The jump rate W (x, r) is the
probability per unit time that the population sizes jump from x to x+ r . Under suitable
assumptions, the system may be approximated by the multivariate Fokker–Planck equation
(with summation convention)

∂

∂t
P = − ∂

∂xi
AiP +

1

2

∂2

∂xi∂xj
BijP ,

where Ai(x) =
∑

r riW (x, r) and matrix elements Bij(x) =
∑

r rirjW (x, r).

(a) Use the multivariate Fokker–Planck equation to show that

d

dt
〈xk〉 = 〈Ak〉

d

dt
〈xkxl〉 = 〈xlAk + xkAl +Bkl〉.

[You may assume that P (x, t) → 0 as |x| → ∞.]

(b) For small fluctuations, you may assume that the vector A may be approximated
by a linear function in x and the matrix B may be treated as constant, i.e. Ak(x) ≈
akl(xl − 〈xl〉) and Bkl(x) ≈ Bkl(〈x〉) = bkl (where akl and bkl are constants). Show that
at steady state the covariances Cij = cov(xi, xj) satisfy

aikCjk + ajkCik + bij = 0 .

(c) A lab-controlled insect population consists of x1 larvae and x2 adults. Larvae
are added to the system at rate λ. Larvae each mature at rate γ per capita. Adults die at
rate β per capita. Give the vector A and matrix B for this model. Show that at steady
state

〈x1〉 =
λ

γ
, 〈x2〉 =

λ

β
.

(d) Find the variance of each population size near steady state, and show that the
covariance between the populations is zero.
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11E Mathematical Biology

A fungal disease is introduced into an isolated population of frogs. Without disease,
the normalised population size x would obey the logistic equation ẋ = x(1 − x), where
the dot denotes differentiation with respect to time. The disease causes death at rate d
and there is no recovery. The disease transmission rate is β and, in addition, offspring of
infected frogs are infected from birth.

(a) Briefly explain why the population sizes x and y of uninfected and infected frogs
respectively now satisfy

ẋ = x [ 1− x− (1 + β)y ]

ẏ = y [ (1− d)− (1− β)x− y ] .

(b) The population starts at the disease-free population size (x = 1) and a small
number of infected frogs are introduced. Show that the disease will successfully invade if
and only if β > d.

(c) By finding all the equilibria in x > 0, y > 0 and considering their stability, find
the long-term outcome for the frog population. State the relationships between d and β
that distinguish different final populations.

(d) Plot the long-term steady total population size as a function of d for fixed β,
and note that an intermediate mortality rate is actually the most harmful. Explain why
this is the case.
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Paper 4, Section I

6B Mathematical Biology
The concentration c(x, t) of a chemical in one dimension obeys the equations

∂c

∂t
=

∂

∂x

(
c2

∂c

∂x

)
,

∫ ∞

−∞
c(x, t) dx = 1 .

State the physical interpretation of each equation.

Seek a similarity solution of the form c = tαf(ξ), where ξ = tβx. Find equations
involving α and β from the differential equation and the integral. Show that these are
satisfied by α = β = −1/4.

Find the solution for f(ξ). Find and sketch the solution for c(x, t).

Paper 3, Section I

6B Mathematical Biology
An epidemic model is given by

dS

dt
= −rIS ,

dI

dt
= +rIS − aI ,

where S(t) are the susceptibles, I(t) are the infecteds, and a and r are positive parameters.
The basic reproduction ratio is defined as R0 = rN/a, where N is the total population
size. Find a condition on R0 for an epidemic to be possible if, initially, S ≈ N and I is
small but non-zero.

Now suppose a proportion p of the population was vaccinated (with a completely
effective vaccine) so that initially S ≈ (1−p)N . On a sketch of the (R0, p) plane, mark the
regions where an epidemic is still possible, where the vaccination will prevent an epidemic,
and where no vaccination was necessary.

For the case when an epidemic is possible, show that σ, the proportion of the initially
susceptible population that has not been infected by the end of an epidemic, satisfies

σ − 1

(1− p)R0
log σ ≈ 1.
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Paper 2, Section I

6B Mathematical Biology
Consider an experiment where two or three individuals are added to a population

with probability λ2 and λ3 respectively per unit time. The death rate in the population
is a constant β per individual per unit time.

Write down the master equation for the probability pn(t) that there are n individuals
in the population at time t. From this, derive an equation for ∂φ

∂t , where φ is the generating
function

φ(s, t) =

∞∑

n=0

snpn(t).

Find the solution for φ in steady state, and show that the mean and variance of the
population size are given by

〈n〉 = 3
λ3

β
+ 2

λ2

β
, var(n) = 6

λ3

β
+ 3

λ2

β
.

Hence show that, for a free choice of λ2 and λ3 subject to a given target mean, the
experimenter can minimise the variance by only adding two individuals at a time.

Paper 1, Section I

6B Mathematical Biology
A population model for two species is given by

dN

dt
= aN − bNP − kN2 ,

dP

dt
= −dP + cNP ,

where a, b, c, d and k are positive parameters. Show that this may be rescaled to

du

dτ
= u(1− v − βu) ,

dv

dτ
= −αv(1− u) ,

and give α and β in terms of the original parameters.

For β < 1 find all fixed points in u > 0, v > 0, and analyse their stability. Assuming
that both populations are present initially, what does this suggest will be the long-term
outcome?
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13B Mathematical Biology
A discrete-time model for breathing is given by

Vn+1 = αCn−k , (1)

Cn+1 − Cn = γ − βVn+1 , (2)

where Vn is the volume of each breath in time step n and Cn is the concentration of carbon
dioxide in the blood at the end of time step n. The parameters α, β and γ are all positive.
Briefly explain the biological meaning of each of the above equations.

Find the steady state. For k = 0 and k = 1 determine the stability of the steady
state.

For general (integer) k > 1, by seeking parameter values when the modulus of
a perturbation to the steady state is constant, find the range of parameters where the
solution is stable. What is the periodicity of the constant-modulus solution at the edge of
this range? Comment on how the size of the range depends on k.

This can be developed into a more realistic model by changing the term −βVn+1

to −βCnVn+1 in (2). Briefly explain the biological meaning of this change. Show that for
both k = 0 and k = 1 the new steady state is stable if 0 < a < 1, where a =

√
αβγ.

Paper 2, Section II

13B Mathematical Biology
An activator–inhibitor system is described by the equations

∂u

∂t
=

au

v
− u2 + d1

∂2u

∂x2
,

∂v

∂t
= v2 − v

u2
+ d2

∂2v

∂x2
,

where a, d1, d2 > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0. Determine when the equilibrium is a stable
focus, and sketch the phase diagram for this case (restricting attention to u > 0 and
v > 0).

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) of the solution found above. Briefly explain why the system will
be stable to spatial perturbations with very small or very large k. Find conditions for the
system to be unstable to a spatial perturbation (for some range of k which need not be
given). Sketch the region satisfying these conditions in the (a, d1/d2) plane.

Find kc, the critical wavenumber at the onset of instability, in terms of a and d1.
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Paper 4, Section I

6A Mathematical Biology
A model of two populations competing for resources takes the form

dn1

dt
= r1n1(1− n1 − a12n2) ,

dn2

dt
= r2n2(1− n2 − a21n1) ,

where all parameters are positive. Give a brief biological interpretation of a12, a21, r1 and
r2. Briefly describe the dynamics of each population in the absence of the other.

Give conditions for there to exist a steady-state solution with both populations
present (that is, n1 > 0 and n2 > 0), and give conditions for this solution to be stable.

In the case where there exists a solution with both populations present but the
solution is not stable, what is the likely long-term outcome for the biological system?
Explain your answer with the aid of a phase diagram in the (n1, n2) plane.

Paper 3, Section I

6A Mathematical Biology
An immune system creates a burst of N new white blood cells with probability b

per unit time. White blood cells die with probability d each per unit time. Write down
the master equation for Pn(t), the probability that there are n white blood cells at time t.

Given that n = n0 initially, find an expression for the mean of n.

Show that the variance of n has the form Ae−2dt +Be−dt+C and find A, B and C.

If the immune system were modified to produce k times as many cells per burst but
with probability per unit time divided by a factor k, how would the mean and variance of
the number of cells change?
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6A Mathematical Biology
The population density n(a, t) of individuals of age a at time t satisfies

∂n(a, t)

∂t
+

∂n(a, t)

∂a
= −µ(a)n(a, t),

with

n(0, t) =

∫ ∞

0
b(a)n(a, t)da,

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a.

Seek a similarity solution of the form n(a, t) = eγtr(a) and show that

r(a) = r(0)e−γa−
∫ a
0 µ(s)ds, r(0) =

∫ ∞

0
b(s)r(s)ds.

Show also that if

φ(γ) =

∫ ∞

0
b(a)e−γa−

∫ a
0
µ(s)dsda = 1,

then there is such a similarity solution. Give a biological interpretation of φ(0).

Suppose now that all births happen at age a∗, at which time an individual produces
B offspring, and that the death rate is constant with age (i.e. µ(a) = µ). Find the
similarity solution and give the condition for this to represent a growing population.

Paper 1, Section I

6A Mathematical Biology
In a discrete-time model, a proportion µ of mature bacteria divides at each time

step. When a mature bacterium divides it is destroyed and two new immature bacteria
are produced. A proportion λ of the immature bacteria matures at each time step, and
a proportion k of mature bacteria dies at each time step. Show that this model may be
represented by the equations

at+1 = at + 2µbt − λat ,

bt+1 = bt − µbt + λat − kbt .

Give an expression for the general solution to these equations and show that the
population may grow if µ > k.

At time T , the population is treated with an antibiotic that completely stops
bacteria from maturing, but otherwise has no direct effects. Explain what will happen to
the population of bacteria afterwards, and give expressions for at and bt for t > T in terms
of aT , bT , µ and k.
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Paper 3, Section II

13A Mathematical Biology
An activator-inhibitor system is described by the equations

∂u

∂t
=

∂2u

∂x2
+ u− uv + au2 ,

∂v

∂t
= d

∂2v

∂x2
+ u2 − buv ,

where a, b, d > 0.

Find and sketch the range of a, b for which the spatially homogeneous system has
a stable stationary solution with u > 0 and v > 0.

Considering spatial perturbations of the form cos(kx) about the solution found
above, find conditions for the system to be unstable. Sketch this region in the (d, b) plane
for fixed a ∈ (0, 1).

Find kc, the critical wavenumber at the onset of the instability, in terms of a and b.

Paper 2, Section II

13A Mathematical Biology
The concentration c(x, t) of insects at position x at time t satisfies the nonlinear

diffusion equation
∂c

∂t
=

∂

∂x

(
cm

∂c

∂x

)
,

with m > 0. Find the value of α which allows a similarity solution of the form
c(x, t) = tαf(ξ), with ξ = tαx.

Show that

f(ξ) =

{ [
αm
2 (ξ2 − ξ0

2)
]1/m

for − ξ0 < ξ < ξ0 ,
0 otherwise,

where ξ0 is a constant. From the original partial differential equation, show that the total
number of insects c0 does not change in time. From this result, find a general expression
relating ξ0 and c0. Find a closed-form solution for ξ0 in the case m = 2.
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6C Mathematical Biology
The master equation describing the evolution of the probability P (n, t) that a

population has n members at time t takes the form

∂P (n, t)

∂t
= b(n− 1)P (n − 1, t)− [b(n) + d(n)]P (n, t) + d(n + 1)P (n + 1, t) , (1)

where the functions b(n) and d(n) are both positive for all n.

From (1) derive the corresponding Fokker–Planck equation in the form

∂P (x, t)

∂t
= − ∂

∂x
{a1(x)P (x, t)} + 1

2

∂2

∂x2
{a2(x)P (x, t)} , (2)

making clear any assumptions that you make and giving explicit forms for a1(x) and a2(x).

Assume that (2) has a steady state solution Ps(x) and that a1(x) is a decreasing
function of x with a single zero at x0. Under what circumstances may Ps(x) be
approximated by a Gaussian centred at x0 and what is the corresponding estimate of
the variance?
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6C Mathematical Biology
Consider a model of insect dispersal in two dimensions given by

∂C

∂t
=

1

r

∂

∂r

(
rDC

∂C

∂r

)
,

where r is a radial coordinate, t is time, C(r, t) is the density of insects and D is a constant
coefficient such that DC is a diffusivity.

Show that under suitable assumptions

2π

∫ ∞

0
rC dr = N ,

where N is constant, and interpret this condition.

Suppose that after a long time the form of C depends only on r, t, D and N (and
is thus independent of any detailed form of the initial condition). Show that there is a
solution of the form

C(r, t) =

(
N

Dt

)1/2

g

(
r

(NDt)1/4

)
,

and deduce that the function g(ξ) satisfies

d

dξ

(
ξg

dg

dξ
+

1

4
ξ2g

)
= 0 .

Show that this equation has a continuous solution with g > 0 for ξ < ξ0 and g = 0
for ξ > ξ0, and determine ξ0. Hence determine the area within which C(r, t) > 0 as a
function of t.

Paper 2, Section I

6C Mathematical Biology
Consider a birth-death process in which the birth rate per individual is λ and the

death rate per individual in a population of size n is βn.

Let P (n, t) be the probability that the population has size n at time t. Write down
the master equation for the system, giving an expression for ∂P (n, t)/∂t.

Show that

d

dt
〈n〉 = λ〈n〉 − β〈n2〉 ,

where 〈.〉 denotes the mean.

Deduce that in a steady state 〈n〉 6 λ/β.
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Paper 1, Section I

6C Mathematical Biology
Krill is the main food source for baleen whales. The following model has been

proposed for the coupled evolution of populations of krill and whales, with x(t) being the
number of krill and y(t) being the number of whales:

dx

dt
= rx

(
1− x

K

)
− axy ,

dy

dt
= sy

(
1− y

bx

)
,

where r, s, a, b and K are positive constants.

Give a biological interpretation for the form of the two differential equations.

Show that a steady state is possible with x > 0 and y > 0 and write down expressions
for the steady-state values of x and y.

Determine whether this steady state is stable.
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13C Mathematical Biology
Consider the two-variable reaction-diffusion system

∂u

∂t
= a− u+ u2v +∇2u ,

∂v

∂t
= b− u2v + d∇2v ,

where a, b and d are positive constants.

Show that there is one possible spatially homogeneous steady state with u > 0 and
v > 0 and show that it is stable to small-amplitude spatially homogeneous disturbances
provided that γ < β, where

γ =
b− a

b+ a
and β = (a+ b)2.

Now assuming that the condition γ < β is satisfied, investigate the stability of
the homogeneous steady state to spatially varying perturbations by considering the time-
dependence of disturbances whose spatial form is such that ∇2u = −k2u and ∇2v = −k2v,
with k constant. Show that such disturbances vary as ept, where p is one of the roots of

p2 + (β − γ + dk2 + k2)p+ dk4 + (β − dγ)k2 + β.

By comparison with the stability condition for the homogeneous case above, give a
simple argument as to why the system must be stable if d = 1.

Show that the boundary between stability and instability (as some combination of
β, γ and d is varied) must correspond to p = 0.

Deduce that dγ > β is a necessary condition for instability and, furthermore, that
instability will occur for some k if

d >
β

γ

{
1 +

2

γ
+ 2

√
1

γ
+

1

γ2

}
.

Deduce that the value of k2 at which instability occurs as the stability boundary is
crossed is given by

k2 =

√
β

d
.
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13C Mathematical Biology
A population of blowflies is modelled by the equation

dx

dt
= R(x(t− T ))− kx(t) , (1)

where k is a constant death rate and R is a function of one variable such that R(z) > 0
for z > 0, with R(z) ∼ βz as z → 0 and R(z) → 0 as z → ∞. The constants T , k and β
are all positive, with β > k. Give a brief biological motivation for the term R(x(t−T )), in
which you explain both the form of the function R and the appearance of a delay time T .

A suitable model for R(z) is βz exp(−z/d), where d is a positive constant. Show
that in this case there is a single steady state of the system with non-zero population, i.e.
with x(t) = xs > 0, with xs constant.

Now consider the stability of this steady state. Show that if x(t) = xs + y(t), with
y(t) small, then y(t) satisfies a delay differential equation of the form

dy

dt
= −ky(t) +By(t− T ) , (2)

where B is a constant to be determined. Show that y(t) = est is a solution of (2) if
s = −k + Be−sT . If s = σ + iω, where σ and ω are both real, write down two equations
relating σ and ω.

Deduce that the steady state is stable if |B| < k. Show that, for this particular
model for R, |B| > k is possible only if B < 0.

By considering B decreasing from small negative values, show that an instability

will appear when |B| >
[
k2 + g(kT )2

T 2

]1/2
, where π/2 < g(kT ) < π.

Deduce that the steady state xs of (1) is unstable if

β > k exp

[(
1 +

π2

k2T 2

)1/2

+ 1

]
.
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6B Mathematical Biology
A proposed model of insect dispersal is given by the equation

∂n

∂t
= D

∂

∂x

[(n0

n

) ∂n

∂x

]
, (1)

where n(x, t) is the density of insects and D and n0 are constants.

Interpret the term on the right-hand side.

Explain why a solution of the form

n(x, t) = n0(Dt)−βg(x/(Dt)β) , (2)

where β is a positive constant, can potentially represent the dispersal of a fixed number
n0 of insects initially localised at the origin.

Show that the equation (1) can be satisfied by a solution of the form (2) if β = 1
and find the corresponding function g.

Paper 2, Section I

6B Mathematical Biology
A population with variable growth and harvesting is modelled by the equation

ut+1 = max

(
ru2t

1 + u2t
− Eut, 0

)
,

where r and E are positive constants.

Given that r > 1, show that a non-zero steady state exists if 0 < E < Em(r), where
Em(r) is to be determined.

Show using a cobweb diagram that, if E < Em(r), a non-zero steady state may
be attained only if the initial population u0 satisfies α < u0 < β, where α should be
determined explicitly and β should be specified as a root of an algebraic equation.

With reference to the cobweb diagram, give an additional criterion that implies that
α < u0 < β is a sufficient condition, as well as a necessary condition, for convergence to a
non-zero steady state.
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6B Mathematical Biology
The dynamics of a directly transmitted microparasite can be modelled by the system

dX

dt
= bN − βXY − bX ,

dY

dt
= βXY − (b+ r)Y ,

dZ

dt
= rY − bZ ,

where b, β and r are positive constants and X, Y and Z are respectively the numbers
of susceptible, infected and immune (i.e. infected by the parasite, but showing no further
symptoms of infection) individuals in a population of size N , independent of t, where
N = X + Y + Z.

Consider the possible steady states of these equations. Show that there is a threshold
population size Nc such that if N < Nc there is no steady state with the parasite
maintained in the population. Show that in this case the number of infected and immune
individuals decreases to zero for all possible initial conditions.

Show that for N > Nc there is a possible steady state with X = Xs < N and
Y = Ys > 0, and find expressions for Xs and Ys.

By linearising the equations for dX/dt and dY/dt about the steady state X = Xs

and Y = Ys, derive a quadratic equation for the possible growth or decay rate in terms of
Xs and Ys and hence show that the steady state is stable.
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6B Mathematical Biology
A neglected flower garden contains Mn marigolds in the summer of year n. On

average each marigold produces γ seeds through the summer. Seeds may germinate after
one or two winters. After three winters or more they will not germinate. Each winter a
fraction 1−α of all seeds in the garden are eaten by birds (with no preference to the age of
the seed). In spring a fraction µ of seeds that have survived one winter and a fraction ν of
seeds that have survived two winters germinate. Finite resources of water mean that the
number of marigolds growing to maturity from S germinating seeds is N (S), where N (S)
is an increasing function such that N (0) = 0, N ′(0) = 1, N ′(S) is a decreasing function
of S and N (S) → Nmax as S → ∞.

Show that Mn satisfies the equation

Mn+1 = N (αµγMn + νγα2(1− µ)Mn−1) .

Write down an equation for the number M∗ of marigolds in a steady state. Show
graphically that there are two solutions, one with M∗ = 0 and the other with M∗ > 0 if

αµγ + νγα2(1− µ) > 1 .

Show that the M∗ = 0 steady-state solution is unstable to small perturbations in this case.
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13B Mathematical Biology
Consider a population subject to the following birth–death process. When the

number of individuals in the population is n, the probability of an increase from n to n+1
in unit time is βn+γ and the probability of a decrease from n to n−1 is αn(n−1), where
α, β and γ are constants.

Show that the master equation for P (n, t), the probability that at time t the
population has n members, is

∂P

∂t
= αn(n+1)P (n+1, t)−αn(n− 1)P (n, t)+ (βn−β+ γ)P (n− 1, t)− (βn+ γ)P (n, t) .

Show that 〈n〉, the mean number of individuals in the population, satisfies

d〈n〉
dt

= −α〈n2〉+ (α+ β)〈n〉+ γ .

Deduce that, in a steady state,

〈n〉 = α+ β

2α
±

√
(α+ β)2

4α2
+

γ

α
− (∆n)2 ,

where ∆n is the standard deviation of n. When is the minus sign admissable?

Show how a Fokker–Planck equation of the form

∂P

∂t
=

∂

∂n
[g(n)P (n, t)] +

1

2

∂2

∂n2
[h(n)P (n, t)] (∗)

may be derived under conditions to be explained, where the functions g(n) and h(n) should
be evaluated.

In the case α ≪ γ and β = 0, find the leading-order approximation to n∗ such that
g(n∗) = 0. Defining the new variable x = n − n∗, where g(n∗) = 0, approximate g(n)
by g′(n∗)x and h(n) by h(n∗). Solve (∗) for P (x) in the steady-state limit and deduce
leading-order estimates for 〈n〉 and (∆n)2.

Part II, 2011 List of Questions [TURN OVER

2011



60

Paper 3, Section II
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The number density of a population of amoebae is n(x, t). The amoebae exhibit

chemotaxis and are attracted to high concentrations of a chemical which has concentration
a(x, t). The equations governing n and a are

∂n

∂t
= αn(n20 − n2) +∇2n−∇ · (χ(n)n∇a) ,

∂a

∂t
= βn− γa+D∇2a ,

where the constants n0, α, β, γ and D are all positive.

(i) Give a biological interpretation of each term in these equations and discuss the sign
of χ(n).

(ii) Show that there is a non-trivial (i.e. a 6= 0, n 6= 0) steady-state solution for n and
a, independent of x, and show further that it is stable to small disturbances that
are also independent of x.

(iii) Consider small spatially varying disturbances to the steady state, with spatial
structure such that ∇2ψ = −k2ψ, where ψ is any disturbance quantity. Show
that if such disturbances also satisfy ∂ψ/∂t = pψ, where p is a constant, then p
satisfies a quadratic equation, to be derived. By considering the conditions required
for p = 0 to be a possible solution of this quadratic equation, or otherwise, deduce
that instability is possible if

βχ0n0 > 2αn20D + γ + 2(2Dαn20γ)
1/2 ,

where χ0 = χ(n0).

(iv) Explain briefly how your conclusions might change if an additional geometric
constraint implied that k2 > k20, where k0 is a given constant.
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Paper 1, Section I

6A Mathematical Biology
A delay model for a population Nt consists of

Nt+1 =
rNt

1 + bN 2
t−1

,

where t is discrete time, r > 1 and b > 0. Investigate the linear stability about the
positive steady state N∗. Show that r = 2 is a bifurcation value at which the steady state
bifurcates to a periodic solution of period 6.

Paper 2, Section I

6A Mathematical Biology
The population of a certain species subjected to a specific kind of predation is

modelled by the difference equation

ut+1 = a
ut

2

b2 + ut2
, a > 0 .

Determine the equilibria and show that if a2 > 4 b2 it is possible for the population to be
driven to extinction if it becomes less than a critical size which you should find. Explain
your reasoning by means of a cobweb diagram.

Part II, 2010 List of Questions
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Paper 3, Section I

6A Mathematical Biology
A population of aerobic bacteria swims in a laterally-infinite layer of fluid occupying

−∞ < x < ∞, −∞ < y < ∞, and −d/2 < z < d/2, with the top and bottom surfaces in
contact with air. Assuming that there is no fluid motion and that all physical quantities
depend only on z, the oxygen concentration c and bacterial concentration n obey the
coupled equations

∂c

∂t
= Dc

∂2c

∂z2
− kn ,

∂n

∂t
= Dn

∂2n

∂z2
− ∂

∂z

(
µn

∂c

∂z

)
.

Consider first the case in which there is no chemotaxis, so n has the spatially-uniform value
n̄. Find the steady-state oxygen concentration consistent with the boundary conditions
c (±d/2) = c0. Calculate the Fick’s law flux of oxygen into the layer and justify your
answer on physical grounds.

Now allowing chemotaxis and cellular diffusion, show that the equilibrium oxygen
concentration satisfies

d2c

dz2
− kn0

Dc
exp (µc/Dn) = 0 ,

where n0 is a suitable normalisation constant that need not be found.

Paper 4, Section I

6A Mathematical Biology
A concentration u(x, t) obeys the differential equation

∂u

∂t
= Duxx + f(u) ,

in the domain 0 6 x 6 L , with boundary conditions u(0, t) = u(L, t) = 0 and initial
condition u(x, 0) = u0(x), and where D is a positive constant. Assume f(0) = 0 and
f ′(0) > 0. Linearising the dynamics around u = 0, and representing u(x, t) as a suitable
Fourier expansion, show that the condition for the linear stability of u = 0 can be expressed
as the following condition on the domain length

L < π

[
D

f ′(0)

]1/2
.

Part II, 2010 List of Questions [TURN OVER
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Paper 2, Section II

13A Mathematical Biology
The radially symmetric spread of an insect population density n(r, t) in the plane

is described by the equation

∂n

∂t
=

D0

r

∂

∂r

[
r

(
n

n0

)2 ∂n
∂r

]
. (∗)

Suppose Q insects are released at r = 0 at t = 0. We wish to find a similarity solution to
(∗) in the form

n(r, t) =
n0

λ2(t)
F

(
r

r0λ(t)

)
.

Show first that the PDE (∗) reduces to an ODE for F if λ(t) obeys the equation

λ5 dλ

dt
= C

D0

r 2
0

,

where C is an arbitrary constant (that may be set to unity), and then obtain λ(t) and F
such that F (0) = 1 and F (ξ) = 0 for ξ > 1. Determine r0 in terms of n0 and Q. Sketch
the function n(r, t) at various times to indicate its qualitative behaviour.

Part II, 2010 List of Questions
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Paper 3, Section II

13A Mathematical Biology
Consider an epidemic model in which S(x, t) is the local population density of

susceptibles and I(x, t) is the density of infectives

∂S

∂t
= − rIS ,

∂I

∂t
= D

∂ 2I

∂x 2
+ rIS − aI ,

where r, a, and D are positive. If S0 is a characteristic population value, show that the
rescalings I/S0 → I, S/S0 → S, (rS0/D)1/2 x → x, rS0t → t reduce this system to

∂S

∂t
= − IS ,

∂I

∂t
=

∂ 2I

∂x 2
+ IS − λI ,

where λ should be found.

Travelling wavefront solutions are of the form S(x, t) = S(z), I(x, t) = I(z), where
z = x − ct and c is the wave speed, and we seek solutions with boundary conditions
S(∞) = 1, S′(∞) = 0, I(∞) = I(−∞) = 0. Under the travelling-wave assumption reduce
the rescaled PDEs to ODEs, and show by linearisation around the leading edge of the
advancing front that the requirement that I be non-negative leads to the condition λ < 1
and hence the wave speed relation

c > 2(1 − λ)1/2 , λ < 1 .

Using the two ODEs you have obtained, show that the surviving susceptible
population fraction σ = S(−∞) after the passage of the front satisfies

σ − λ lnσ = 1 ,

and sketch σ as a function of λ.

Part II, 2010 List of Questions [TURN OVER
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Paper 1, Section I

6A Mathematical Biology
A discrete model for a population Nt consists of

Nt+1 =
rNt

(1 + bNt)
2 ,

where t is discrete time and r, b > 0. What do r and b represent in this model? Show that
for r > 1 there is a stable fixed point.

Suppose the initial condition is N1 = 1/b, and that r > 4. Show, with the help of a
cobweb, that the population Nt is bounded by

4r2

(4 + r)2 b
6 Nt 6

r

4b
,

and attains those bounds.

Paper 2, Section I

6A Mathematical Biology
Consider the reaction system

A
k1−→ X, B +X

k2−→ Y, 2X + Y
k3−→ 3X, X

k4−→ E,

where the ks are the rate constants, and the reactant concentrations of A and B are kept
constant. Write down the governing differential equation system for the concentrations of
X and Y and nondimensionalise the equations by setting u = αX and v = αY , τ = k4t
so that they become

du

dτ
= 1− (b+ 1)u+ au2v,

dv

dτ
= bu− au2v,

by suitable choice of α. Thus find a and b. Determine the positive steady state and show
that there is a bifurcation value b = bc = 1+a at which the steady state becomes unstable
to a Hopf bifurcation. Find the period of the oscillations in the neighbourhood of bc.
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Paper 3, Section I

6A Mathematical Biology
Consider an organism moving on a one-dimensional lattice of spacing a, taking steps

either to the right or the left at regular time intervals τ . In this random walk there is a
slight bias to the right, that is the probabilities of moving to the right and left, α and β,
are such that α − β = ǫ, where 0 < ǫ ≪ 1. Write down the appropriate master equation
for this process. Show by taking the continuum limit in space and time that p(x, t), the
probability that an organism initially at x = 0 is at x after time t, obeys

∂p

∂t
+ V

∂p

∂x
= D

∂2p

∂x2
.

Express the constants V and D in terms of a, τ , α and β.

Paper 4, Section I

6A Mathematical Biology
The diffusion equation for a chemical concentration C(r, t) in three dimensions which

depends only on the radial coordinate r is

Ct = D
1

r2
(
r2Cr

)
r
. (∗)

The general similarity solution of this equation takes the form

C(r, t) = tαF (ξ), ξ =
r

tβ
,

where α and β are to be determined. By direct substitution into (∗) and the requirement of
a valid similarity solution, find one relation involving the exponents. Use the conservation
of the total number of molecules to determine a second relation. Comment on the
relationship between these exponents and the ones appropriate to the similarity solution
of the one-dimensional diffusion equation. Show that F obeys

D

(
F ′′ +

2

ξ
F ′

)
+

1

2
ξF ′ +

3

2
F = 0,

and that the relevant solution describing the spreading of a delta-function initial condition
is F (ξ) = A exp(−ξ2/4D), where A is a suitable normalisation that need not be found.
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Paper 2, Section II

13A Mathematical Biology
Travelling bands of microorganisms, chemotactically directed, move into a food

source, consuming it as they go. A model for this is given by

bt =
∂

∂x

[
Dbx −

bχ

a
ax

]
, at = −kb,

where b(x, t) and a(x, t) are the bacteria and nutrient respectively and D, χ, and k are
positive constants. Look for travelling wave solutions, as functions of z = x− ct where c
is the wave speed, with the boundary conditions b → 0 as |z| → ∞, a → 0 as z → −∞,
a → 1 as z → ∞. Hence show that b(z) and a(z) satisfy

b′ =
b

cD

[
kbχ

a
− c2

]
, a′ =

kb

c
,

where the prime denotes differentiation with respect to z. Integrating db/da, find an
algebraic relationship between b(z) and a(z).

In the special case where χ = 2D show that

a(z) =
[
1 +Ke−cz/D

]−1
, b(z) =

c2

kD
e−cz/D

[
1 +Ke−cz/D

]−2
,

where K is an arbitrary positive constant which is equivalent to a linear translation; it
may be set to 1. Sketch the wave solutions and explain the biological interpretation.

Paper 3, Section II

13A Mathematical Biology
An activator–inhibitor reaction diffusion system in dimensionless form is given by

ut = uxx +
u2

v
− bu, vt = dvxx + u2 − v,

where b and d are positive constants. Which is the activitor and which the inhibitor?
Determine the positive steady states and show, by an examination of the eigenvalues in
a linear stability analysis of the spatially uniform situation, that the reaction kinetics is
stable if b < 1.

Determine the conditions for the steady state to be driven unstable by diffusion.
Show that the parameter domain for diffusion–driven instability is given by 0 < b < 1,
bd > 3 + 2

√
2, and sketch the (b, d) parameter space in which diffusion–driven instability

occurs. Further show that at the bifurcation to such an instability the critical wave number
kc is given by k2c = (1 +

√
2)/d.

Part II, 2009 List of Questions [TURN OVER
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1/I/6B Mathematical Biology

A gene product with concentration g is produced by a chemical S of concentration s,
is autocatalysed and degrades linearly according to the kinetic equation

dg

dt
= f(g, s) = s+ k

g2

1 + g2
− g,

where k > 0 is a constant.

First consider the case s = 0. Show that if k > 2 there are two positive steady
states, and determine their stability. Sketch the reaction rate f(g, 0).

Now consider s > 0. Show that there is a single steady state if s exceeds a critical
value. If the system starts in the steady state g = 0 with s = 0 and then s is increased
sufficiently before decreasing back to zero, show that a biochemical switch can be achieved
to a state g = g2, whose value you should determine.

Part II 2008
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2/I/6B Mathematical Biology

The population dynamics of a species is governed by the discrete model

Nt+1 = f(Nt) = Nt exp

[
r

(
1− Nt

K

)]
,

where r and K are positive constants.

Determine the steady states and their eigenvalues. Show that a period-doubling
bifurcation occurs at r = 2.

Show graphically that the maximum possible population after t = 0 is

Nmax = f(K/r).

2/II/13B Mathematical Biology

Consider the nonlinear equation describing the invasion of a population u(x, t)

ut = muxx + f(u), (1)

with m > 0, f(u) = −u (u− r)(u− 1) and 0 < r < 1 a constant.

(a) Considering time-dependent spatially homogeneous solutions, show that there
are two stable and one unstable uniform steady states.

(b) In the case r = 1
2 , find the stationary ‘front’ which has

u→ 1 as x→ −∞ and u→ 0 as x→∞. (2)

[Hint: f(u) = F ′(u) where F (u) = − 1
4u

2(1− u)2 + 1
6 (r − 1

2 )u2(2u− 3).]

(c) Now consider travelling-wave solutions to (1) of the form u(x, t) = U(z) where
z = x− vt. Show that U satisfies an equation of the form

mÜ + v U̇ = −V ′(U),

where ˙( ) ≡ d

dz
( ) and ( )′ ≡ d

dU
( ) .

Sketch the form of V (U) for r = 1
2 , r > 1

2 and r < 1
2 . Using conditions (2), show

that

v

∫ ∞

−∞
U̇2 dz = F (1)− F (0).

Deduce how the sign of the travelling-wave velocity v depends on r.

Part II 2008
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3/I/6B Mathematical Biology

An allosteric enzyme E reacts with a substrate S to produce a product P according
to the mechanism

S + E
k1



k−1

C1

k2
⇀ E + P

S + C1

k3



k−3

C2

k4
⇀ C1 + P,

where C1 and C2 are enzyme-substrate complexes. With lowercase letters denoting
concentrations, write down a system of differential equations based on the Law of Mass
Action which model this reaction mechanism.

The initial conditions are s = s0, e = e0, c1 = c2 = p = 0. Using u = s/s0,
vi = ci/e0, τ = k1e0t and ε = e0/s0, show that the nondimensional reaction mechanism
reduces to

du

dτ
= f(u, v1, v2) and ε

dvi
dτ

= gi(u, v1, v2) for i = 1, 2,

finding expressions for f , g1 and g2.

3/II/13B Mathematical Biology

Consider the activator-inhibitor system in the fast-inhibitor limit

ut = Duxx − u (u− r)(u− 1)− ρ (v − u),

0 = vxx − (v − u),

where D is small, 0 < r < 1 and 0 < ρ < 1.

Examine the linear stability of the state u = v = 0 using perturbations of the
form exp(ikx + σt). Sketch the growth-rate σ as a function of the wavenumber k. Find
the growth-rate of the most unstable wave, and so determine the boundary in the r-ρ
parameter plane which separates stable and unstable modes.

Show that the system is unchanged under the transformation u→ 1−u, v → 1− v
and r → 1 − r. Hence write down the equation for the boundary between stable and
unstable modes of the state u = v = 1.

Part II 2008

2008



19

4/I/6B Mathematical Biology

A semi-infinite elastic filament lies along the positive x-axis in a viscous fluid. When
it is perturbed slightly to the shape y = h(x, t), it evolves according to

ζ ht = −Ahxxxx ,

where ζ characterises the viscous drag and A the bending stiffness. Motion is forced by
boundary conditions

h = h0 cos(ωt) and hxx = 0 at x = 0, while h → 0 as x → ∞.

Use dimensional analysis to find the characteristic length `(ω) of the disturbance.
Show that the steady oscillating solution takes the form

h(x, t) = h0 Re
[
e iωtF (η)

]
with η = x/`,

finding the ordinary differential equation for F .

Find two solutions for F which decay as x→∞. Without solving explicitly for the
amplitudes, show that h(x, t) is the superposition of two travelling waves which decay with
increasing x, one with crests moving to the left and one to the right. Which dominates?

Part II 2008

2008
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1/I/6B Mathematical Biology

A chemostat is a well-mixed tank of given volume V0 that contains water in which
lives a population N(t) of bacteria that consume nutrient whose concentration is C(t) per
unit volume. An inflow pipe supplies a solution of nutrient at concentration C0 and at a
constant flow rate of Q units of volume per unit time. The mixture flows out at the same
rate through an outflow pipe. The bacteria consume the nutrient at a rate NK(C), where

K(C) =
KmaxC

K0 + C
,

and the bacterial population grows at a rate γNK(C), where 0 < γ < 1 .

Write down the differential equations for N(t), C(t) and show that they can be
rescaled into the following form:

dn

dτ
= α

cn

1 + c
− n ,

dc

dτ
= − cn

1 + c
− c+ β ,

where α, β are positive constants, to be found.

Show that this system of equations has a non-trivial steady state if α > 1 and

β >
1

α− 1
, and that it is stable.

2/I/6B Mathematical Biology

A field contains Xn seed-producing poppies in August of year n. On average each
poppy produces γ seeds, a number that is assumed not to vary from year to year. A
fraction σ of seeds survive the winter and a fraction α of those germinate in May of year
n+ 1. A fraction β of those that survive the next winter germinate in year n+ 2 . Show
that Xn satisfies the following difference equation:

Xn+1 = ασγXn + βσ2(1− α)γXn−1 .

Write down the general solution of this equation, and show that the poppies in the field
will eventually die out if

σγ[(1− α)βσ + α] < 1 .

Part II 2007
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2/II/13B Mathematical Biology

Show that the concentration C(x, t) of a diffusible chemical substance in a station-
ary medium satisfies the partial differential equation

∂C

∂t
= ∇ · (D∇C) + F ,

where D is the diffusivity and F (x, t) is the rate of supply of the chemical.

A finite amount of the chemical, 4πM , is supplied at the origin at time t = 0 , and
spreads out in a spherically symmetric manner, so that C = C(r, t) for r > 0, t > 0 , where
r is the radial coordinate. The diffusivity is given by D = kC , for constant k . Show, by
dimensional analysis or otherwise, that it is appropriate to seek a similarity solution in
which

C =
Mα

(k t)β
f(ξ) , ξ =

r

(Mkt)γ
and

∫ ∞

0

ξ2f(ξ) dξ = 1 ,

where α, β, γ are constants to be determined, and derive the ordinary differential equation
satisfied by f(ξ).

Solve this ordinary differential equation, subject to appropriate boundary condi-
tions, and deduce that the chemical occupies a finite spherical region of radius

r0(t) = (75Mkt)1/5 .

[Note: in spherical polar coordinates

∇C ≡
(
∂C

∂r
, 0, 0

)
and ∇ · (V (r, t), 0, 0) ≡ 1

r2
∂

∂r
(r2V ) .

]

3/I/6B Mathematical Biology

Consider a birth and death process in which births always give rise to two offspring,
with rate λ, while the death rate per individual is β.

Write down the master equation (or probability balance equation) for this system.

Show that the population mean is given by

〈n〉 = 2λ

β
(1− e−βt) + n0e

−βt

where n0 is the initial population mean, and that the population variance satisfies

σ2 → 3λ/β as t→ ∞ .

Part II 2007
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3/II/13B Mathematical Biology

The number density of a population of cells is n(x, t). The cells produce a chemical
whose concentration is C(x, t) and respond to it chemotactically. The equations governing
n and C are

∂n

∂t
= γn(n0 − n) +Dn∇2n− χ∇ · (n∇C)

∂C

∂t
= αn− βC +Dc∇2C.

(i) Give a biological interpretation of each term in these equations, where you may
assume that α, β, γ, n0, Dn, Dc and χ are all positive.

(ii) Show that there is a steady-state solution that is stable to spatially invariant
disturbances.

(iii) Analyse small, spatially-varying perturbations to the steady state that satisfy
∇2φ = −k2φ for any variable φ, and show that a chemotactic instability is possible
if

χαn0 > βDn + γn0Dc + (4βγn0DnDc)
1/2 .

(iv) Find the critical value of k at which the instability first appears as χ is increased.

4/I/6B Mathematical Biology

The non-dimensional equations for two competing populations are

du

dt
= u(1− υ)− ε1u

2,

dυ

dt
= α

[
υ(1− u)− ε2υ

2
]
.

Explain the meaning of each term in these equations.

Find all the fixed points of this system when α > 0, 0 < ε1 < 1 and 0 < ε2 < 1,
and investigate their stability.

Part II 2007
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1/I/6B Mathematical Biology

A large population of some species has probability P (n, t) of taking the value n
at time t. Explain the use of the generating function φ(s, t) =

∑∞
n=0 s

nP (n, t), and give
expressions for P (n, t) and 〈n〉 in terms of φ.

A particular population is subject to a birth-death process, so that the probability
of an increase from n to n+ 1 in unit time is α+ βn, while the probability of a decrease
from n to n− 1 is γn, with γ > β. Show that the master equation for P (n, t) is

∂P (n, t)

∂t
= (α+ β(n− 1))P (n− 1, t) + γ(n+ 1)P (n+ 1, t)− (α+ (β + γ)n)P (n, t) .

Derive the equation satisfied by φ, and show that in the statistically steady state, when φ
and P are independent of time, φ takes the form

φ(s) =

(
γ − β

γ − βs

)α/β

.

Using the equation for φ, or otherwise, find 〈n〉.

2/I/6B Mathematical Biology

Two interacting populations of prey and predators, with populations u(t), v(t)
respectively, obey the evolution equations (with all parameters positive)

du

dt
= u(µ1 − α1v − δu) ,

dv

dt
= v(−µ2 + α2u)− ε .

Give an explanation in terms of population dynamics of each of the terms in these
equations.

Show that if α2µ1 > δµ2 there are two non-trivial fixed points with u, v 6= 0,
provided ε is sufficiently small. Find the trace and determinant of the Jacobian in terms
of u, v and show that, when δ and ε are very small, the fixed point with u ≈ µ1/δ,
v ≈ εδ/µ1α2 is always unstable.

Part II 2006
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2/II/13B Mathematical Biology

Consider the discrete predator-prey model for two populations Nt, Pt of prey and
predators, respectively:

Nt+T = rNt exp(−aPt)

Pt+T = sNt(1− b exp(−aPt))

}
, (∗)

where r, s, a, b are constants, all assumed to be positive.

(a) Give plausible explanations of the meanings of T, r, s, a, b.

(b) Nondimensionalize equations (∗) to show that with appropriate rescaling they may
be reduced to the form

nt+1 = rnt exp(−pt)
pt+1 = nt(1− b exp(−pt))

}
.

(c) Now assume that b < 1, r > 1. Show that the origin is unstable, and that there is
a nontrivial fixed point (n, p) = (nc(b, r), pc(b, r)). Investigate the stability of this
point by writing (nt, pt) = (nc +n′t, pc + p′t) and linearizing. Express the linearized
equations as a second order recurrence relation for n′t, and hence show that n′t
satisfies an equation of the form

n′t = Aλt1 +Bλt2

where the quantities λ1,2 satisfy λ1 + λ2 = 1 + bnc/r, λ1λ2 = nc and A,B are
constants. Give a similar expression for p′t for the same values of A,B.

Show that when r is just greater than unity the λi (i = 1, 2) are real and both less
than unity, while if nc is just greater than unity then the λi are complex with modulus
greater than one. Show also that nc increases monotonically with r and that if the roots
are real neither of them can be unity.

Deduce that the fixed point is stable for sufficiently small r but loses stability for a
value of r that depends on b but is certainly less than e = exp(1). Give an equation that
determines the value of r where stability is lost, and an equation that gives the argument
of the eigenvalue at this point. Sketch the behaviour of the moduli of the eigenvalues as
functions of r.

Part II 2006
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3/I/6B Mathematical Biology

The SIR epidemic model for an infectious disease divides the population N into
three categories of susceptible S(t), infected I(t) and recovered (non-infectious) R(t). It is
supposed that the disease is non-lethal, so that the population does not change in time.

Explain the reasons for the terms in the following model equations:

dS

dt
= pR− rIS,

dI

dt
= rIS − aI,

dR

dt
= aI − pR.

At time t = 0, S ≈ N while I,R� 1.

(a) Show that if rN < a no epidemic occurs.

(b) Now suppose that p > 0 and there is an epidemic. Show that the system has a non-
trivial fixed point, and that it is stable to small disturbances. Show also that for
both small and large p both the trace and the determinant of the Jacobian matrix
are O(p), and deduce that the matrix has complex eigenvalues for sufficiently small
p, and real eigenvalues for sufficiently large p.

Part II 2006
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3/II/13B Mathematical Biology

A chemical system with concentrations u(x, t), v(x, t) obeys the coupled reaction-
diffusion equations

du

dt
= ru+ u2 − uv + κ1

d2u

dx2
,

dv

dt
= s(u2 − v) + κ2

d2v

dx2
,

where r, s, κ1, κ2 are constants with s, κ1, κ2 positive.

(a) Find conditions on r, s such that there is a steady homogeneous solution u = u0,

v = u20 which is stable to spatially homogeneous perturbations.

(b) Investigate the stability of this homogeneous solution to disturbances proportional
to exp(ikx). Assuming that a solution satisfying the conditions of part (a) exists,
find the region of parameter space in which the solution is stable to space-dependent
disturbances, and show in particular that one boundary of this region for fixed s is
given by

d ≡
√
κ2
κ1

=
√
2s+

1

u0

√
s(2u20 − u0) .

Sketch the various regions of existence and stability of steady, spatially homoge-
neous solutions in the (d, u0) plane for the case s = 2.

(c) Show that the critical wavenumber k = kc for the onset of the instability satisfies
the relation

k2c =
1√
κ1κ2

[
s(d−

√
2s)

d(2
√
2s− d)

]
.

Explain carefully what happens when d <
√
2s and when d > 2

√
2s.
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4/I/6B Mathematical Biology

A nonlinear model of insect dispersal with exponential death rate takes the form
(for insect population n(x, t))

∂n

∂t
= −µn+

∂

∂x

(
n
∂n

∂x

)
. (∗)

At time t = 0 the total insect population is Q, and all the insects are at the origin. A
solution is sought in the form

n =
e−µt

λ(t)
f(η); η =

x

λ(t)
, λ(0) = 0 . (†)

(a) Verify that
∫∞
−∞ f dη = Q, provided f decays sufficiently rapidly as |x| → ∞.

(b) Show, by substituting the form of n given in equation (†) into equation (∗), that
(∗) is satisfied, for nonzero f , when

dλ

dt
= λ−2e−µt and

df

dη
= −η .

Hence find the complete solution and show that the insect population is always
confined to a finite region that never exceeds the range

|x| 6
(
9Q

2µ

)1/3

.
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1/I/6E Mathematical Biology

Consider a biological system in which concentrations x(t) and y(t) satisfy

dx

dt
= f(y)− x and

dy

dt
= g(x)− y ,

where f and g are positive and monotonically decreasing functions of their arguments, so
that x represses the synthesis of y and vice versa.

(a) Suppose the functions f and g are bounded. Sketch the phase plane and explain
why there is always at least one steady state. Show that if there is a steady state with

∂ ln f

∂ ln y

∂ ln g

∂ lnx
> 1

then the system is multistable.

(b) If f = λ/(1+ym) and g = λ/(1+xn), where λ, m and n are positive constants,
what values of m and n allow the system to display multistability for some value of λ?

Can f= λ/ym and g= λ/xn generate multistability? Explain your answer carefully.

2/I/6E Mathematical Biology

Consider a system with stochastic reaction events

x
λ−→ x+ 1 and x

βx2

−→ x− 2 ,

where λ and β are rate constants.

(a) State or derive the exact differential equation satisfied by the average number
of molecules <x>. Assuming that fluctuations are negligible, approximate the differential
equation to obtain the steady-state value of <x>.

(b) Using this approximation, calculate the elasticity H, the average lifetime τ , and
the average chemical event size <r> (averaged over fluxes).

(c) State the stationary Fluctuation Dissipation Theorem for the normalised
variance η. Hence show that

η =
3

4<x>
.
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2/II/13E Mathematical Biology

Consider the reaction-diffusion system

∂u

∂τ
= βu

(
u2

v
− u

)
+Du

∂2u

∂x2

∂v

∂τ
= βv

(
u2 − v

)
+Dv

∂2v

∂x2

for an activator u and inhibitor v, where βu and βv are degradation rate constants and
Du and Dv are diffusion rate constants.

(a) Find a suitably scaled time t and length s such that

∂u

∂t
=
u2

v
− u+

∂2u

∂s2

1

Q

∂v

∂t
= u2 − v + P

∂2v

∂s2
,

(∗)

and find expressions for P and Q.

(b) Show that the Jacobian matrix for small spatially homogenous deviations from
a nonzero steady state of (∗) is

J =

(
1 −1
2Q −Q

)

and find the values of Q for which the steady state is stable.
[Hint: The eigenvalues of a 2 × 2 real matrix both have positive real parts iff the matrix
has a positive trace and determinant.]

(c) Derive linearised ordinary differential equations for the amplitudes û(t) and v̂(t)
of small spatially inhomogeneous deviations from a steady state of (∗) that are proportional
to cos(s/L), where L is a constant.

(d) Assuming that the system is stable to homogeneous perturbations, derive the
condition for inhomogeneous instability. Interpret this condition in terms of how far
activator and inhibitor molecules diffuse on average before they are degraded.

(e) Calculate the lengthscale Lcrit of disturbances that are expected to be observed
when the condition for inhomogeneous instability is just satisfied. What are the dominant
mechanisms for stabilising disturbances on lengthscales (i) much less than and (ii) much
greater than Lcrit?
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3/I/6E Mathematical Biology

Let x be the concentration of a binary master sequence of length L and let y be
the total concentration of all mutant sequences. Master sequences try to self-replicate at
a total rate ax, but each independent digit is only copied correctly with probability q.
Mutant sequences self-replicate at a total rate by, where a > b, and the probability of
mutation back to the master sequence is negligible.

(a) The evolution of x is given by

dx

dt
= aqLx .

Write down the corresponding equation for y and derive a differential equation for the
master-to-mutant ratio z = x/y.

(b) What is the maximum length Lmax for which there is a positive steady-state
value of z? Is the positive steady state stable when it exists?

(c) Obtain a first-order approximation to Lmax assuming that both 1− q � 1 and
s� 1, where the selection coefficient s is defined by b = a(1− s).
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3/II/13E Mathematical Biology

Protein synthesis by RNA can be represented by the stochastic system

x1
λ1−→ x1 + 1 and x1

β1x1−→ x1 − 1

x2
λ2x1−→ x2 + 1 and x2

β2x2−→ x2 − 1
(1)

in which x1 is an environmental variable corresponding to the number of RNA molecules
per cell and x2 is a system variable, with birth rate proportional to x1, corresponding to
the number of protein molecules.

(a) Use the normalized stationary Fluctuation–Dissipation Theorem (FDT) to
calculate the (exact) normalized stationary variances η11 = σ2

1/<x1>
2 and η22 =

σ2
2/<x2>

2 in terms of the averages <x1> and <x2>.

(b) Separate η22 into an intrinsic and an extrinsic term by considering the limits
when x1 does not fluctuate (intrinsic), and when x2 responds deterministically to changes
in x1 (extrinsic). Explain how the extrinsic term represents the magnitude of environmen-
tal fluctuations and time-averaging.

(c) Assume now that the birth rate of x2 is changed from the “constitutive”
mechanism λ2x1 in (1) to a “negative feedback” mechanism λ2x1f(x2), where f is a
monotonically decreasing function of x2. Use the stationary FDT to approximate η22 in
terms of h = |∂ ln f/∂ lnx2|. Apply your answer to the case f(x2) = k/x2.

[Hint: To reduce the algebra introduce the elasticity H22 = ∂ ln(R−
2 /R

+
2 )/∂ lnx2, where

R−
2 and R+

2 are the death and birth rates of x2 respectively.]

(d) Explain the extrinsic term for the negative feedback system in terms of
environmental fluctuations, time-averaging, and static susceptibility.

(e) Explain why the FDT is exact for the constitutive system but approximate for
the feedback system. When, generally speaking, does the FDT approximation work well?

(f) Consider the following three experimental observations: (i) Large changes in
λ2 have no effect on η22; (ii) When x2 is perturbed by 1% from its stationary average,
perturbations are corrected more rapidly in the feedback system than in the constitutive
system; (iii) The feedback system displays lower values η22 than the constitutive system.

What does (i) imply about the relative importance of the noise terms? Can (ii) be
directly explained by (iii), i.e., does rapid adjustment reduce noise? Justify your answers.
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4/I/6E Mathematical Biology

The output of a linear perceptron is given by y = w · x, where w is a vector
of weights connecting a fluctuating input vector x to an output unit. The weights are
given random initial values and are then updated according to a learning rule that has a
time-constant τ much greater than the fluctuation timescale of the inputs.

(a) Find the behaviour of |w| for each of the following two rules

(i) τ
dw

dt
= yx

(ii) τ
dw

dt
= yx− αy2w|w|2, where α is a positive constant.

(b) Consider a third learning rule

(iii) τ
dw

dt
= yx−w|w|2 .

Show that in a steady state the vector of weights satisfies the eigenvalue equation

Cw = λw ,

where the matrix C and eigenvalue λ should be identified.

(c) Comment briefly on the biological implications of the three rules.

Part II 2005

2005


