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Paper 1, Section II

22F Linear Analysis
(a) State the open mapping theorem and the closed graph theorem, and prove that

the former implies the latter.

(b) Let V be a Banach space. Give the definition of the dual space V ∗, and prove
that V ∗ is a Banach space.

(c) Let V be a Banach space over the real field, and let T : V → V ∗, v 7→ Tv be a
linear map between these two Banach spaces that satisfies Tv(v) > 0 for all v ∈ V . Prove
that T is continuous.

Paper 2, Section II

22F Linear Analysis
(a) Let (V, ‖ · ‖) be a normed vector space over R, and v, w ∈ V . Define

Svw
1 :=

{
z ∈ V : ‖z − v‖ = ‖z − w‖ =

1

2
‖v − w‖

}

and then inductively, for n > 2,

Svw
n :=

{
z ∈ Svw

n−1 : ∀ z̃ ∈ Svw
n−1, ‖z − z̃‖ 6

1

2
diam(Svw

n−1)
}
,

with the definition diam(S) := supz,z̃∈S ‖z − z̃‖. Prove that ∩n>1S
vw
n = {v+w

2 }.

(b) Let (V, ‖ · ‖V ) and (Ṽ , ‖ · ‖
Ṽ

) be normed vector spaces over R, and u : V → Ṽ
an isometry, i.e. a map with the property that ‖u(v) − u(w)‖

Ṽ
= ‖v − w‖V . Using part

(a), prove that u(v+w
2 ) = u(v)+u(w)

2 for all v, w ∈ V .

(c) Assume furthermore that the isometry u : V → Ṽ satisfies u(0) = 0. Prove that
u is linear.

Part II, Paper 1

2023
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Paper 3, Section II

21F Linear Analysis
Recall that a topological space X is called normal if for any pair of non-empty

disjoint closed subsets A,B ⊂ X, there is a pair of disjoint open subsets U1, U2 ⊂ X so
that A ⊂ U1 and B ⊂ U2. Also recall that the Urysohn lemma states that in a normal
topological space X, for any pair of non-empty disjoint closed subsets A,B ⊂ X, there is
an f : X → [0, 1] continuous so that f = 0 on A and f = 1 on B.

(a) State and prove the Tietze extension theorem. [You may use the Urysohn
lemma.]

(b) Consider a normal topological space X, and A ⊂ X a non-empty closed subset
that can be realised as a countable intersection of open sets. Show that there exists
f : X → [0, 1] continuous so that f vanishes on A and on A only.

(c) Consider a normal topological space X, and A,B ⊂ X a pair of non-empty
disjoint closed subsets that can both be realised as countable intersections of open sets.
Show that there exists f : X → [0, 1] continuous so that f vanishes on A and on A only,
and is equal to 1 on B and on B only.

Paper 4, Section II

22F Linear Analysis
Below, H denotes a Hilbert space over C.

(a) Consider a sequence (xn) in H with the property that there exists an x ∈ H
such that for any y ∈ H, 〈xn, y〉 converges to 〈x, y〉 in C. Prove that the sequence (xn) is
bounded. [The uniform boundedness principle may be used without proof, provided it is
properly stated.]

(b) With (xn) and x as above, prove that there exists another sequence (x̃k) in H
such that ‖x̃k − x‖H → 0 and such that each x̃k is a convex combination of terms in (xn).

(c) Deduce that if C ⊂ H is closed and convex, and (xn) is a sequence in C as
in part (a), i.e. with the property that there exists x ∈ H such that for any y ∈ H,
〈xn, y〉 → 〈x, y〉, then in fact x ∈ C.

(d) Is the statement in part (c) still true when C is closed but not necessarily convex?
[You must either provide a proof if true or a detailed counterexample if untrue.]

Part II, Paper 1 [TURN OVER]

2023
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Paper 1, Section II
22G Linear Analysis

Let `∞ denote the space of bounded real sequences and let `1 denote the space of
summable real sequences. Suppose that ϕ : `∞ → R is linear and continuous, that ϕ
is non-negative on non-negative sequences, that ϕ((xn)n>1) = ϕ((xn+1)n>1), and that ϕ
maps the constant sequence equal to one to one.

(a) Prove that lim infn→∞ xn 6 ϕ((xn)n>1) 6 lim supn→∞ xn for all (xn)n>1 ∈ `∞.

(b) Is there (yn)n>1 ∈ `1 so that ϕ((xn)n>1) =
∑

n>1 xnyn for all (xn)n>1 ∈ `∞?

(c) Give an example of (xn)n>1 ∈ `∞ that does not converge but for which all ϕ
defined as above give the same value.

(d) Let y ∈ R. Assume (xn)n>1 ∈ `∞ satisfies
xn+1 + xn+2 + · · ·+ xn+p

p
→ y as

p→∞ uniformly in n > 1. Prove that ϕ((xn)n>1) = y.

Paper 2, Section II
22G Linear Analysis

(a) Given a complex Banach space (V, ‖ · ‖), prove that the space of bounded linear
maps (B(V, V ), ||| · |||) endowed with the norm

|||T ||| = sup
v∈V, ‖v‖=1

‖Tv‖

is a Banach space.

(b) Assume (V, ‖ · ‖) is a complex Hilbert space. State the definitions of a compact
operator T : V → V and of a Hilbertian basis. Suppose T ∈ B(V, V ) and V has a Hilbertian
basis (en)n>1 such that T (en) = λnen for complex numbers λn, n > 1. Prove that T is
compact if and only if λn → 0.

(c) Given a complex Hilbert space (V, ‖ · ‖) and (en)n>1 a Hilbertian basis of V ,
consider H(V, V ), the set of linear operators T such that

∑
n>1 ‖Ten‖2 < +∞. Prove that

operators in H(V, V ) are bounded and compact, and that (H(V, V ), ||| · |||∗) with

|||T |||∗ =

(∑

n>1

‖Ten‖2
)1/2

is a Hilbert space. Are ||| · ||| and ||| · |||∗ equivalent norms on H(V, V )?

Paper 3, Section II
21G Linear Analysis

(a) Prove that any metric space (X, d) is normal for the induced topology.

(b) State the Urysohn lemma and the Tietze extension theorem.

(c) Prove that a metric space (X, d) is compact if and only if all continuous functions
from X to R are bounded.

Part II, Paper 1

2022
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Paper 4, Section II
22G Linear Analysis

(a) Define what it means for a sequence of functions fn : R → R to be equi-
continuous on [0, 1]. State the Arzelà–Ascoli theorem.

(b) Given a continuous function ϕ : R → R, we can inductively define functions
fn : R→ R for n > 0 by fn+1(t) =

∫ t
0 ϕ(fn(s)) ds, and f0(t) = 0 for all t ∈ R. Show that

there exists T1 > 0 so that the sequence (fn)n>1 is equi-bounded and equi-continuous on
[0, T1].

(c) Deduce the existence of T2 ∈ (0, T1] and a continuously differentiable function
f : [0, T2] → R such that f(0) = 0 and f ′(t) = ϕ(f(t)) on [0, T2]. [Hint: Prove that if
T2 ∈ (0, T1] is small enough, Rn(t) = fn+1(t)− fn(t)→ 0 uniformly on [0, T2].]

Part II, Paper 1 [TURN OVER]

2022
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Paper 1, Section II

22H Linear Analysis
Let H be a separable Hilbert space and {ei} be a Hilbertian (orthonormal) basis of

H. Given a sequence (xn) of elements of H and x∞ ∈ H, we say that xn weakly converges
to x∞, denoted xn ⇀ x∞, if ∀h ∈ H, limn→∞〈xn, h〉 = 〈x∞, h〉.

(a) Given a sequence (xn) of elements of H, prove that the following two statements
are equivalent:

(i) ∃x∞ ∈ H such that xn ⇀ x∞;

(ii) the sequence (xn) is bounded in H and ∀i > 1, the sequence (〈xn, ei〉) is
convergent.

(b) Let (xn) be a bounded sequence of elements of H. Show that there exists
x∞ ∈ H and a subsequence (xφ(n)) such that xφ(n) ⇀ x∞ in H.

(c) Let (xn) be a sequence of elements of H and x∞ ∈ H be such that xn ⇀ x∞.
Show that the following three statements are equivalent:

(i) limn→∞ ‖xn − x∞‖ = 0;

(ii) limn→∞ ‖xn‖ = ‖x∞‖;

(iii) ∀ε > 0, ∃I(ε) such that ∀n > 1,
∑

i>I(ε) |〈xn, ei〉|2 < ε.

Paper 2, Section II

22H Linear Analysis
(a) Let V be a real normed vector space. Show that any proper subspace of V has

empty interior.

Assuming V to be infinite-dimensional and complete, prove that any algebraic basis
of V is uncountable. [The Baire category theorem can be used if stated properly.] Deduce
that the vector space of polynomials with real coefficients cannot be equipped with a
complete norm, i.e. a norm that makes it complete.

(b) Suppose that ‖ · ‖1 and ‖ · ‖2 are norms on a vector space V such that (V, ‖ · ‖1)
and (V, ‖·‖2) are both complete. Prove that if there exists C1 > 0 such that ‖x‖2 6 C1‖x‖1
for all x ∈ V , then there exists C2 > 0 such that ‖x‖1 6 C2‖x‖2 for all x ∈ V . Is this still
true without the assumption that (V, ‖ · ‖1) and (V, ‖ · ‖2) are both complete? Justify your
answer.

(c) Let V be a real normed vector space (not necessarily complete) and V ∗ be the
set of linear continuous forms f : V → R. Let (xn)n>1 be a sequence in V such that∑

n>1 |f(xn)| <∞ for all f ∈ V ∗. Prove that

sup
‖f‖V ∗61

∑

n>1

|f(xn)| <∞ .

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

21H Linear Analysis
(a) State the Arzela–Ascoli theorem, including the definition of equicontinuity.

(b) Consider a sequence (fn) of continuous real-valued functions on R such that for
all x ∈ R,

(
fn(x)

)
is bounded and the sequence is equicontinuous at x. Prove that there

exists f ∈ C(R) and a subsequence (fϕ(n)) such that fϕ(n) → f uniformly on any closed
bounded interval.

(c) Let K be a Hausdorff compact topological space, and C(K) the real-valued
continuous functions on K. Let K ⊂ C(K) be a compact subset of C(K). Prove that the
collection of functions K is equicontinuous.

(d) We say that a Hausdorff topological space X is locally compact if every point
has a compact neighbourhood. Let X be such a space, K ⊂ X compact and U ⊂ X
open such that K ⊂ U . Prove that there exists f : X → R continuous with compact
support contained in U and equal to 1 on K. [Hint: Construct an open set V such that
K ⊂ V ⊂ V ⊂ U and V is compact, and use Urysohn’s lemma to construct a function in
V and then extend it by zero.]

Paper 4, Section II

22H Linear Analysis
(a) Let (H1, 〈·, ·〉1), (H2, 〈·, ·〉2) be two Hilbert spaces, and T : H1 → H2 be

a bounded linear operator. Show that there exists a unique bounded linear operator
T ∗ : H2 → H1 such that

〈Tx1, x2〉2 = 〈x1, T ∗x2〉1 , ∀x1 ∈ H1, x2 ∈ H2 .

(b) Let H be a separable Hilbert space. We say that a sequence (ei) is a frame of
H if there exists A,B > 0 such that

∀x ∈ H, A‖x‖2 6
∑

i>1

|〈x, ei〉|2 6 B‖x‖2.

State briefly why such a frame exists. From now on, let (ei) be a frame of H. Show that
Span{ei} is dense in H.

(c) Show that the linear map U : H → `2 given by U(x) =
(
〈x, ei〉

)
i>1

is bounded
and compute its adjoint U∗.

(d) Assume now that (ei) is a Hilbertian (orthonormal) basis of H and let a ∈ H.
Show that the Hilbert cube Ca =

{
x ∈ H such that ∀i > 1, |〈x, ei〉| 6 |〈a, ei〉|

}
is a

compact subset of H.

Part II, 2021 List of Questions

2021
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Paper 1, Section II

22I Linear Analysis
(a) Define the dual space X∗ of a (real) normed space (X, ‖·‖). Define what it means

for two normed spaces to be isometrically isomorphic. Prove that (l1)
∗ is isometrically

isomorphic to l∞.

(b) Let p ∈ (1,∞). [In this question, you may use without proof the fact that (lp)
∗

is isometrically isomorphic to lq where 1
p + 1

q = 1.]

(i) Show that if {φm}∞m=1 is a countable dense subset of (lp)
∗, then the function

d(x, y) :=
∞∑

m=1

2−m
|φm(x− y)|

1 + |φm(x− y)|

defines a metric on the closed unit ball B ⊂ lp. Show further that for a sequence {x(n)}∞n=1

of elements x(n) ∈ B, we have

φ(x(n))→ φ(x) ∀ φ ∈ (lp)
∗ ⇔ d(x(n), x)→ 0.

Deduce that (B, d) is a compact metric space.

(ii) Give an example to show that for a sequence {x(n)}∞n=1 of elements x(n) ∈ B
and x ∈ B,

φ(x(n))→ φ(x) ∀ φ ∈ (lp)
∗ 6⇒

∥∥x(n) − x
∥∥
lp
→ 0.

Paper 2, Section II

22I Linear Analysis
(a) State and prove the Baire Category theorem.

Let p > 1. Apply the Baire Category theorem to show that
⋃

16q<p lq 6= lp. Give an
explicit element of lp \

⋃
16q<p lq.

(b) Use the Baire Category theorem to prove that C([0, 1]) contains a function which
is nowhere differentiable.

(c) Let (X, ‖ · ‖) be a real Banach space. Verify that the map sending x to the
function ex : φ 7→ φ(x) is a continuous linear map of X into (X∗)∗ where X∗ denotes the
dual space of (X, ‖ ·‖). Taking for granted the fact that this map is an isometry regardless
of the norm on X, prove that if ‖ · ‖′ is another norm on the vector space X which is not
equivalent to ‖ · ‖, then there is a linear function ψ : X → R which is continuous with
respect to one of the two norms ‖ · ‖, ‖ · ‖′ and not continuous with respect to the other.

Part II, 2020 List of Questions

2020



57

Paper 3, Section II

21I Linear Analysis
Let H be a separable complex Hilbert space.

(a) For an operator T : H → H, define the spectrum and point spectrum. Define
what it means for T to be: (i) a compact operator; (ii) a self-adjoint operator and (iii) a
finite rank operator.

(b) Suppose T : H → H is compact. Prove that given any δ > 0, there exists a
finite-dimensional subspace E ⊂ H such that ‖T (en) − PET (en)‖ < δ for each n, where
{e1, e2, e3, . . .} is an orthonormal basis for H and PE denotes the orthogonal projection
onto E. Deduce that a compact operator is the operator norm limit of finite rank operators.

(c) Suppose that S : H → H has finite rank and λ ∈ C \ {0} is not an eigenvalue of
S. Prove that S − λI is surjective. [You may wish to consider the action of S(S − λI) on
ker(S)⊥.]

(d) Suppose T : H → H is compact and λ ∈ C\{0} is not an eigenvalue of T . Prove
that the image of T − λI is dense in H.

Prove also that T −λI is bounded below, i.e. prove also that there exists a constant
c > 0 such that ‖(T − λI)x‖ > c‖x‖ for all x ∈ H. Deduce that T − λI is surjective.

Paper 4, Section II

22I Linear Analysis
(a) For K a compact Hausdorff space, what does it mean to say that a set S ⊂ C(K)

is equicontinuous. State and prove the Arzelà–Ascoli theorem.

(b) Suppose K is a compact Hausdorff space for which C(K) is a countable union
of equicontinuous sets. Prove that K is finite.

(c) Let F : Rn → Rn be a bounded, continuous function and let x0 ∈ Rn. Consider
the problem of finding a differentiable function x : [0, 1]→ Rn with

x(0) = x0 and x′(t) = F (x(t)) (∗)

for all t ∈ [0, 1]. For each k = 1, 2, 3, . . . , let xk : [0, 1] → Rn be defined by setting
xk(0) = x0 and

xk(t) = x0 +

∫ t

0
F (yk(s)) ds

for t ∈ [0, 1], where

yk(t) = xk

(
j

k

)

for t ∈ ( jk ,
j+1
k ] and j ∈ {0, 1, . . . , k − 1}.

(i) Verify that xk is well-defined and continuous on [0, 1] for each k.

(ii) Prove that there exists a differentiable function x : [0, 1] → Rn solving (∗) for
t ∈ [0, 1].

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

21H Linear Analysis
(a) LetX be a Banach space and consider the open unit ball B = {x ∈ X : ‖x‖ < 1}.

Let T : X → X be a bounded operator. Prove that T (B) ⊃ B implies T (B) ⊃ B.

(b) Let P be the vector space of all polynomials in one variable with real coefficients.
Let ‖ · ‖ be any norm on P . Show that (P, ‖ · ‖) is not complete.

(c) Let f : C → C be entire, and assume that for every z ∈ C there is n such that
f (n)(z) = 0 where f (n) is the n-th derivative of f . Prove that f is a polynomial.

[You may use that an entire function vanishing on an open subset of C must vanish
everywhere.]

(d) A Banach space X is said to be uniformly convex if for every ε ∈ (0, 2] there
is δ > 0 such that for all x, y ∈ X such that ‖x‖ = ‖y‖ = 1 and ‖x − y‖ > ε, one has
‖(x+ y)/2‖ 6 1− δ. Prove that ℓ2 is uniformly convex.

Paper 4, Section II

22H Linear Analysis
(a) State and prove the Riesz representation theorem for a real Hilbert space H.

[You may use that if H is a real Hilbert space and Y ⊂ H is a closed subspace, then
H = Y ⊕ Y ⊥.]

(b) Let H be a real Hilbert space and T : H → H a bounded linear operator. Show
that T is invertible if and only if both T and T ∗ are bounded below. [Recall that an
operator S : H → H is bounded below if there is c > 0 such that ‖Sx‖ > c‖x‖ for all
x ∈ H.]

(c) Consider the complex Hilbert space of two-sided sequences,

X = {(xn)n∈Z : xn ∈ C,
∑

n∈Z
|xn|2 <∞}

with norm ‖x‖ = (
∑

n |xn|2)1/2. Define T : X → X by (Tx)n = xn+1. Show that T is
unitary and find the point spectrum and the approximate point spectrum of T .

Part II, 2019 List of Questions

2019
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Paper 2, Section II

22H Linear Analysis
(a) State the real version of the Stone–Weierstrass theorem and state the Urysohn–

Tietze extension theorem.

(b) In this part, you may assume that there is a sequence of polynomials Pi such
that supx∈[0,1] |Pi(x)−

√
x| → 0 as i→ ∞.

Let f : [0, 1] → R be a continuous piecewise linear function which is linear on
[0, 1/2] and on [1/2, 1]. Using the polynomials Pi mentioned above (but not assuming any
form of the Stone-Weierstrass theorem), prove that there are polynomials Qi such that
supx∈[0,1] |Qi(x)− f(x)| → 0 as i→ ∞.

(d) Which of the following families of functions are relatively compact in C[0, 1]
with the supremum norm? Justify your answer.

F1 = {x 7→ sin(πnx)

n
: n ∈ N}

F2 = {x 7→ sin(πnx)

n1/2
: n ∈ N}

F3 = {x 7→ sin(πnx) : n ∈ N}

[In this question N denotes the set of positive integers.]

Paper 1, Section II

22H Linear Analysis
Let F be the space of real-valued sequences with only finitely many nonzero terms.

(a) For any p ∈ [1,∞), show that F is dense in ℓp. Is F dense in ℓ∞? Justify your
answer.

(b) Let p ∈ [1,∞), and let T : F → F be an operator that is bounded in the
‖ · ‖p-norm, i.e., there exists a C such that ‖Tx‖p 6 C‖x‖p for all x ∈ F . Show that there

is a unique bounded operator T̃ : ℓp → ℓp satisfying T̃ |F = T , and that ‖T̃‖p 6 C.

(c) For each p ∈ [1,∞] and for each i = 1, . . . , 5 determine if there is a bounded
operator from ℓp to ℓp (in the ‖ · ‖p norm) whose restriction to F is given by Ti:

(T1x)n = nxn, (T2x)n = n(xn − xn+1), (T3x)n =
xn
n
,

(T4x)n =
x1

n1/2
, (T5x)n =

∑n
j=1 xj

2n
.

(d) Let X be a normed vector space such that the closed unit ball B1(0) is compact.
Prove that X is finite dimensional.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 3, Section II

21F Linear Analysis
(a) Let X be a normed vector space and let Y be a Banach space. Show that the

space of bounded linear operators B(X,Y ) is a Banach space.

(b) Let X and Y be Banach spaces, and let D ⊂ X be a dense linear subspace.
Prove that a bounded linear map T : D → Y can be extended uniquely to a bounded
linear map T : X → Y with the same operator norm. Is the claim also true if one of X
and Y is not complete?

(c) Let X be a normed vector space. Let (xn) be a sequence in X such that

∞∑

n=1

|f(xn)| <∞ ∀f ∈ X∗.

Prove that there is a constant C such that

∞∑

n=1

|f(xn)| 6 C‖f‖ ∀f ∈ X∗.

Paper 1, Section II

22F Linear Analysis
Let K be a compact Hausdorff space.

(a) State the Arzelà–Ascoli theorem, and state both the real and complex versions
of the Stone–Weierstraß theorem. Give an example of a compact space K and a bounded
set of functions in C(K) that is not relatively compact.

(b) Let f : Rn → R be continuous. Show that there exists a sequence of polynomials
(pi) in n variables such that

B ⊂ Rn compact ⇒ pi|B → f |B uniformly.

Characterize the set of continuous functions f : Rn → R for which there exists a sequence
of polynomials (pi) such that pi → f uniformly on Rn.

(c) Prove that if C(K) is equicontinuous then K is finite. Does this implication
remain true if we drop the requirement that K be compact? Justify your answer.

Part II, 2018 List of Questions

2018
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Paper 2, Section II

22F Linear Analysis
Let X,Y be Banach spaces and let B(X,Y ) denote the space of bounded linear

operators T : X → Y .

(a) Define what it means for a bounded linear operator T : X → Y to be compact.
Let Ti : X → Y be linear operators with finite rank, i.e., Ti(X) is finite-dimensional.
Assume that the sequence Ti converges to T in B(X,Y ). Show that T is compact.

(b) Let T : X → Y be compact. Show that the dual map T ∗ : Y ∗ → X∗ is compact.
[Hint: You may use the Arzelà–Ascoli theorem.]

(c) Let X be a Hilbert space and let T : X → X be a compact operator. Let (λj) be
an infinite sequence of eigenvalues of T with eigenvectors xj . Assume that the eigenvectors
are orthogonal to each other. Show that λj → 0.

Paper 4, Section II

22F Linear Analysis
(a) Let X be a separable normed space. For any sequence (fn)n∈N ⊂ X∗ with

‖fn‖ 6 1 for all n, show that there is f ∈ X∗ and a subsequence Λ ⊂ N such that
fn(x) → f(x) for all x ∈ X as n ∈ Λ, n → ∞. [You may use without proof the fact that
X∗ is complete and that any bounded linear map f : D → R, where D ⊂ X is a dense
linear subspace, can be extended uniquely to an element f ∈ X∗.]

(b) Let H be a Hilbert space and U : H → H a unitary map. Let

I = {x ∈ H : Ux = x}, W = {Ux− x : x ∈ H}.

Prove that I and W are orthogonal, H = I ⊕W , and that for every x ∈ H,

lim
n→∞

1

n

n−1∑

i=0

U ix = Px,

where P is the orthogonal projection onto the closed subspace I.

(c) Let T : C(S1) → C(S1) be a linear map, where S1 = {eiθ ∈ C : θ ∈ R} is the
unit circle, induced by a homeomorphism τ : S1 → S1 by (Tf)eiθ = f(τ(eiθ)). Prove that
there exists µ ∈ C(S1)∗ with µ(1S1) = 1 such that µ(Tf) = µ(f) for all f ∈ C(S1). (Here
1S1 denotes the function on S1 which returns 1 identically.) If T is not the identity map,
does it follow that µ as above is necessarily unique? Justify your answer.

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 3, Section II

19F Linear Analysis
Let K be a non-empty compact Hausdorff space and let C(K) be the space of

real-valued continuous functions on K.

(i) State the real version of the Stone–Weierstrass theorem.

(ii) Let A be a closed subalgebra of C(K). Prove that f ∈ A and g ∈ A implies that
m ∈ A where the function m : K → R is defined by m(x) = max{f(x), g(x)}. [You
may use without proof that f ∈ A implies |f | ∈ A.]

(iii) Prove that K is normal and state Urysohn’s Lemma.

(iv) For any x ∈ K, define δx ∈ C(K)∗ by δx(f) = f(x) for f ∈ C(K). Justifying your
answer carefully, find

inf
x 6=y

‖δx − δy‖.

Paper 2, Section II

20F Linear Analysis

(a) Let X be a normed vector space and Y ⊂ X a closed subspace with Y 6= X. Show
that Y is nowhere dense in X.

(b) State any version of the Baire Category theorem.

(c) Let X be an infinite-dimensional Banach space. Show that X cannot have a
countable algebraic basis, i.e. there is no countable subset (xk)k∈N ⊂ X such that
every x ∈ X can be written as a finite linear combination of elements of (xk).
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Paper 1, Section II

21F Linear Analysis
Let X be a normed vector space over the real numbers.

(a) Define the dual space X∗ of X and prove that X∗ is a Banach space. [You may use
without proof that X∗ is a vector space.]

(b) The Hahn–Banach theorem states the following. Let X be a real vector space, and
let p : X → R be sublinear, i.e., p(x + y) 6 p(x) + p(y) and p(λx) = λp(x) for all
x, y ∈ X and all λ > 0. Let Y ⊂ X be a linear subspace, and let g : Y → R be
linear and satisfy g(y) 6 p(y) for all y ∈ Y . Then there exists a linear functional
f : X → R such that f(x) 6 p(x) for all x ∈ X and f |Y = g.

Using the Hahn–Banach theorem, prove that for any non-zero x0 ∈ X there exists
f ∈ X∗ such that f(x0) = ‖x0‖ and ‖f‖ = 1.

(c) Show that X can be embedded isometrically into a Banach space, i.e. find a Banach
space Y and a linear map Φ : X → Y with ‖Φ(x)‖ = ‖x‖ for all x ∈ X.

Paper 4, Section II

21F Linear Analysis
Let H be a complex Hilbert space with inner product (·, ·) and let T : H → H be a

bounded linear map.

(i) Define the spectrum σ(T ), the point spectrum σp(T ), the continuous spectrum σc(T ),
and the residual spectrum σr(T ).

(ii) Show that T ∗T is self-adjoint and that σ(T ∗T ) ⊂ [0,∞). Show that if T is compact
then so is T ∗T .

(iii) Assume that T is compact. Prove that T has a singular value decomposition: for
N < ∞ or N = ∞, there exist orthonormal systems (ui)

N
i=1 ⊂ H and (vi)

N
i=1 ⊂ H

and (λi)
N
i=1 ⊂ [0,∞) such that, for any x ∈ H,

Tx =
N∑

i=1

λi(ui, x)vi.

[You may use the spectral theorem for compact self-adjoint linear operators.]
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Paper 3, Section II

19I Linear Analysis
(a) Define Banach spaces and Euclidean spaces over R. [You may assume the

definitions of vector spaces and inner products.]

(b) Let X be the space of sequences of real numbers with finitely many non-zero
entries. Does there exist a norm ‖ · ‖ on X such that (X, ‖ · ‖) is a Banach space? Does
there exist a norm such that (X, ‖ · ‖) is Euclidean? Justify your answers.

(c) Let (X, ‖ · ‖) be a normed vector space over R satisfying the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X. Show that 〈x, y〉 = 1
4(‖x+ y‖2−‖x− y‖2) is an inner product on X. [You

may use without proof the fact that the vector space operations + and · are continuous
with respect to ‖ · ‖. To verify the identity 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉, you may find it helpful
to consider the parallelogram law for the pairs (a+ c, b), (b+ c, a), (a− c, b) and (b− c, a).]

(d) Let (X, ‖ · ‖X) be an incomplete normed vector space over R which is not a
Euclidean space, and let (X∗, ‖·‖X∗) be its dual space with the dual norm. Is (X∗, ‖·‖X∗ )
a Banach space? Is it a Euclidean space? Justify your answers.

Paper 2, Section II

20I Linear Analysis
(a) Let K be a topological space and let CR(K) denote the normed vector space of

bounded continuous real-valued functions on K with the norm ‖f‖CR(K) = supx∈K |f(x)|.
Define the terms uniformly bounded, equicontinuous and relatively compact as applied to
subsets S ⊂ CR(K).

(b) The Arzela–Ascoli theorem [which you need not prove] states in particular
that if K is compact and S ⊂ CR(K) is uniformly bounded and equicontinuous, then
S is relatively compact. Show by examples that each of the compactness of K, uniform
boundedness of S, and equicontinuity of S are necessary conditions for this conclusion.

(c) Let L be a topological space. Assume that there exists a sequence of compact
subsets Kn of L such that K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ L and

⋃∞
n=1Kn = L. Suppose

S ⊂ CR(L) is uniformly bounded and equicontinuous and moreover satisfies the condition
that, for every ǫ > 0, there exists n ∈ N such that |f(x)| < ǫ for every x ∈ L \Kn and for
every f ∈ S. Show that S is relatively compact.
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Paper 1, Section II

21I Linear Analysis
(a) State the closed graph theorem.

(b) Prove the closed graph theorem assuming the inverse mapping theorem.

(c) Let X, Y , Z be Banach spaces and T : X → Y , S : Y → Z be linear maps.
Suppose that S ◦ T is bounded and S is both bounded and injective. Show that T is
bounded.

Paper 4, Section II

21I Linear Analysis
Let H be a complex Hilbert space.

(a) Let T : H → H be a bounded linear map. Show that the spectrum of T is a
subset of {λ ∈ C : |λ| 6 ‖T‖B(H)}.

(b) Let T : H → H be a bounded self-adjoint linear map. For λ, µ ∈ C, let
Eλ := {x ∈ H : Tx = λx} and Eµ := {x ∈ H : Tx = µx}. If λ 6= µ, show that Eλ ⊥ Eµ.

(c) Let T : H → H be a compact self-adjoint linear map. For λ 6= 0, show that
Eλ := {x ∈ H : Tx = λx} is finite-dimensional.

(d) Let H1 ⊂ H be a closed, proper, non-trivial subspace. Let P be the orthogonal
projection to H1.

(i) Prove that P is self-adjoint.

(ii) Determine the spectrum σ(P ) and the point spectrum σp(P ) of P .

(iii) Find a necessary and sufficient condition on H1 for P to be compact.
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Paper 3, Section II

18G Linear Analysis

State and prove the Baire Category Theorem. [Choose any version you like.]

An isometry from a metric space (M,d) to another metric space (N, e) is a function
ϕ : M → N such that e(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ M . Prove that there exists no
isometry from the Euclidean plane ℓ22 to the Banach space c0 of sequences converging to 0.
[Hint: Assume ϕ : ℓ22 → c0 is an isometry. For n ∈ N and x ∈ ℓ22 let ϕn(x) denote the nth

coordinate of ϕ(x). Consider the sets Fn consisting of all pairs (x, y) with ‖x‖2 = ‖y‖2 = 1
and ‖ϕ(x)− ϕ(y)‖∞ = |ϕn(x)− ϕn(y)|.]

Show that for each n ∈ N there is a linear isometry ℓn1 → c0.

Paper 4, Section II

19G Linear Analysis

Let H be a Hilbert space and T ∈ B(H). Define what is meant by an adjoint of T
and prove that it exists, it is linear and bounded, and that it is unique. [You may use the
Riesz Representation Theorem without proof.]

What does it mean to say that T is a normal operator? Give an example of a
bounded linear map on ℓ2 that is not normal.

Show that T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Prove that if T is normal, then σ(T ) = σap(T ), that is, that every element of the
spectrum of T is an approximate eigenvalue of T .
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Paper 2, Section II

19G Linear Analysis

(a) Let T : X → Y be a linear map between normed spaces. What does it mean to say
that T is bounded? Show that T is bounded if and only if T is continuous. Define the
operator norm of T and show that the set B(X,Y ) of all bounded, linear maps from
X to Y is a normed space in the operator norm.

(b) For each of the following linear maps T , determine if T is bounded. When T is
bounded, compute its operator norm and establish whether T is compact. Justify
your answers. Here ‖f‖∞ = supt∈[0,1]|f(t)| for f ∈ C[0, 1] and ‖f‖ = ‖f‖∞ + ‖f ′‖∞
for f ∈ C1[0, 1].

(i) T :
(
C1[0, 1], ‖·‖∞

)
→

(
C1[0, 1], ‖·‖

)
, T (f) = f .

(ii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f .

(iii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f ′.

(iv) T : (C[0, 1], ‖·‖∞) → R, T (f) =

∫ 1

0
f(t)h(t) dt, where h is a given element of

C[0, 1]. [Hint: Consider first the case that h(x) 6= 0 for every x ∈ [0, 1], and
apply T to a suitable function. In the general case apply T to a suitable sequence
of functions.]

Paper 1, Section II

19G Linear Analysis

(a) Let (en)
∞
n=1 be an orthonormal basis of an inner product space X. Show that for

all x ∈ X there is a unique sequence (an)
∞
n=1 of scalars such that x =

∑∞
n=1 anen.

Assume now that X is a Hilbert space and that (fn)
∞
n=1 is another orthonormal

basis of X. Prove that there is a unique bounded linear map U : X → X such that
U(en) = fn for all n ∈ N. Prove that this map U is unitary.

(b) Let 1 6 p < ∞ with p 6= 2. Show that no subspace of ℓ2 is isomorphic to ℓp. [Hint:
Apply the generalized parallelogram law to suitable vectors.]
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Paper 3, Section II

21G Linear Analysis
(i) State carefully the theorems of Stone–Weierstrass and Arzelá–Ascoli (work with

real scalars only).

(ii) Let F denote the family of functions on [0, 1] of the form

f(x) =

∞∑

n=1

an sin(nx),

where the an are real and |an| 6 1/n3 for all n ∈ N. Prove that any sequence in F has a
subsequence that converges uniformly on [0, 1].

(iii) Let f : [0, 1] → R be a continuous function such that f(0) = 0 and f ′(0) exists.
Show that for each ε > 0 there exists a real polynomial p having only odd powers, i.e. of
the form

p(x) = a1x+ a3x
3 + · · · + a2m−1x

2m−1 ,

such that supx∈[0,1]|f(x) − p(x)| < ε. Show that the same holds without the assumption
that f is differentiable at 0.

Paper 1, Section II

22G Linear Analysis
Let X and Y be normed spaces. What is an isomorphism between X and Y ? Show

that a bounded linear map T : X → Y is an isomorphism if and only if T is surjective and
there is a constant c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. Show that if there is an
isomorphism T : X → Y and X is complete, then Y is complete.

Show that two normed spaces of the same finite dimension are isomorphic. [You may
assume without proof that any two norms on a finite-dimensional space are equivalent.]
Briefly explain why this implies that every finite-dimensional space is complete, and every
closed and bounded subset of a finite-dimensional space is compact.

Let Z and F be subspaces of a normed space X with Z ∩F = {0}. Assume that Z
is closed in X and F is finite-dimensional. Prove that Z + F is closed in X. [Hint: First
show that the function x 7→ d(x,Z) = inf{‖x− z‖ : z ∈ Z} restricted to the unit sphere of
F achieves its minimum.]
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Paper 2, Section II

22G Linear Analysis
(a) Let X and Y be Banach spaces, and let T : X → Y be a surjective linear map.

Assume that there is a constant c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. Show that
T is continuous. [You may use any standard result from general Banach space theory
provided you clearly state it.] Give an example to show that the assumption that X and
Y are complete is necessary.

(b) Let C be a closed subset of a Banach space X such that

(i) x1 + x2 ∈ C for each x1, x2 ∈ C;

(ii) λx ∈ C for each x ∈ C and λ > 0;

(iii) for each x ∈ X, there exist x1, x2 ∈ C such that x = x1 − x2.

Prove that, for some M > 0, the unit ball of X is contained in the closure of the set

{x1 − x2 : xi ∈ C, ‖xi‖ 6 M (i = 1, 2)} .

[You may use without proof any version of the Baire Category Theorem.] Deduce that,
for some K > 0, every x ∈ X can be written as x = x1 − x2 with xi ∈ C and
‖xi‖ 6 K‖x‖ (i = 1, 2).

Paper 4, Section II

22G Linear Analysis
Define the spectrum σ(T ) and the approximate point spectrum σap(T ) of a bounded

linear operator T on a Banach space. Prove that σap(T ) ⊂ σ(T ) and that σ(T ) is a
closed and bounded subset of C. [You may assume without proof that the set of invertible
operators is open.]

Let T be a hermitian operator on a non-zero Hilbert space. Prove that σ(T ) is not
empty.

Let K be a non-empty, compact subset of C. Show that there is a bounded linear
operator T : ℓ2 → ℓ2 with σ(T ) = K. [You may assume without proof that a compact
metric space is separable.]
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Paper 3, Section II

21F Linear Analysis
State the Stone–Weierstrass Theorem for real-valued functions.

State Riesz’s Lemma.

Let K be a compact, Hausdorff space and let A be a subalgebra of C(K) separating
the points of K and containing the constant functions. Fix two disjoint, non-empty, closed
subsets E and F of K.

(i) If x ∈ E show that there exists g ∈ A such that g(x) = 0, 0 6 g < 1 on K, and g > 0
on F . Explain briefly why there is M ∈ N such that g > 2

M on F .

(ii) Show that there is an open cover U1, U2, . . . , Um of E, elements g1, g2, . . . , gm of A and
positive integers M1,M2, . . . ,Mm such that

0 6 gr < 1 on K, gr > 2
Mr

on F, gr <
1

2Mr
on Ur

for each r = 1, 2, . . . ,m.

(iii) Using the inequality

1−Nt 6 (1− t)N 6 1

Nt
(0 < t < 1, N ∈ N) ,

show that for sufficiently large positive integers n1, n2, . . . , nm, the element

hr = 1− (1− gnr
r )M

nr
r

of A satisfies

0 6 hr 6 1 on K, hr 6 1
4 on Ur, hr >

(
3
4

) 1
m on F

for each r = 1, 2, . . . ,m.

(iv) Show that the element h = h1 · h2 · · · · · hm − 1
2 of A satisfies

−1
2 6 h 6 1

2 on K, h 6 −1
4 on E, h > 1

4 on F.

Now let f ∈ C(K) with ‖f‖ 6 1. By considering the sets {x ∈ K : f(x) 6 −1
4} and

{x ∈ K : f(x) > 1
4}, show that there exists h ∈ A such that ‖f − h‖ 6 3

4 . Deduce that A
is dense in C(K).
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Paper 4, Section II

22F Linear Analysis
Let T : X → X be a bounded linear operator on a complex Banach space X. Define

the spectrum σ(T ) of T . What is an approximate eigenvalue of T ? What does it mean to
say that T is compact?

Assume now that T is compact. Show that if λ is in the boundary of σ(T ) and
λ 6= 0, then λ is an eigenvalue of T . [You may use without proof the result that every λ
in the boundary of σ(T ) is an approximate eigenvalue of T .]

Let T : H → H be a compact Hermitian operator on a complex Hilbert space H.
Prove the following:

(a) If λ ∈ σ(T ) and λ 6= 0, then λ is an eigenvalue of T .

(b) σ(T ) is countable.

Paper 2, Section II

22F Linear Analysis
Let X be a Banach space. Let T : X → ℓ∞ be a bounded linear operator. Show

that there is a bounded sequence (fn)
∞
n=1 in X∗ such that Tx = (fnx)

∞
n=1 for all x ∈ X.

Fix 1 < p < ∞. Define the Banach space ℓp and briefly explain why it is separable.
Show that for x ∈ ℓp there exists f ∈ ℓ∗p such that ‖f‖ = 1 and f(x) = ‖x‖p. [You may
use Hölder’s inequality without proof.]

Deduce that ℓp embeds isometrically into ℓ∞.

Paper 1, Section II

22F Linear Analysis
State and prove the Closed Graph Theorem. [You may assume any version of the

Baire Category Theorem provided it is clearly stated. If you use any other result from the
course, then you must prove it.]

Let X be a closed subspace of ℓ∞ such that X is also a subset of ℓ1. Show that
the left-shift L : X → ℓ1, given by L(x1, x2, x3, . . . ) = (x2, x3, . . . ), is bounded when X is
equipped with the sup-norm.
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Paper 3, Section II

21G Linear Analysis
State the closed graph theorem.

(i) Let X be a Banach space and Y a vector space. Suppose that Y is endowed with
two norms ‖ · ‖1 and ‖ · ‖2 and that there is a constant c > 0 such that ‖y‖2 > c‖y‖1 for
all y ∈ Y . Suppose that Y is a Banach space with respect to both norms. Suppose that
T : X → Y is a linear operator, and that it is bounded when Y is endowed with the ‖ · ‖1
norm. Show that it is also bounded when Y is endowed with the ‖ · ‖2 norm.

(ii) Suppose that X is a normed space and that (xn)
∞
n=1 ⊆ X is a sequence with∑∞

n=1 |f(xn)| < ∞ for all f in the dual space X∗. Show that there is an M such that

∞∑

n=1

|f(xn)| 6 M‖f‖

for all f ∈ X∗.

(iii) Suppose that X is the space of bounded continuous functions f : R → R with
the sup norm, and that Y ⊆ X is the subspace of continuously differentiable functions
with bounded derivative. Let T : Y → X be defined by Tf = f ′. Show that the graph of
T is closed, but that T is not bounded.
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Paper 4, Section II

22G Linear Analysis
Let X be a Banach space and suppose that T : X → X is a bounded linear operator.

What is an eigenvalue of T ? What is the spectrum σ(T ) of T ?

Let X = C[0, 1] be the space of continuous real-valued functions f : [0, 1] → R
endowed with the sup norm. Define an operator T : X → X by

Tf(x) =

∫ 1

0
G(x, y)f(y) dy,

where

G(x, y) =

{
y(x− 1) if y 6 x,

x(y − 1) if x 6 y.

Prove the following facts about T :

(i) Tf(0) = Tf(1) = 0 and the second derivative (Tf)′′(x) is equal to f(x) for x ∈ (0, 1);

(ii) T is compact;

(iii) T has infinitely many eigenvalues;

(iv) 0 is not an eigenvalue of T ;

(v) 0 ∈ σ(T ).

[The Arzelà–Ascoli theorem may be assumed without proof.]

Paper 2, Section II

22G Linear Analysis
What is meant by a normal topological space? State and prove Urysohn’s lemma.

Let X be a normal topological space and let S ⊆ X be closed. Show that there
is a continuous function f : X → [0, 1] with f−1(0) = S if, and only if, S is a countable
intersection of open sets.

[Hint. If S =
⋂∞

n=1 Un then consider
∑∞

n=1 2
−nfn, where the functions fn : X → [0, 1]

are supplied by an appropriate application of Urysohn’s lemma.]
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Paper 1, Section II

22G Linear Analysis
What is meant by the dual X∗ of a normed space X? Show that X∗ is a Banach

space.

Let X = C1(0, 1), the space of functions f : (0, 1) → R possessing a bounded,
continuous first derivative. Endow X with the sup norm ‖f‖∞ = supx∈(0,1) |f(x)|. Which
of the following maps T : X → R are elements of X∗? Give brief justifications or
counterexamples as appropriate.

1. Tf = f(12);

2. Tf = ‖f‖∞;

3. Tf =
∫ 1
0 f(x) dx;

4. Tf = f ′(12).

Now suppose that X is a (real) Hilbert space. State and prove the Riesz represen-
tation theorem. Describe the natural map X → X∗∗ and show that it is surjective.

[All normed spaces are over R. You may assume that if Y is a closed subspace of a
Hilbert space X then X = Y ⊕ Y ⊥.]
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Paper 1, Section II

22G Linear Analysis
State a version of the Stone–Weierstrass Theorem for real-valued functions on a

compact metric space.

Suppose that K : [0, 1]2 → R is a continuous function. Show that K(x, y) may be
uniformly approximated by functions of the form

∑n
i=1 fi(x)gi(y) with fi, gi : [0, 1] → R

continuous.

Let X,Y be Banach spaces and suppose that T : X → Y is a bounded linear
operator. What does it mean to say that T is finite-rank? What does it mean to say that
T is compact? Give an example of a bounded linear operator from C[0, 1] to itself which
is not compact.

Suppose that (Tn)
∞
n=1 is a sequence of finite-rank operators and that Tn → T in the

operator norm. Briefly explain why the Tn are compact. Show that T is compact.

Hence, show that the integral operator T : C[0, 1] → C[0, 1] defined by

Tf(x) =

∫ 1

0
f(y)K(x, y) dy

is compact.

Paper 2, Section II

22G Linear Analysis
State and prove the Baire Category Theorem. Let f : R → R be a function. For

x ∈ R, define
ωf (x) = inf

δ>0
sup

|y−x|6δ
|y′−x|6δ

|f(y)− f(y′)| .

Show that f is continuous at x if and only if ωf (x) = 0.

Show that for any ǫ > 0 the set {x ∈ R : ωf (x) < ǫ} is open.

Hence show that the set of points at which f is continuous cannot be precisely the
set Q of rationals.
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Paper 3, Section II

21G Linear Analysis
LetH be a complex Hilbert space with orthonormal basis (en)

∞
n=−∞. Let T : H → H

be a bounded linear operator. What is meant by the spectrum σ(T ) of T ?

Define T by setting T (en) = en−1 + en+1 for n ∈ Z. Show that T has a unique
extension to a bounded, self-adjoint linear operator on H. Determine the norm ‖T‖.
Exhibit, with proof, an element of σ(T ).

Show that T has no eigenvectors. Is T compact?

[General results from spectral theory may be used without proof. You may also use the
fact that if a sequence (xn) satisfies a linear recurrence λxn = xn−1 + xn+1 with λ ∈ R,
|λ| 6 2, λ 6= 0, then it has the form xn = Aαn sin(θ1n + θ2) or xn = (A + nB)αn, where
A,B,α ∈ R and 0 6 θ1 < π, |θ2| 6 π/2.]

Paper 4, Section II

22G Linear Analysis
State Urysohn’s Lemma. State and prove the Tietze Extension Theorem.

Let X,Y be two topological spaces. We say that the extension property holds if,
whenever S ⊆ X is a closed subset and f : S → Y is a continuous map, there is a
continuous function f̃ : X → Y with f̃ |S = f .

For each of the following three statements, say whether it is true or false. Briefly
justify your answers.

1. If X is a metric space and Y = [−1, 1] then the extension property holds.

2. If X is a compact Hausdorff space and Y = R then the extension property holds.

3. If X is an arbitrary topological space and Y = [−1, 1] then the extension property
holds.
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Paper 1, Section II

22H Linear Analysis

a) State and prove the Banach–Steinhaus Theorem.

[You may use the Baire Category Theorem without proving it.]

b) Let X be a (complex) normed space and S ⊂ X. Prove that if {f(x) : x ∈ S} is
a bounded set in C for every linear functional f ∈ X∗ then there exists K > 0 such that
‖x‖ 6 K for all x ∈ S.

[You may use here the following consequence of the Hahn–Banach Theorem without
proving it: for a given x ∈ X, there exists f ∈ X∗ with ‖f‖ = 1 and |f(x)| = ‖x‖.]

c) Conclude that if two norms ‖.‖1 and ‖.‖2 on a (complex) vector space V are not
equivalent, there exists a linear functional f : V → C which is continuous with respect to
one of the two norms, and discontinuous with respect to the other.

Paper 2, Section II

22H Linear Analysis
For a sequence x = (x1, x2, . . . ) with xj ∈ C for all j > 1, let

‖x‖∞ := sup
j>1

|xj |

and ℓ∞ = {x = (x1, x2, . . . ) : xj ∈ C for all j > 1 and ‖x‖∞ < ∞}.

a) Prove that ℓ∞ is a Banach space.

b) Define
c0 = {x = (x1, x2, . . . ) ∈ ℓ∞ : lim

j→∞
xj = 0}

and

ℓ1 =

{
x = (x1, x2, . . . ) : xj ∈ C for all j ∈ N and ‖x‖1 =

∞∑

ℓ=1

|xℓ| < ∞
}
.

Show that c0 is a closed subspace of ℓ∞. Show that c∗0 ≃ ℓ1.

[Hint: find an isometric isomorphism from ℓ1 to c∗0.]

c) Let

c00 = {x = (x1, x2, . . . ) ∈ ℓ∞ : xj = 0 for all j large enough}.

Is c00 a closed subspace of ℓ∞? If not, what is the closure of c00?
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Paper 3, Section II

21H Linear Analysis
State and prove the Stone-Weierstrass theorem for real-valued functions.

[You may use without proof the fact that the function s → |s| can be uniformly
approximated by polynomials on [−1, 1].]

Paper 4, Section II

22H Linear Analysis
Let X be a Banach space.

a) What does it mean for a bounded linear map T : X → X to be compact?

b) Let B(X) be the Banach space of all bounded linear maps S : X → X. Let
B0(X) be the subset of B(X) consisting of all compact operators. Show that B0(X) is a
closed subspace of B(X). Show that, if S ∈ B(X) and T ∈ B0(X), then ST, TS ∈ B0(X).

c) Let

X = ℓ2 =

{
x = (x1, x2, . . . ) : xj ∈ C and ‖x‖22 =

∞∑

j=1

|xj|2 < ∞
}
,

and T : X → X be defined by

(Tx)k =
xk+1

k + 1
.

Is T compact? What is the spectrum of T ? Explain your answers.
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Paper 1, Section II

22H Linear Analysis
(a) State and prove the Baire category theorem.

(b) Let X be a normed space. Show that every proper linear subspace V ⊂ X has
empty interior.

(c) Let P be the vector space of all real polynomials in one variable. Using the
Baire category theorem and the result from (b), prove that for any norm ‖ · ‖ on P, the
normed space (P, ‖ · ‖) is not a Banach space.

Paper 2, Section II

22H Linear Analysis
For 1 6 p < ∞ and a sequence x = (x1, x2, . . . ), where xj ∈ C for all j > 1, let

‖x‖p =
(∑∞

j=1 |xj |p
)1/p

.

Let ℓp = {x = (x1, x2, . . . ) : xj ∈ C for all j > 1 and ‖x‖p < ∞}.
(a) Let p, q > 1 with 1/p+1/q = 1, x = (x1, x2, . . . ) ∈ ℓp and y = (y1, y2, . . . ) ∈ ℓq. Prove
Hölder’s inequality:

∞∑

j=1

|xj ||yj| 6 ‖x‖p‖y‖q .

(b) Use Hölder’s inequality to prove the triangle inequality (known, in this case, as the
Minkowski inequality):

‖x+ y‖p 6 ‖x‖p + ‖y‖p for every x, y ∈ ℓp and every 1 < p < ∞.

(c) Let 2 6 p < ∞ and let K be a closed, convex subset of ℓp. Let x ∈ ℓp with x 6∈ K.
Prove that there exists y ∈ K such that

‖x− y‖ = inf
z∈K

‖x− z‖.

[You may use without proof the fact that for every 2 6 p < ∞ and for every x, y ∈ ℓp,

‖x+ y‖pp + ‖x− y‖pp 6 2p−1
(
‖x‖pp + ‖y‖pp

)
.]
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Paper 3, Section II

21H Linear Analysis

(a) State the Arzela–Ascoli theorem, explaining the meaning of all concepts involved.

(b) Prove the Arzela–Ascoli theorem.

(c) Let K be a compact topological space. Let (fn)n∈N be a sequence in the Banach
space C(K) of real-valued continuous functions over K equipped with the supremum
norm ‖ · ‖. Assume that for every x ∈ K, the sequence fn(x) is monotone increasing and
that fn(x) → f(x) for some f ∈ C(K). Show that ‖fn − f‖ → 0 as n → ∞.

Paper 4, Section II

22H Linear Analysis
Let X be a Banach space and let T : X → X be a bounded linear map.

(a) Define the spectrum σ(T ), the resolvent set ρ(T ) and the point spectrum σp(T ) of T .

(b) What does it mean for T to be a compact operator?

(c) Show that if T is a compact operator on X and a > 0, then T has at most finitely
many linearly independent eigenvectors with eigenvalues having modulus larger than a.

[You may use without proof the fact that for any finite dimensional proper subspace Y of
a Banach space Z, there exists x ∈ Z with ‖x‖ = 1 and dist(x, Y ) = infy∈Y ‖x− y‖ = 1.]

(d) For a sequence (λn)n>1 of complex numbers, let T : ℓ2 → ℓ2 be defined by

T (x1, x2, . . . ) = (λ1x1, λ2x2, . . . ).

Give necessary and sufficient conditions on the sequence (λn)n>1 for T to be compact, and
prove your assertion.
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1/II/22F Linear Analysis

Suppose p and q are real numbers with p−1 + q−1 = 1 and p, q > 1. Show, quoting
any results on convexity that you need, that

a1/p b1/q 6 a

p
+
b

q

for all real positive a and b.

Define the space lp and show that it is a complete normed vector space.

2/II/22F Linear Analysis

State and prove the principle of uniform boundedness.

[You may assume the Baire category theorem.]

Suppose that X, Y and Z are Banach spaces. Suppose that

F : X × Y → Z

is linear and continuous in each variable separately, that is to say that, if y is fixed,

F (·, y) : X → Z

is a continuous linear map and, if x is fixed,

F (x, ·) : Y → Z

is a continuous linear map. Show that there exists an M such that

‖F (x, y)‖Z 6M‖x‖X‖y‖Y

for all x ∈ X, y ∈ Y . Deduce that F is continuous.

Suppose X, Y , Z and W are Banach spaces. Suppose that

G : X × Y ×W → Z

is linear and continuous in each variable separately. Does it follow that G is continuous?
Give reasons.

Suppose that X, Y and Z are Banach spaces. Suppose that

H : X × Y → Z

is continuous in each variable separately. Does it follow that H is continuous? Give
reasons.
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3/II/21F Linear Analysis

State and prove the Stone–Weierstrass theorem for real-valued functions. You may
assume that the function x 7→ |x| can be uniformly approximated by polynomials on any
interval [−k, k].

Suppose that 0 < a < b < 1. Let F be the set of functions which can be uniformly
approximated on [a, b] by polynomials with integer coefficients. By making appropriate
use of the identity

1

2
=

x

1− (1− 2x)
=
∞∑

n=0

x(1− 2x)n,

or otherwise, show that F = C([a, b]).
Is it true that every continuous function on [0, b] can be uniformly approximated

by polynomials with integer coefficients?

4/II/22F Linear Analysis

Let H be a Hilbert space. Show that if V is a closed subspace of H then any f ∈ H
can be written as f = v + w with v ∈ V and w ⊥ V .

Suppose U : H → H is unitary (that is to say UU∗ = U∗U = I). Let

Anf =
1

n

n−1∑

k=0

Ukf

and consider
X = {g − Ug : g ∈ H}.

(i) Show that U is an isometry and ‖An‖ 6 1.

(ii) Show that X is a subspace of H and Anf → 0 as n→∞ whenever f ∈ X.

(iii) Let V be the closure of X. Show that Anv → 0 as n→∞ whenever v ∈ V .

(iv) Show that, if w ⊥ X, then Uw = w. Deduce that, if w ⊥ V , then Uw = w.

(v) If f ∈ H show that there is a w ∈ H such that Anf → w as n→∞.
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1/II/22G Linear Analysis

Let X be a normed vector space over R. Define the dual space X∗ and show directly
that X∗ is a Banach space. Show that the map φ : X → X∗∗ defined by φ(x)v = v(x),
for all x ∈ X, v ∈ X∗, is a linear map. Using the Hahn–Banach theorem, show that φ is
injective and |φ(x)| = |x|.

Give an example of a Banach space X for which φ is not surjective. Justify your
answer.

2/II/22G Linear Analysis

Let X be a Banach space, Y a normed vector space, and T : X → Y a bounded
linear map. Assume that T (X) is of second category in Y . Show that T is surjective and
T (U) is open whenever U is open. Show that, if T is also injective, then T−1 exists and is
bounded.

Give an example of a continuous map f : R → R such that f(R) is of second
category in R but f is not surjective. Give an example of a continuous surjective map
f : R → R which does not take open sets to open sets.

3/II/21G Linear Analysis

State and prove the Arzela–Ascoli theorem.

Let N be a positive integer. Consider the subset SN ⊂ C([0, 1]) consisting of all
thrice differentiable solutions to the differential equation

f ′′ = f + (f ′)2 with |f(0)| 6 N , |f(1)| 6 N , |f ′(0)| 6 N , |f ′(1)| 6 N .

Show that this set is totally bounded as a subset of C([0, 1]).

[It may be helpful to consider interior maxima.]

4/II/22G Linear Analysis

Let X be a Banach space and T : X → X a bounded linear map. Define the
spectrum σ(T ), point spectrum σp(T ), resolvent RT (λ), and resolvent set ρ(T ). Show that
the spectrum is a closed and bounded subset of C. Is the point spectrum always closed?
Justify your answer.

Now suppose H is a Hilbert space, and T : H → H is self-adjoint. Show that the
point spectrum σp(T ) is real.
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1/II/22G Linear Analysis

Let U be a vector space. Define what it means for two norms || · ||1 and || · ||2 on
U to be Lipschitz equivalent . Give an example of a vector space and two norms which are
not Lipschitz equivalent.

Show that, if U is finite dimensional, all norms on U are Lipschitz equivalent.
Deduce that a finite dimensional subspace of a normed vector space is closed.

Show that a normed vector space W is finite dimensional if and only if W contains
a non-empty open set with compact closure.

2/II/22G Linear Analysis

Let X be a metric space. Define what it means for a subset E ⊂ X to be of first or
second category. State and prove a version of the Baire category theorem. For 1 6 p 6 ∞,
show that the set `p is of first category in the normed space `r when r > p and `r is given
its standard norm. What about r = p?

3/II/21G Linear Analysis

Let X be a complex Banach space. We say a sequence xi ∈ X converges to x ∈ X
weakly if φ(xi) → φ(x) for all φ ∈ X∗. Let T : X → Y be bounded and linear. Show that
if xi converges to x weakly, then Txi converges to Tx weakly.

Now let X = `2. Show that for a sequence xi ∈ X, i = 1, 2, . . ., with ||xi|| 6 1, there
exists a subsequence xik such that xik converges weakly to some x ∈ X with ||x|| 6 1.

Now let Y = `1, and show that yi ∈ Y converges to y ∈ Y weakly if and only if
yi → y in the usual sense.

Define what it means for a linear operator T : X → Y to be compact, and deduce
from the above that any bounded linear T : `2 → `1 is compact.

4/II/22G Linear Analysis

Let H be a complex Hilbert space. Define what it means for a linear operator
T : H → H to be self-adjoint. State a version of the spectral theorem for compact self-
adjoint operators on a Hilbert space. Give an example of a Hilbert space H and a compact
self-adjoint operator on H with infinite dimensional range. Define the notions spectrum,
point spectrum, and resolvent set, and describe these in the case of the operator you wrote
down. Justify your answers.
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1/II/22F Linear Analysis

Let K be a compact Hausdorff space, and let C(K) denote the Banach space of
continuous, complex-valued functions on K, with the supremum norm. Define what it
means for a set S ⊂ C(K) to be totally bounded, uniformly bounded, and equicontinuous.

Show that S is totally bounded if and only if it is both uniformly bounded and
equicontinuous.

Give, with justification, an example of a Banach space X and a subset S ⊂ X such
that S is bounded but not totally bounded.

2/II/22F Linear Analysis

Let X and Y be Banach spaces. Define what it means for a linear operator
T : X → Y to be compact. For a linear operator T : X → X, define the spectrum,
point spectrum, and resolvent set of T .

Now let H be a complex Hilbert space. Define what it means for a linear operator
T : H → H to be self-adjoint. Suppose e1, e2, . . . is an orthonormal basis for H. Define a
linear operator T : H → H by setting Tei =

1
i ei. Is T compact? Is T self-adjoint? Justify

your answers. Describe, with proof, the spectrum, point spectrum, and resolvent set of T .

3/II/21F Linear Analysis

Let X be a normed vector space. Define the dual X∗ of X. Define the normed
vector spaces ls = ls(C) for all 1 6 s 6 ∞. [You are not required to prove that the norms
you have given are indeed norms.]

Now let 1 < p, q <∞ be such that p−1 + q−1 = 1. Show that (lq)∗ is isometrically
isomorphic to lp as a normed vector space. [You may assume any standard inequalities.]

Show by a similar argument that (l1)∗ is isomorphic to l∞. Does your argument
also show that (l∞)∗ is isomorphic to l1? If not, where does it fail?
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4/II/22F Linear Analysis

Let X and Y be normed vector spaces. Show that a linear map T : X → Y is
continuous if and only if it is bounded.

Now let X, Y , Z be Banach spaces. We say that a map F : X × Y → Z is bilinear
if

F (αx+ βy, z) = αF (x, z) + βF (y, z), for all scalars α, β and x, y ∈ X, z ∈ Y

F (x, αy + βz) = αF (x, y) + βF (x, z), for all scalars α, β and x ∈ X, y, z ∈ Y .

Suppose that F is bilinear and is continuous in each variable separately. Show that there
exists a constant M > 0 such that

||F (x, y)|| 6M ||x|| ||y||

for all x ∈ X, y ∈ Y .

[Hint: For each fixed x ∈ X, consider the map y 7→ F (x, y) from Y to Z.]
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