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Paper 1, Section II

33E Integrable Systems
Let q = q(x, t) and r = r(x, t) be complex valued functions and consider the matrices

(U, V ) defined by

U(λ) =

(
iλ iq
ir −iλ

)
, V (λ) = 2iλ2

(
1 0
0 −1

)
+2iλ

(
0 q
r 0

)
+

(
0 qx
−rx 0

)
− i
(
rq 0
0 −rq

)
.

Derive the zero curvature equation as the consistency condition for the system of equations

Ψx = UΨ , Ψt = VΨ

and show that it holds precisely when q, r satisfy a system of the form

irt + rxx + aqr2 = 0 , (1)

iqt − qxx − arq2 = 0 , (2)

where a is a real number which you should determine. Show that if r = q this system
reduces to the nonlinear Schrödinger equation

irt + rxx + a|r|2r = 0 , (NLS1)

and find a similar reduction to the equation

irt + rxx − a|r|2r = 0 . (NLS2)

Write these equations in Hamiltonian form. Search for solutions to (NLS1) and
(NLS2) of the form e−iEtf(x) with real constant E and smooth, rapidly decreasing real-
valued f . In each case either find such a solution explicitly, or explain briefly why it is not
expected to exist.

[Hint: you may use without derivation the indefinite integral

∫
dy√

λ2y2 − y4
= − 1

λ
sech−1 y

λ
.]

Part II, Paper 1

2023
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Paper 2, Section II

34E Integrable Systems
Assume φ = φ(x, t) is a solution of

−φxx + u(x, t)φ = λ(t)φ, −∞ < x <∞ , (S)

where u = u(x, t) is smooth. Define Q = Q(x, t) by Q = φt + uxφ− 2(u+ 2λ)φx and show
that there exists a number α, which you should find, such that

∂x(φxQ− φQx) = φ2
(
λ̇+ α(ut + uxxx − 6uux)

)
(∗)

where λ̇ = dλ
dt .

Now let u = u(x, t) be a smooth solution of the KdV equation ut+uxxx−6uux = 0,
which is rapidly decreasing in x, and consider the case when φ = ϕn is the discrete
eigenfunction of (S) corresponding to eigenvalue λn = −κ2n < 0. Deduce from (∗)
that λn(t) = λn(0). [You may assume that κn > 0 and ϕn is normalized, i.e.,∫∞
−∞ ϕn(x, t)2dx = 1 for all times t.]

Deduce further that in this case Q(x, t) = hn(t)ϕn(x, t) for some function hn = hn(t)
and, by multiplying by ϕn, making use of (S) and integrating, show that hn(t) = 0 and
Q = 0. Finally, derive from this the time evolution of the discrete normalization cn(t)
which is defined by the asymptotic relation

ϕn(x, t) ≈ cn(t)e−κnx as x→ +∞ .

[You may assume the differentiated version of this relation also holds.]

Paper 3, Section II

32E Integrable Systems
(a) Compute the group of transformations generated by the vector field

V = t∂t + x∂x ,

and hence, or otherwise, calculate the second prolongation of the vector field V and show
that V generates a group of Lie symmetries of the wave equation utt − uxx = 0.

Use the group of symmetries you have just found for the equation utt − uxx = 0 to
obtain a group invariant solution for this equation.

(b) Compute the group of transformations generated by the vector field

4t2∂t + 4tx∂x − (x2 + 2t)∂u

and verify that they give rise to a group of Lie symmetries of the equation ut = uxx + u2x.

Part II, Paper 1 [TURN OVER]

2023
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Paper 1, Section II
33E Integrable Systems

(a) Show that if L is a symmetric n×n matrix (L = LT ) and B is a skew-symmetric
n × n matrix (B = −BT ) then [B,L] = BL − LB is symmetric. If L evolves in time
according to

dL

dt
= [B,L] ,

show that the eigenvalues of L are constant in time.

Write the harmonic oscillator equation q̈ + ω2q = 0 in Hamiltonian form. (The
frequency ω is a fixed real number). Starting with the symmetric matrix

L =

(
p ωq
ωq −p

)

find a Lax pair formulation for the harmonic oscillator and use this formulation to obtain
the conservation of energy for the oscillator.

(b) Consider the Airy partial differential equation, given for −∞ < x < ∞ and
t > 0 by

qt + qxxx = 0. (1)

Show that this is a compatibility condition for the pair of linear equations

ψx − ikψ = q (2)

ψt − ik3ψ = −qxx − ikqx + k2q (3)

for a function ψ = ψ(x, t, k) ∈ C. Show that for each t, equation (2) has a solution ψ+

which is defined for Im k > 0, analytic in k for Im k > 0, and satisfies

lim
x→+∞

e−ikxψ+(x, t, k) = q̂(k, t) =

∫ +∞

−∞
e−ikxq(x, t)dx .

Deduce from this and equation (3) that q̂(k, t) evolves in time according to

q̂t − ik3q̂ = 0

and hence obtain a representation for the solution of the Airy equation (1).

[You may assume that q is a smooth function whose derivatives are rapidly decreasing
in x.]

Part II, Paper 1 [TURN OVER]

2022
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Paper 2, Section II
34E Integrable Systems

It is possible to obtain solutions of the partial differential equation

uXT = sinu , (1)

at time T from certain discrete scattering data {λm(T ), cm(T )}Nm=1 and corresponding
eigenfunctions ψm(X,T ) for an associated linear problem by means of the formula

uX(T,X) = −4
∑

m

cmψ
(1)
m (X,T )eiλmX ,

where ψm =

(
ψ
(1)
m

ψ
(2)
m

)
and ψ̃m =

(
−ψ(2)

m

ψ
(1)
m

)
solve

ψ̃n(X,T )eiλn(T )X −
(

0
1

)
=
∑

m

cm(T )ψm(X,T )

(λn(T )− λm(T ))
eiλm(T )X .

Given the fact that the discrete scattering data {λm(T ), cm(T )}Nm=1 evolve according

to λm(T ) = λm(0) = λm and cm(T ) = cm(0)e−
iT
2λn , obtain the solution in the case N = 1

with λ1(T ) = il purely imaginary and c1(0) = c = 2l > 0. Show that there is a unique
positive value of l for which the solution is of the form F (X + T ) for some function F ,
which you should give.

Show that

gs :



X
T
u


 7→



esX
e−sT
u


 (2)

defines a group of Lie point symmetries of (1). Show that all the solutions to (1) you
obtained for N = 1 transform under (2) into F (X + T ), with F as above.

In the case N = 2 and λ1 = il + m, λ2 = il −m with real l > 0,m > 0 there is a
solution of (1) given by

u(T,X) = 4 arctan
l sin

(
2mX − 2mT

4(l2+m2)

)

m cosh
(

2lT
4(l2+m2)

+ 2lX
) . (3)

Show that if l2 +m2 = 1
4 then this solution is periodic in t = T −X for fixed x = X + T ;

find the period.

Show that for arbitrary l2 + m2 the solutions (3) may be transformed by (2) into
the case l2 +m2 = 1

4 .

Part II, Paper 1
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Paper 3, Section II
32E Integrable Systems

Explain what it means for a vector field V = V1(x, u)∂x + φ(x, u)∂u to generate a
Lie symmetry for a differential equation ∆(x, u, ∂xu, . . . , ∂

n
xu) = 0. State a condition for

this to hold in terms of the nth prolongation of V , pr(n)V , giving also a definition of this
latter concept.

Calculate the second prolongation of the vector field V , and hence show that if V
generates an infinitesimal Lie symmetry for the equation

u′′ =
(u′)2

u
− u2 (1)

then V1 must be of the form

V1(x, u) = F (x) ln |u|+G(x)

for some functions F,G.

Show that if c and d are arbitrary real numbers then

V = (cx+ d)∂x − 2cu∂u

is an infinitesimal Lie symmetry for equation (1), and give the form of the group of
symmetries that it generates.

[Assume u > 0 throughout.]

Part II, Paper 1 [TURN OVER]

2022
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Paper 1, Section II

33D Integrable Systems
(a) Let U(z, z̄, λ) and V (z, z̄, λ) be matrix-valued functions, whilst ψ(z, z̄, λ) is a

vector-valued function. Show that the linear system

∂zψ = Uψ , ∂z̄ψ = V ψ

is over-determined and derive a consistency condition on U , V that is necessary for there
to be non-trivial solutions.

(b) Suppose that

U =
1

2λ

(
λ∂zu e−u

eu −λ∂zu

)
and V =

1

2

(
−∂z̄u λeu

λe−u ∂z̄u

)
,

where u(z, z̄) is a scalar function. Obtain a partial differential equation for u that is
equivalent to your consistency condition from part (a).

(c) Now let z = x + iy and suppose u is independent of y. Show that the trace of
(U−V )n is constant for all positive integers n. Hence, or otherwise, construct a non-trivial
first integral of the equation

d2φ

dx2
= 4 sinhφ , where φ = φ(x) .

Part II, 2021 List of Questions

2021
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Paper 2, Section II

34D Integrable Systems
(a) Explain briefly how the linear operators L = −∂2x+u(x, t) and A = 4∂3x−3u∂x−

3∂xu can be used to give a Lax-pair formulation of the KdV equation ut+uxxx−6uux = 0 .

(b) Give a brief definition of the scattering data

Su(t) =
{
{R(k, t)}k∈R , {−κn(t)2, cn(t)}Nn=1

}

attached to a smooth solution u = u(x, t) of the KdV equation at time t. [You may assume
u(x, t) to be rapidly decreasing in x.] State the time dependence of κn(t) and cn(t), and
derive the time dependence of R(k, t) from the Lax-pair formulation.

(c) Show that

F (x, t) =
N∑

n=1

cn(t)2 e−κn(t)x +
1

2π

∫ ∞

−∞
R(k, t) eikx dk

satisfies ∂tF + 8∂3xF = 0. Now let K(x, y, t) be the solution of the equation

K(x, y, t) + F (x+ y, t) +

∫ ∞

x
K(x, z, t)F (z + y, t) dz = 0

and let u(x, t) = −2∂xφ(x, t), where φ(x, t) = K(x, x, t). Defining G(x, y, t) by G =(
∂2x − ∂2y − u(x, t)

)
K(x, y, t), show that

G(x, y, t) +

∫ ∞

x
G(x, z, t)F (z + y, t) dz = 0 .

(d) Given that K(x, y, t) obeys the equations

(∂2x − ∂2y)K − uK = 0 ,

(∂t + 4∂3x + 4∂3y)K − 3(∂xu)K − 6u ∂xK = 0 ,

where u = u(x, t), deduce that

∂tK + (∂x + ∂y)
3K − 3u (∂x + ∂y)K = 0 ,

and hence that u solves the KdV equation.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 3, Section II

32D Integrable Systems
(a) Consider the group of transformations of R2 given by gs1 : (t, x) 7→ (t̃, x̃) =

(t, x+ st), where s ∈ R. Show that this acts as a group of Lie symmetries for the equation
d2x/dt2 = 0.

(b) Let (ψ1, ψ2) ∈ R2 and define ψ = ψ1 + iψ2. Show that the vector field
ψ1∂ψ2 − ψ2∂ψ1 generates the group of phase rotations gs2 : ψ → eisψ .

(c) Show that the transformations of R2 × C defined by

gs : (t, x, ψ) 7→ (t̃, x̃, ψ̃) = (t, x+ st, ψ eisx+is
2t/2)

form a one-parameter group generated by the vector field

V = t∂x + x(ψ1∂ψ2 − ψ2∂ψ1) = t∂x + ix(ψ∂ψ − ψ∗∂ψ∗) ,

and find the second prolongation Pr(2)gs of the action of {gs}. Hence find the coefficients
η0 and η11 in the second prolongation of V ,

pr(2)V = t∂x+
(
ixψ∂ψ+η0∂ψt +η1∂ψx +η00∂ψtt +η01∂ψxt +η11∂ψxx +complex conjugate

)
.

(d) Show that the group {gs} of transformations in part (c) acts as a group of Lie
symmetries for the nonlinear Schrödinger equation i∂tψ + 1

2∂
2
xψ + |ψ|2ψ = 0. Given that

aeia
2t/2 sech(ax) solves the nonlinear Schrödinger equation for any a ∈ R, find a solution

which describes a solitary wave travelling at arbitrary speed s ∈ R.

Part II, 2021 List of Questions

2021
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Paper 1, Section II

33C Integrable Systems
(a) Show that if L is a symmetric matrix (L = LT ) and B is skew-symmetric

(B = −BT ) then [B,L] = BL− LB is symmetric.

(b) Consider the real n× n symmetric matrix

L =




0 a1 0 0 . . . . . . . . . 0
a1 0 a2 0 . . . . . . . . . 0
0 a2 0 a3 . . . . . . . . . 0
0 0 a3 . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . an−2 0
0 . . . . . . . . . . . . an−2 0 an−1
0 . . . . . . . . . . . . 0 an−1 0




(i.e. Li,i+1 = Li+1,i = ai for 1 6 i 6 n− 1, all other entries being zero) and the real n× n
skew-symmetric matrix

B =




0 0 a1 a2 0 . . . . . . . . . 0
0 0 0 a2 a3 . . . . . . . . . 0

−a1 a2 0 0 0 . . . . . . . . . 0
0 −a2 a3 0 . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0 an−2 an−1
0 . . . . . . . . . . . . 0 0 0
0 . . . . . . . . . . . . −an−2 an−1 0 0




(i.e. Bi,i+2 = −Bi+2,i = ai ai+1 for 1 6 i 6 n− 2, all other entries being zero).

(i) Compute [B,L].

(ii) Assume that the aj are smooth functions of time t so the matrix L = L(t) also
depends smoothly on t. Show that the equation dL

dt = [B,L] implies that

daj
dt

= f(aj−1, aj , aj+1)

for some function f which you should find explicitly.

(iii) Using the transformation aj = 1
2 exp[12uj ] show that

duj
dt

=
1

2

(
euj+1 − euj−1

)
(†)

for j = 1, . . . n− 1. [Use the convention u0 = −∞, a0 = 0, un = −∞, an = 0.]

(iv) Deduce that given a solution of equation (†), there exist matrices {U(t)}t∈R
depending on time such that L(t) = U(t)L(0)U(t)−1, and explain how to obtain first
integrals for (†) from this.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 2, Section II

33C Integrable Systems
(i) Explain how the inverse scattering method can be used to solve the initial value

problem for the KdV equation

ut + uxxx − 6uux = 0 , u(x, 0) = u0(x) ,

including a description of the scattering data associated to the operator Lu = −∂2x+u(x, t),
its time dependence, and the reconstruction of u via the inverse scattering problem.

(ii) Solve the inverse scattering problem for the reflectionless case, in which the
reflection coefficient R(k) is identically zero and the discrete scattering data consists of a
single bound state, and hence derive the 1-soliton solution of KdV.

(iii) Consider the direct and inverse scattering problems in the case of a small
potential u(x) = εq(x), with ε arbitrarily small: 0 < ε � 1. Show that the reflection
coefficient is given by

R(k) = ε

∫ ∞

−∞

e−2ikz

2ik
q(z) dz +O(ε2)

and verify that the solution of the inverse scattering problem applied to this reflection
coefficient does indeed lead back to the potential u = εq when calculated to first order in
ε. [Hint: you may make use of the Fourier inversion theorem.]

Part II, 2020 List of Questions

2020
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Paper 3, Section II

32C Integrable Systems
(a) Given a smooth vector field

V = V1(x, u)
∂

∂x
+ φ(x, u)

∂

∂u

on R2 define the prolongation of V of arbitrary order N .

Calculate the prolongation of order two for the group SO(2) of transformations of
R2 given for s ∈ R by

gs
(
u
x

)
=

(
u cos s− x sin s
u sin s+ x cos s

)
,

and hence, or otherwise, calculate the prolongation of order two of the vector field
V = −x∂u + u∂x. Show that both of the equations uxx = 0 and uxx = (1 + u2x)

3
2 are

invariant under this action of SO(2), and interpret this geometrically.

(b) Show that the sine-Gordon equation

∂2u

∂X∂T
= sinu

admits the group {gs}s∈R, where

gs :



X
T
u


 7→



esX
e−sT
u




as a group of Lie point symmetries. Show that there is a group invariant solution of the
form u(X,T ) = F (z) where z is an invariant formed from the independent variables, and
hence obtain a second order equation for w = w(z) where exp[iF ] = w.

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 3, Section II

32C Integrable Systems
Suppose ψs : (x, u) 7→ (x̃, ũ) is a smooth one-parameter group of transformations

acting on R2, with infinitesimal generator

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
.

(a) Define the nth prolongation Pr(n) V of V , and show that

Pr(n) V = V +

n∑

i=1

ηi
∂

∂u(i)
,

where you should give an explicit formula to determine the ηi recursively in terms of ξ
and η.

(b) Find the nth prolongation of each of the following generators:

V1 =
∂

∂x
, V2 = x

∂

∂x
, V3 = x2

∂

∂x
.

(c) Given a smooth, real-valued, function u = u(x), the Schwarzian derivative is
defined by,

S = S[u] :=
uxuxxx − 3

2u
2
xx

u2x
.

Show that,
Pr(3) Vi (S) = ciS,

for i = 1, 2, 3 where ci are real functions which you should determine. What can you
deduce about the symmetries of the equations:

(i) S[u] = 0,

(ii) S[u] = 1,

(iii) S[u] = 1
x2
?

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

32C Integrable Systems
Suppose p = p(x) is a smooth, real-valued, function of x ∈ R which satisfies p(x) > 0

for all x and p(x) → 1, px(x), pxx(x) → 0 as |x| → ∞. Consider the Sturm-Liouville
operator:

Lψ := − d

dx

(
p2
dψ

dx

)
,

which acts on smooth, complex-valued, functions ψ = ψ(x). You may assume that for any
k > 0 there exists a unique function ϕk(x) which satisfies:

Lϕk = k2ϕk,

and has the asymptotic behaviour:

ϕk(x) ∼
{
e−ikx as x→ −∞,
a(k)e−ikx + b(k)eikx as x→ +∞.

(a) By analogy with the standard Schrödinger scattering problem, define the
reflection and transmission coefficients: R(k), T (k). Show that |R(k)|2 + |T (k)|2 = 1.
[Hint: You may wish to consider W (x) = p(x)2 [ψ1(x)ψ

′
2(x)− ψ2(x)ψ

′
1(x)] for suitable

functions ψ1 and ψ2.]

(b) Show that, if κ > 0, there exists no non-trivial normalizable solution ψ to the
equation

Lψ = −κ2ψ.

Assume now that p = p(x, t), such that p(x, t) > 0 and p(x, t) → 1, px(x, t), pxx(x, t) →
0 as |x| → ∞. You are given that the operator A defined by:

Aψ := −4p3
d3ψ

dx3
− 18p2px

d2ψ

dx2
− (12pp2x + 6p2pxx)

dψ

dx
,

satisfies:

(LA−AL)ψ = − d

dx

(
2p4pxxx

dψ

dx

)
.

(c) Show that L,A form a Lax pair if the Harry Dym equation,

pt = p3pxxx

is satisfied. [You may assume L = L†, A = −A†.]

(d) Assuming that p solves the Harry Dym equation, find how the transmission and
reflection amplitudes evolve as functions of t.

Part II, 2019 List of Questions

2019
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Paper 1, Section II

32C Integrable Systems
Let M = R2n = {(q,p)|q,p ∈ Rn} be equipped with its standard Poisson bracket.

(a) Given a Hamiltonian function H = H(q,p), write down Hamilton’s equations
for (M,H). Define a first integral of the system and state what it means that the system
is integrable.

(b) Show that if n = 1 then every Hamiltonian system is integrable whenever

(
∂H

∂q
,
∂H

∂p

)
6= 0.

Let M̃ = R2m = {(q̃, p̃)|q̃, p̃ ∈ Rm} be another phase space, equipped with its
standard Poisson bracket. Suppose that H̃ = H̃(q̃, p̃) is a Hamiltonian function for M̃ .
Define Q = (q1, . . . , qn, q̃1, . . . , q̃m), P = (p1, . . . , pn, p̃1, . . . , p̃m) and let the combined
phase space M = R2(n+m) = {(Q,P)} be equipped with the standard Poisson bracket.

(c) Show that if (M,H) and (M̃ , H̃) are both integrable, then so is (M,H), where
the combined Hamiltonian is given by:

H(Q,P) = H(q,p) + H̃(q̃, p̃).

(d) Consider the n−dimensional simple harmonic oscillator with phase spaceM and
Hamiltonian H given by:

H =
1

2
p21 + . . . +

1

2
p2n +

1

2
ω2
1q

2
1 + . . .+

1

2
ω2
nq

2
n,

where ωi > 0. Using the results above, or otherwise, show that (M,H) is integrable for
(q,p) 6= 0.

(e) Is it true that every bounded orbit of an integrable system is necessarily periodic?
You should justify your answer.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 1, Section II

32A Integrable Systems
Let M = R2n = {(q,p)|q,p ∈ Rn} be equipped with the standard symplectic form

so that the Poisson bracket is given by:

{f, g} =
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
,

for f, g real-valued functions on M . Let H = H(q,p) be a Hamiltonian function.

(a) Write down Hamilton’s equations for (M,H), define a first integral of the system
and state what it means that the system is integrable.

(b) State the Arnol’d–Liouville theorem.

(c) Define complex coordinates zj by zj = qj + ipj, and show that if f, g are real-
valued functions on M then:

{f, g} = −2i
∂f

∂zj

∂g

∂zj
+ 2i

∂g

∂zj

∂f

∂zj
.

(d) For an n×n anti-Hermitian matrix A with components Ajk, let IA := 1
2izjAjkzk.

Show that:
{IA, IB} = −I[A,B],

where [A,B] = AB −BA is the usual matrix commutator.

(e) Consider the Hamiltonian:

H =
1

2
zjzj .

Show that (M,H) is integrable and describe the invariant tori.

[In this question j, k = 1, . . . , n, and the summation convention is understood for
these indices.]

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 2, Section II

33A Integrable Systems
(a) Let L,A be two families of linear operators, depending on a parameter t, which

act on a Hilbert space H with inner product (, ). Suppose further that for each t, L is
self-adjoint and that A is anti-self-adjoint. State Lax’s equation for the pair L,A, and
show that if it holds then the eigenvalues of L are independent of t.

(b) For ψ, φ : R → C, define the inner product:

(ψ, φ) :=

∫ ∞

−∞
ψ(x)φ(x)dx.

Let L,A be the operators:

Lψ := i
d3ψ

dx3
− i

(
q
dψ

dx
+

d

dx
(qψ)

)
+ pψ,

Aψ := 3i
d2ψ

dx2
− 4iqψ,

where p = p(x, t), q = q(x, t) are smooth, real-valued functions. You may assume that
the normalised eigenfunctions of L are smooth functions of x, t, which decay rapidly as
|x| → ∞ for all t.

(i) Show that if ψ, φ are smooth and rapidly decaying towards infinity then:

(Lψ, φ) = (ψ,Lφ), (Aψ, φ) = −(ψ,Aφ).

Deduce that the eigenvalues of L are real.

(ii) Show that if Lax’s equation holds for L,A, then q must satisfy the Boussinesq
equation:

qtt = aqxxxx + b(q2)xx,

where a, b are constants whose values you should determine. [You may assume
without proof that the identity:

LAψ = ALψ − 3i

(
px
dψ

dx
+

d

dx
(pxψ)

)
+
[
qxxx − 4(q2)x

]
ψ,

holds for smooth, rapidly decaying ψ.]
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Suppose ψs : (x, u) 7→ (x̃, ũ) is a smooth one-parameter group of transformations

acting on R2.

(a) Define the generator of the transformation,

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
,

where you should specify ξ and η in terms of ψs.

(b) Define the nth prolongation of V , Pr(n) V and explicitly compute Pr(1) V in
terms of ξ, η.

Recall that if ψs is a Lie point symmetry of the ordinary differential equation:

∆

(
x, u,

du

dx
, . . . ,

dnu

dxn

)
= 0,

then it follows that Pr(n) V [∆] = 0 whenever ∆ = 0.

(c) Consider the ordinary differential equation:

du

dx
= F (x, u) ,

for F a smooth function. Show that if V generates a Lie point symmetry of this equation,
then:

0 = ηx + (ηu − ξx − Fξu)F − ξFx − ηFu.

(d) Find all the Lie point symmetries of the equation:

du

dx
= xG

( u
x2

)
,

where G is an arbitrary smooth function.
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Define a Lie point symmetry of the first order ordinary differential equation ∆[t,x, ẋ] =

0. Describe such a Lie point symmetry in terms of the vector field that generates it.

Consider the 2n-dimensional Hamiltonian system (M,H) governed by the differen-
tial equation

dx

dt
= J

∂H

∂x
. (⋆)

Define the Poisson bracket {·, ·}. For smooth functions f, g : M → R show that the
associated Hamiltonian vector fields Vf , Vg satisfy

[Vf , Vg] = −V{f,g}.

If F : M → R is a first integral of (M,H), show that the Hamiltonian vector field
VF generates a Lie point symmetry of (⋆). Prove the converse is also true if (⋆) has a fixed
point, i.e. a solution of the form x(t) = x0.
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Let U and V be non-singular N × N matrices depending on (x, t, λ) which are

periodic in x with period 2π. Consider the associated linear problem

Ψx = UΨ, Ψt = VΨ ,

for the vector Ψ = Ψ(x, t;λ). On the assumption that these equations are compatible,
derive the zero curvature equation for (U, V ).

Let W =W (x, t, λ) denote the N ×N matrix satisfying

Wx = UW, W (0, t, λ) = IN ,

where IN is the N ×N identity matrix. You should assume W is unique. By considering
(Wt − VW )x, show that the matrix w(t, λ) =W (2π, t, λ) satisfies the Lax equation

wt = [v,w], v(t, λ) ≡ V (2π, t, λ).

Deduce that
{
tr
(
wk
)}

k>1
are first integrals.

By considering the matrices

1

2iλ

[
cosu −i sinu
i sin u − cos u

]
,

i

2

[
2λ ux
ux −2λ

]
,

show that the periodic Sine-Gordon equation uxt = sinu has infinitely many first integrals.
[You need not prove anything about independence.]
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Let u = u(x, t) be a smooth solution to the KdV equation

ut + uxxx − 6uux = 0

which decays rapidly as |x| → ∞ and let L = −∂2x + u be the associated Schrödinger
operator. You may assume L and A = 4∂3x − 3(u∂x + ∂xu) constitute a Lax pair for KdV.

Consider a solution to Lϕ = k2ϕ which has the asymptotic form

ϕ(x, k, t) =

{
e−ikx, as x→ −∞,

a(k, t)e−ikx + b(k, t)eikx, as x→ +∞.

Find evolution equations for a and b. Deduce that a(k, t) is t-independent.

By writing ϕ in the form

ϕ(x, k, t) = exp

[
−ikx+

∫ x

−∞
S(y, k, t) dy

]
, S(x, k, t) =

∞∑

n=1

Sn(x, t)

(2ik)n
,

show that

a(k, t) = exp

[∫ ∞

−∞
S(x, k, t) dx

]
.

Deduce that {
∫∞
−∞ Sn(x, t) dx}∞n=1 are first integrals of KdV.

By writing a differential equation for S = X + iY (with X,Y real), show that these
first integrals are trivial when n is even.
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What is meant by an auto-Bäcklund transformation?

The sine-Gordon equation in light-cone coordinates is

∂2ϕ

∂ξ∂τ
= sinϕ, (1)

where ξ = 1
2(x − t), τ = 1

2(x + t) and ϕ is to be understood modulo 2π. Show that the
pair of equations

∂ξ(ϕ1 − ϕ0) = 2ǫ sin

(
ϕ1 + ϕ0

2

)
, ∂τ (ϕ1 + ϕ0) =

2

ǫ
sin

(
ϕ1 − ϕ0

2

)
(2)

constitute an auto-Bäcklund transformation for (1).

By noting that ϕ = 0 is a solution to (1), use the transformation (2) to derive the
soliton (or ‘kink’) solution to the sine-Gordon equation. Show that this solution can be
expressed as

ϕ(x, t) = 4 arctan

[
exp

(
± x− ct√

1− c2
+ x0

)]
,

for appropriate constants c and x0.

[Hint: You may use the fact that
∫
cosec xdx = log tan(x/2) + const.]

The following function is a solution to the sine-Gordon equation:

ϕ(x, t) = 4 arctan

[
c
sinh(x/

√
1− c2)

cosh(ct/
√
1− c2)

]
(c > 0).

Verify that this represents two solitons travelling towards each other at the same speed by
considering x± ct = constant and taking an appropriate limit.
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What does it mean for an evolution equation ut = K(x, u, ux, . . .) to be in

Hamiltonian form? Define the associated Poisson bracket.

An evolution equation ut = K(x, u, ux, . . .) is said to be bi-Hamiltonian if it can be
written in Hamiltonian form in two distinct ways, i.e.

K = J δH0 = E δH1

for Hamiltonian operators J , E and functionals H0,H1. By considering the sequence
{Hm}m>0 defined by the recurrence relation

E δHm+1 = J δHm , (∗)

show that bi-Hamiltonian systems possess infinitely many first integrals in involution.
[You may assume that (∗) can always be solved for Hm+1, given Hm.]

The Harry Dym equation for the function u = u(x, t) is

ut =
∂3

∂x3

(
u−1/2

)
.

This equation can be written in Hamiltonian form ut = EδH1 with

E = 2u
∂

∂x
+ ux , H1[u] =

1

8

∫
u−5/2u2x dx .

Show that the Harry Dym equation possesses infinitely many first integrals in involution.
[You need not verify the Jacobi identity if your argument involves a Hamiltonian operator.]
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What does it mean for gǫ : (x, u) 7→ (x̃, ũ) to describe a 1-parameter group of

transformations? Explain how to compute the vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
(∗)

that generates such a 1-parameter group of transformations.

Suppose now u = u(x). Define the nth prolongation, pr(n)gǫ, of gǫ and the vector
field which generates it. If V is defined by (∗) show that

pr(n)V = V +

n∑

k=1

ηk
∂

∂u(k)
,

where u(k) = dku/dxk and ηk are functions to be determined.

The curvature of the curve u = u(x) in the (x, u)-plane is given by

κ =
uxx

(1 + u2x)
3/2

.

Rotations in the (x, u)-plane are generated by the vector field

W = x
∂

∂u
− u

∂

∂x
.

Show that the curvature κ at a point along a plane curve is invariant under such rotations.
Find two further transformations that leave κ invariant.
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Let ut = K(x, u, ux, . . .) be an evolution equation for the function u = u(x, t).
Assume u and all its derivatives decay rapidly as |x| → ∞. What does it mean to say that
the evolution equation for u can be written in Hamiltonian form?

The modified KdV (mKdV) equation for u is

ut + uxxx − 6u2ux = 0 .

Show that small amplitude solutions to this equation are dispersive.

Demonstrate that the mKdV equation can be written in Hamiltonian form and
define the associated Poisson bracket { , } on the space of functionals of u. Verify that
the Poisson bracket is linear in each argument and anti-symmetric.

Show that a functional I = I[u] is a first integral of the mKdV equation if and only
if {I,H} = 0, where H = H[u] is the Hamiltonian.

Show that if u satisfies the mKdV equation then

∂

∂t

(
u2

)
+

∂

∂x

(
2uuxx − u2x − 3u4

)
= 0 .

Using this equation, show that the functional

I[u] =

∫
u2 dx

Poisson-commutes with the Hamiltonian.
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29D Integrable Systems

(a) Explain how a vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u

generates a 1-parameter group of transformations gǫ : (x, u) 7→ (x̃, ũ) in terms of the
solution to an appropriate differential equation. [You may assume the solution to the
relevant equation exists and is unique.]

(b) Suppose now that u = u(x). Define what is meant by a Lie-point symmetry of the
ordinary differential equation

∆
[
x, u, u(1), . . . , u(n)

]
= 0 , where u(k) ≡ dku

dxk
, k = 1, . . . , n .

(c) Prove that every homogeneous, linear ordinary differential equation for u = u(x)
admits a Lie-point symmetry generated by the vector field

V = u
∂

∂u
.

By introducing new coordinates

s = s(x, u), t = t(x, u)

which satisfy V (s) = 1 and V (t) = 0, show that every differential equation of the form

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0

can be reduced to a first-order differential equation for an appropriate function.
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29D Integrable Systems

Let L = L(t) and A = A(t) be real N × N matrices, with L symmetric and A
antisymmetric. Suppose that

dL

dt
= LA−AL .

Show that all eigenvalues of the matrix L(t) are t-independent. Deduce that the coefficients
of the polynomial

P (x) = det(xI − L(t))

are first integrals of the system.

What does it mean for a 2n-dimensional Hamiltonian system to be integrable?
Consider the Toda system with coordinates (q1, q2, q3) obeying

d2qi
dt2

= eqi−1−qi − eqi−qi+1 , i = 1, 2, 3

where here and throughout the subscripts are to be determined modulo 3 so that q4 ≡ q1
and q0 ≡ q3. Show that

H(qi, pi) =
1

2

3∑

i=1

p2i +

3∑

i=1

e qi−qi+1

is a Hamiltonian for the Toda system.

Set ai =
1
2 exp

(
qi−qi+1

2

)
and bi = −1

2pi. Show that

dai
dt

= (bi+1 − bi) ai ,
dbi
dt

= 2
(
a2i − a2i−1

)
, i = 1, 2, 3 .

Is this coordinate transformation canonical?

By considering the matrices

L =



b1 a1 a3
a1 b2 a2
a3 a2 b3


 , A =




0 −a1 a3
a1 0 −a2
−a3 a2 0


 ,

or otherwise, compute three independent first integrals of the Toda system. [Proof of
independence is not required.]
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32D Integrable Systems
What does it mean to say that a finite-dimensional Hamiltonian system is integrable?

State the Arnold–Liouville theorem.

A six-dimensional dynamical system with coordinates (x1, x2, x3, y1, y2, y3) is gov-
erned by the differential equations

dxi
dt

= − 1

2π

∑

j 6=i

Γj(yi − yj)

(xi − xj)2 + (yi − yj)2
,

dyi
dt

=
1

2π

∑

j 6=i

Γj(xi − xj)

(xi − xj)2 + (yi − yj)2

for i = 1, 2, 3, where {Γi}3i=1 are positive constants. Show that these equations can be
written in the form

Γi
dxi
dt

=
∂F

∂yi
, Γi

dyi
dt

= −∂F

∂xi
, i = 1, 2, 3

for an appropriate function F . By introducing the coordinates

q = (x1, x2, x3) , p = (Γ1y1,Γ2y2,Γ3y3) ,

show that the system can be written in Hamiltonian form

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q

for some Hamiltonian H = H(q,p) which you should determine.

Show that the three functions

A =

3∑

i=1

Γixi, B =

3∑

i=1

Γiyi, C =

3∑

i=1

Γi

(
x2i + y2i

)

are first integrals of the Hamiltonian system.

Making use of the fundamental Poisson brackets {qi, qj} = {pi, pj} = 0 and
{qi, pj} = δij, show that

{A,C} = 2B, {B,C} = −2A.

Hence show that the Hamiltonian system is integrable.
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Let u = u(x) be a smooth function that decays rapidly as |x| → ∞ and let

L = −∂2
x + u(x) denote the associated Schrödinger operator. Explain very briefly each of

the terms appearing in the scattering data

S =
{
{χn, cn}Nn=1, R(k)

}
,

associated with the operator L. What does it mean to say u(x) is reflectionless?

Given S, define the function

F (x) =
N∑

n=1

c2ne
−χnx +

1

2π

∫ ∞

−∞
eikxR(k) dk .

If K = K(x, y) is the unique solution to the GLM equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y) dz = 0 ,

what is the relationship between u(x) and K(x, x)?

Now suppose that u = u(x, t) is time dependent and that it solves the KdV equation
ut + uxxx − 6uux = 0. Show that L = −∂2

x + u(x, t) obeys the Lax equation

Lt = [L,A], where A = 4∂3
x − 3(u∂x + ∂xu) .

Show that the discrete eigenvalues of L are time independent.

In what follows you may assume the time-dependent scattering data take the form

S(t) =

{{
χn, cne

4χ3
nt
}N

n=1
, R(k, 0)e8ik

3t

}
.

Show that if u(x, 0) is reflectionless, then the solution to the KdV equation takes the form

u(x, t) = −2
∂2

∂x2
log [detA(x, t)] ,

where A is an N ×N matrix which you should determine.

Assume further that R(k, 0) = k2f(k), where f is smooth and decays rapidly at
infinity. Show that, for any fixed x,

∫ ∞

−∞
eikxR(k, 0) e8ik

3t dk = O(t−1) as t → ∞ .

Comment briefly on the significance of this result.

[You may assume
1

detA

d

dx
(detA) = tr

(
A−1dA

dx

)
for a non-singular matrix A(x).]
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Consider the coordinate transformation

gǫ : (x, u) 7→ (x̃, ũ) = (x cos ǫ− u sin ǫ, x sin ǫ+ u cos ǫ) .

Show that gǫ defines a one-parameter group of transformations. Define what is meant by
the generator V of a one-parameter group of transformations and compute it for the above
case.

Now suppose u = u(x). Explain what is meant by the first prolongation pr(1)gǫ of
gǫ. Compute pr(1)gǫ in this case and deduce that

pr(1)V = V + (1 + u2x)
∂

∂ux
. (⋆)

Similarly find pr(2)V .

Define what is meant by a Lie point symmetry of the first-order differential equation
∆[x, u, ux] = 0. Describe this condition in terms of the vector field that generates the Lie
point symmetry. Consider the case

∆[x, u, ux] ≡ ux −
u+ xf(x2 + u2)

x− uf(x2 + u2)
,

where f is an arbitrary smooth function of one variable. Using (⋆), show that gǫ generates
a Lie point symmetry of the corresponding differential equation.
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Let U = U(x, y) and V = V (x, y) be two n × n complex-valued matrix functions,

smoothly differentiable in their variables. We wish to explore the solution of the
overdetermined linear system

∂v

∂y
= U(x, y)v,

∂v

∂x
= V (x, y)v ,

for some twice smoothly differentiable vector function v(x, y).

Prove that, if the overdetermined system holds, then the functions U and V obey
the zero curvature representation

∂U

∂x
− ∂V

∂y
+ UV − V U = 0 .

Let u = u(x, y) and

U =

[
iλ iū
iu −iλ

]
, V =

[
2iλ2 − i|u|2 2iλū+ ūy
2iλu− uy −2iλ2 + i|u|2

]
,

where subscripts denote derivatives, ū is the complex conjugate of u and λ is a constant.
Find the compatibility condition on the function u so that U and V obey the zero curvature
representation.

Paper 2, Section II

32C Integrable Systems
Consider the Hamiltonian system

p′ = −∂H

∂q
, q′ =

∂H

∂p
,

where H = H(p,q).

When is the transformation P = P(p,q), Q = Q(p,q) canonical?

Prove that, if the transformation is canonical, then the equations in the new variables
(P,Q) are also Hamiltonian, with the same Hamiltonian function H.

Let P = C−1p + Bq, Q = Cq, where C is a symmetric nonsingular matrix.
Determine necessary and sufficient conditions on C for the transformation to be canonical.
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32C Integrable Systems
Quoting carefully all necessary results, use the theory of inverse scattering to derive

the 1-soliton solution of the KdV equation

ut = 6uux − uxxx .
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Consider a one-parameter group of transformations acting on R4

(x, y, t, u) −→ (exp (ǫα)x, exp (ǫβ)y, exp (ǫγ)t, exp (ǫδ)u) , (1)

where ǫ is a group parameter and (α, β, γ, δ) are constants.

(a) Find a vector field W which generates this group.

(b) Find two independent Lie point symmetries S1 and S2 of the PDE

(ut − uux)x = uyy, u = u(x, y, t) , (2)

which are of the form (1).

(c) Find three functionally-independent invariants of S1, and do the same for S2. Find
a non-constant function G = G(x, y, t, u) which is invariant under both S1 and S2.

(d) Explain why all the solutions of (2) that are invariant under a two-parameter group
of transformations generated by vector fields

W = u
∂

∂u
+ x

∂

∂x
+

1

2
y
∂

∂y
, V =

∂

∂y
,

are of the form u = xF (t), where F is a function of one variable. Find an ODE for
F characterising these group-invariant solutions.
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Consider the KdV equation for the function u(x, t)

ut = 6uux − uxxx . (1)

(a) Write equation (1) in the Hamiltonian form

ut =
∂

∂x

δH[u]

δu
,

where the functional H[u] should be given. Use equation (1), together with the
boundary conditions u → 0 and ux → 0 as |x| → ∞, to show that

∫
R u2dx is

independent of t.

(b) Use the Gelfand–Levitan–Marchenko equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y)dz = 0 (2)

to find the one soliton solution of the KdV equation, i.e.

u(x, t) = − 4βχ exp (−2χx)
[
1 + β

2χ exp (−2χx)
]2 .

[Hint. Consider F (x) = β exp (−χx), with β = β0 exp (8χ
3t), where β0, χ are

constants, and t should be regarded as a parameter in equation (2). You may use
any facts about the Inverse Scattering Transform without proof.]

Paper 1, Section II

32D Integrable Systems
State the Arnold–Liouville theorem.

Consider an integrable system with six-dimensional phase space, and assume that
∇∧ p = 0 on any Liouville tori pi = pi(qj , cj), where ∇ = (∂/∂q1, ∂/∂q2, ∂/∂q3).

(a) Define the action variables and use Stokes’ theorem to show that the actions are
independent of the choice of the cycles.

(b) Define the generating function, and show that the angle coordinates are periodic
with period 2π.
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Define a finite-dimensional integrable system and state the Arnold–Liouville theorem.

Consider a four-dimensional phase space with coordinates (q1, q2, p1, p2), where
q2 > 0 and q1 is periodic with period 2π. Let the Hamiltonian be

H =
(p1)

2

2(q2)2
+

(p2)
2

2
− k

q2
, where k > 0 .

Show that the corresponding Hamilton equations form an integrable system.

Determine the sign of the constant E so that the motion is periodic on the surface
H = E. Demonstrate that in this case, the action variables are given by

I1 = p1 , I2 = γ

∫ β

α

√
(q2 − α)(β − q2)

q2
dq2 ,

where α, β, γ are positive constants which you should determine.
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Consider the Poisson structure

{F,G} =

∫

R

δF

δu(x)

∂

∂x

δG

δu(x)
dx , (1)

where F,G are polynomial functionals of u, ux, uxx, . . . . Assume that u, ux, uxx, . . . tend
to zero as |x| → ∞.

(i) Show that {F,G} = −{G,F}.

(ii) Write down Hamilton’s equations for u = u(x, t) corresponding to the following
Hamiltonians:

H0[u] =

∫

R

1

2
u2 dx , H[u] =

∫

R

(
1

2
ux

2 + u3 + uux

)
dx .

(iii) Calculate the Poisson bracket {H0,H}, and hence or otherwise deduce that the
following overdetermined system of partial differential equations for u = u(x, t0, t)
is compatible:

ut0 = ux , (2)

ut = 6uux − uxxx . (3)

[You may assume that the Jacobi identity holds for (1).]

(iv) Find a symmetry of (3) generated by X = ∂/∂u+αt∂/∂x for some constant α ∈ R
which should be determined. Construct a vector field Y corresponding to the one–
parameter group

x → βx , t → γt , u → δu ,

where (β, γ, δ) should be determined from the symmetry requirement. Find the Lie
algebra generated by the vector fields (X,Y ).
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Let U(ρ, τ, λ) and V (ρ, τ, λ) be matrix-valued functions. Consider the following

system of overdetermined linear partial differential equations:

∂

∂ρ
ψ = Uψ ,

∂

∂τ
ψ = V ψ ,

where ψ is a column vector whose components depend on (ρ, τ, λ). Using the consistency
condition of this system, derive the associated zero curvature representation (ZCR)

∂

∂τ
U − ∂

∂ρ
V + [U, V ] = 0 , (∗)

where [ · , · ] denotes the usual matrix commutator.

(i) Let

U =
i

2

(
2λ ∂ρφ
∂ρφ −2λ

)
, V =

1

4iλ

(
cosφ −i sinφ
i sinφ − cosφ

)
.

Find a partial differential equation for φ = φ(ρ, τ) which is equivalent to the
ZCR (∗).

(ii) Assuming that U and V in (∗) do not depend on t := ρ− τ , show that the trace of
(U − V )p does not depend on x := ρ+ τ , where p is any positive integer. Use this
fact to construct a first integral of the ordinary differential equation

φ′′ = sinφ , where φ = φ(x) .
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Paper 1, Section II

32E Integrable Systems
Define a Poisson structure on an open set U ⊂ Rn in terms of an anti-symmetric

matrix ωab : U −→ R , where a, b = 1, · · · , n. By considering the Poisson brackets of the
coordinate functions xa show that

n∑

d=1

(
ωdc ∂ ωab

∂ xd
+ ωdb ∂ ωca

∂ xd
+ ωda ∂ ωbc

∂ xd

)
= 0 .

Now set n = 3 and consider ωab =
∑3

c=1 ε
abc xc, where εabc is the totally

antisymmetric symbol on R3 with ε123 = 1. Find a non–constant function f : R3 −→ R
such that

{f, xa} = 0 , a = 1, 2, 3 .

Consider the Hamiltonian

H(x1, x2, x3) =
1

2

3∑

a,b=1

Mab xa xb ,

where Mab is a constant symmetric matrix and show that the Hamilton equations of
motion with ωab =

∑3
c=1 ε

abc xc are of the form

ẋa =
3∑

b, c=1

Qabc xb xc ,

where the constants Qabc should be determined in terms of Mab.
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Paper 2, Section II

32E Integrable Systems
Consider the Gelfand–Levitan–Marchenko (GLM) integral equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y) dz = 0 ,

with F (x) =
∑N

1 βn e
−cn x, where c1, . . . , cN are positive constants and β1, . . . , βN are

constants. Consider separable solutions of the form

K(x, y) =

N∑

n=1

Kn(x) e
−cn y ,

and reduce the GLM equation to a linear system

N∑

m=1

Anm(x)Km(x) = Bn(x) ,

where the matrix Anm(x) and the vector Bn(x) should be determined.

How is K related to solutions of the KdV equation?

Set N = 1, c1 = c, β1 = β exp (8c 3t) where c, β are constants. Show that the
corresponding one–soliton solution of the KdV equation is given by

u(x, t) = − 4β1c e
−2 cx

(1 + (β1/2c) e−2 cx)2
.

[You may use any facts about the Inverse Scattering Transform without proof.]
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Paper 3, Section II

32E Integrable Systems
Consider a vector field

V = αx
∂

∂x
+ β t

∂

∂t
+ γ v

∂

∂v
,

on R3, where α, β and γ are constants. Find the one-parameter group of transformations
generated by this vector field.

Find the values of the constants (α, β, γ) such that V generates a Lie point symmetry
of the modified KdV equation (mKdV)

vt − 6 v2 vx + vxxx = 0 , where v = v(x, t) .

Show that the function u = u(x, t) given by u = v2 + vx satisfies the KdV equation
and find a Lie point symmetry of KdV corresponding to the Lie point symmetry of mKdV
which you have determined from V .

Part II, 2010 List of Questions [TURN OVER

2010



51

Paper 1, Section II

32B Integrable Systems
Let H be a smooth function on a 2n–dimensional phase space with local coordinates

(pj , qj). Write down the Hamilton equations with the Hamiltonian given by H and state
the Arnold–Liouville theorem.

By establishing the existence of sufficiently many first integrals demonstrate that
the system of n coupled harmonic oscillators with the Hamiltonian

H =
1

2

n∑

k=1

(p2k + ω2
kq

2
k),

where ω1, . . . , ωn are constants, is completely integrable. Find the action variables for this
system.

Paper 2, Section II

32B Integrable Systems
Let L = −∂2

x + u(x, t) be a Schrödinger operator and let A be another differential
operator which does not contain derivatives with respect to t and such that

Lt = [L,A].

Show that the eigenvalues of L are independent of t, and deduce that if f is an eigenfunction
of L then so is ft +Af . [You may assume that L is self–adjoint.]

Let f be an eigenfunction of L corresponding to an eigenvalue λ which is non-
degenerate. Show that there exists a function f̂ = f̂(x, t, λ) such that

Lf̂ = λf̂ , f̂t +Af̂ = 0. (∗)

Assume
A = ∂3

x + a1∂x + a0,

where ak = ak(x, t), k = 0, 1 are functions. Show that the system (∗) is equivalent to a
pair of first order matrix PDEs

∂xF = UF, ∂tF = V F,

where F = (f̂ , ∂xf̂)
T and U, V are 2×2 matrices which should be determined.
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Paper 3, Section II

32B Integrable Systems
Consider the partial differential equation

∂u

∂t
= un

∂u

∂x
+

∂2k+1u

∂x2k+1
, (∗)

where u = u(x, t) and k, n are non-negative integers.

(i) Find a Lie point symmetry of (∗) of the form

(x, t, u) −→ (αx, βt, γu), (∗∗)

where (α, β, γ) are non-zero constants, and find a vector field generating this
symmetry. Find two more vector fields generating Lie point symmetries of (∗)
which are not of the form (∗∗) and verify that the three vector fields you have found
form a Lie algebra.

(ii) Put (∗) in a Hamiltonian form.
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1/II/31C Integrable Systems

Define an integrable system in the context of Hamiltonian mechanics with a finite
number of degrees of freedom and state the Arnold–Liouville theorem.

Consider a six-dimensional phase space with its canonical coordinates (pj , qj),
j = 1, 2, 3, and the Hamiltonian

1

2

3∑

j=1

pj
2 + F (r),

where r =
√
q2
1 + q2

2 + q2
3 and where F is an arbitrary function. Show that both

M1 = q2p3 − q3p2 and M2 = q3p1 − q1p3 are first integrals.

State the Jacobi identity and deduce that the Poisson bracket

M3 = {M1,M2}

is also a first integral. Construct a suitable expression out of M1,M2,M3 to demonstrate
that the system admits three first integrals in involution and thus satisfies the hypothesis
of the Arnold–Liouville theorem.

2/II/31C Integrable Systems

Describe the inverse scattering transform for the KdV equation, paying particular
attention to the Lax representation and the evolution of the scattering data.

[Hint: you may find it helpful to consider the operator

A = 4
d3

dx3
− 3
(
u
d

dx
+

d

dx
u
)
.]

Part II 2008
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3/II/31C Integrable Systems

Let U(λ) and V (λ) be matrix-valued functions of (x, y) depending on the auxiliary
parameter λ. Consider a system of linear PDEs

∂

∂x
Φ = U(λ)Φ,

∂

∂y
Φ = V (λ)Φ (1)

where Φ is a column vector whose components depend on (x, y, λ). Derive the zero
curvature representation as the compatibility conditions for this system.

Assume that

U(λ) = −



ux 0 λ
1 −ux 0
0 1 0


 , V (λ) = −




0 e−2u 0
0 0 eu

λ−1eu 0 0




and show that (1) is compatible if the function u = u(x, y) satisfies the PDE

∂2u

∂x∂y
= F (u) (2)

for some F (u) which should be determined.

Show that the transformation

(x, y) −→ (cx, c−1y), c ∈ R \ {0}

forms a symmetry group of the PDE (2) and find the vector field generating this group.

Find the ODE characterising the group-invariant solutions of (2).

Part II 2008
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1/II/31E Integrable Systems

(i) Using the Cole–Hopf transformation

u = −2ν

φ

∂φ

∂x
,

map the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

to the heat equation
∂φ

∂t
= ν

∂2φ

∂x2
.

(ii) Given that the solution of the heat equation on the infinite line R with initial
condition φ(x, 0) = Φ(x) is given by

φ(x, t) =
1√
4πνt

∫ ∞

−∞
Φ(ξ) e−

(x−ξ)2

4νt dξ ,

show that the solution of the analogous problem for the Burgers equation with
initial condition u(x, 0) = U(x) is given by

u =

∫ ∞

−∞

x− ξ

t
e−

1
2ν G(x,ξ,t) dξ

∫ ∞

−∞
e−

1
2ν G(x,ξ,t) dξ

,

where the function G is to be determined in terms of U .

(iii) Determine the ODE characterising the scaling reduction of the spherical modified
Korteweg – deVries equation

∂u

∂t
+ 6u2

∂u

∂x
+
∂3u

∂x3
+
u

t
= 0 .

2/II/31E Integrable Systems

Solve the following linear singular equation

(
t+ t−1

)
φ(t) +

(
t− t−1

)

πi
−
∫

C

φ(τ)

τ − t
dτ −

(
t+ t−1

)

2πi

∮

C

(
τ + 2τ−1

)
φ(τ) dτ = 2t−1 ,

where C denotes the unit circle, t ∈ C and −
∫

C

denotes the principal value integral.

Part II 2007

2007



70

3/II/31E Integrable Systems

Find a Lax pair formulation for the linearised NLS equation

iqt + qxx = 0 .

Use this Lax pair formulation to show that the initial value problem on the infinite
line of the linearised NLS equation is associated with the following Riemann–Hilbert
problem

M+(x, t, k) = M−(x, t, k)

(
1 eikx−ik2tq̂0(k)
0 1

)
, k ∈ R ,

M =

(
1 0
0 1

)
+O

(
1

k

)
, k → ∞ .

By deforming the above problem obtain the Riemann–Hilbert problem and hence
the linear integral equation associated with the following system of nonlinear evolution
PDEs

iqt + qxx − 2ϑq2 = 0 ,

−iϑt + ϑxx − 2ϑ2q = 0 .

Part II 2007
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1/II/31E Integrable Systems

(a) Let q(x, t) satisfy the heat equation

∂q

∂t
=
∂2q

∂x2
.

Find the function X, which depends linearly on ∂q/∂x, q, k, such that the heat
equation can be written in the form

∂

∂t

(
e−ikx+k2tq

)
+

∂

∂x

(
e−ikx+k2tX

)
= 0, k ∈ C.

Use this equation to construct a Lax pair for the heat equation.

(b) Use the above result, as well as the Cole–Hopf transformation, to construct a Lax
pair for the Burgers equation

∂Q

∂t
− 2Q

∂Q

∂x
=
∂2Q

∂x2
.

(c) Find the second-order ordinary differential equation satisfied by the similarity
solution of the so-called cylindrical KdV equation:

∂q

∂t
+
∂3q

∂x3
+ q

∂q

∂x
+

q

3t
= 0, t 6= 0.

2/II/31E Integrable Systems

Let φ(t) satisfy the singular integral equation

(
t4 + t3 − t2

) φ(t)
2

+
(t4 − t3 − t2)

2πi

∮

C

φ(τ)

τ − t
dτ = (A− 1)t3 + t2 ,

where C denotes the circle of radius 2 centred on the origin,
∮

denotes the principal
value integral and A is a constant. Derive the associated Riemann–Hilbert problem, and
compute the canonical solution of the corresponding homogeneous problem.

Find the value of A such that φ(t) exists, and compute the unique solution φ(t) if
A takes this value.
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3/II/31E Integrable Systems

The solution of the initial value problem of the KdV equation is given by

q(x, t) = −2i lim
k→∞

k
∂N

∂x
(x, t, k) ,

where the scalar function N(x, t, k) can be obtained by solving the following Riemann–
Hilbert problem:

M(x, t, k)

a(k)
= N(x, t,−k) + b(k)

a(k)
exp

(
2ikx+ 8ik3t

)
N(x, t, k), k ∈ R,

M , N and a are the boundary values of functions of k that are analytic for Im k > 0 and
tend to unity as k → ∞. The functions a(k) and b(k) can be determined from the initial
condition q(x, 0).

Assume that M can be written in the form

M

a
= M(x, t, k) +

c exp
(
−2px+ 8p3t

)
N(x, t, ip)

k − ip
, Im k > 0,

where M as a function of k is analytic for Im k > 0 and tends to unity as k → ∞; c and
p are constants and p > 0.

(a) By solving the above Riemann–Hilbert problem find a linear equation relating
N(x, t, k) and N(x, t, ip).

(b) By solving this equation explicitly in the case that b = 0 and letting c = 2ipe−2x0 ,
compute the one-soliton solution.

(c) Assume that q(x, 0) is such that a(k) has a simple zero at k = ip. Discuss the
dominant form of the solution as t→ ∞ and x/t = O(1).
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1/II/31D Integrable Systems

Let φ(t) satisfy the linear singular integral equation

(t2 + t− 1)φ(t)− t2 − t− 1

πi

∮

L

φ(τ)dτ

τ − t
− 1

πi

∫

L

(
τ +

1

τ

)
φ(τ)dτ = t− 1, t ∈ L,

where
∮

denotes the principal value integral and L denotes a counterclockwise smooth
closed contour, enclosing the origin but not the points ±1.

(a) Formulate the associated Riemann–Hilbert problem.

(b) For this Riemann–Hilbert problem, find the index, the homogeneous canonical
solution and the solvability condition.

(c) Find φ(t).

2/II/31C Integrable Systems

Suppose q(x, t) satisfies the mKdV equation

qt + qxxx + 6q2qx = 0 ,

where qt = ∂q/∂t etc.

(a) Find the 1-soliton solution.

[You may use, without proof, the indefinite integral

∫
dx

x
√
1− x2

= −arcsechx . ]

(b) Express the self-similar solution of the mKdV equation in terms of a solution,
denoted by v(z), of the Painlevé II equation.

(c) Using the Ansatz
dv

dz
+ iv2 − i

6
z = 0 ,

find a particular solution of the mKdV equation in terms of a solution of the Airy equation

d2Ψ

dz2
+
z

6
Ψ = 0 .
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3/II/31A Integrable Systems

Let Q(x, t) be an off-diagonal 2× 2 matrix. The matrix NLS equation

iQt −Qxxσ3 + 2Q3σ3 = 0, σ3 = diag(1,−1),

admits the Lax pair

µx + ik[σ3, µ] = Qµ,

µt + 2ik2[σ3, µ] = (2kQ− iQ2σ3 − iQxσ3)µ,

where k ∈ C, µ(x, t, k) is a 2× 2 matrix and [σ3, µ] denotes the matrix commutator.

Let S(k) be a 2 × 2 matrix-valued function decaying as |k| → ∞. Let µ(x, t, k)
satisfy the 2× 2-matrix Riemann–Hilbert problem

µ+(x, t, k) = µ−(x, t, k)e−i(kx+2k2t)σ3S(k)ei(kx+2k2t)σ3 , k ∈ R,

µ = diag(1, 1) + O

(
1

k

)
, k → ∞.

(a) Find expressions for Q(x, t), A(x, t) and B(x, t), in terms of the coefficients in the
large k expansion of µ, so that µ solves

µx + ik[σ3, µ]−Qµ = 0,

and
µt + 2ik2[σ3, µ]− (kA+B)µ = 0.

(b) Use the result of (a) to establish that

A = 2Q, B = −i(Q2 +Qx)σ3.

(c) Show that the above results provide a linearization of the matrix NLS equation.
What is the disadvantage of this approach in comparison with the inverse scattering
method?
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