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Paper 1, Section II

17H Graph Theory
(a) By considering the random graph G(n, p), with p = (1/2)n−2/3, show that for

every k > 1 there exists a graph G that contains no K3,3 and has χ(G) > k.

(b) (i) For p = n−2/3 log n, let G ∼ G(n, p). Show that

lim
n→∞

P(G contains at least 100 copies of K4) = 1.

(ii) Let {H1, . . . ,Hr} be vertex disjoint copies of K4, in a graph G. (Recall that
this means that V (Hi) ∩ V (Hj) = ∅, for all i 6= j.)

Show that

lim
n→∞

P(G contains at least 100 vertex disjoint copies of K4) = 1.

[Hint: you may wish to consider the number of K4’s in the graph and also
the number of pairs of K4’s that are not disjoint.]

Paper 2, Section II

17H Graph Theory
(a) Define the chromatic polynomial PG(t) of a graph G and prove that it is a

polynomial.

(b) Let f(t) = t4 − 4t3 + 5t2 − 2t. Explain why f is not the chromatic polynomial
of a bipartite graph. Is f the chromatic polynomial of some graph? Justify your answers.

(c) Let G be a connected graph, let A = A(G) be its adjacency matrix and let
d(G) denote the diameter of G. Show that the matrices I, A,A2, . . . , Ad(G) are linearly
independent.

(d) Give an infinite family of connected graphs {Gn} with adjacency matrices {An}
so that

I, An, A
2
n, . . . , A

d(Gn)+1
n

are linearly dependent, for each n.

Part II, Paper 1

2023
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Paper 3, Section II

17H Graph Theory
(a) Let r > 2. Prove Turán’s theorem in the form: if G is an n vertex graph that

does not contain a Kr+1 then

e(G) 6
(

1 − 1

r

)
n2

2
.

(b) For t 6 n − 1, show that if G is a connected n vertex graph with δ(G) > t/2
then G contains a path Pt of length t.

(c) For graphs G,H define the Ramsey number r(G,H) to be the minimum n such
that every red-blue colouring of the edges of Kn contains either a red copy of G or a blue
copy of H. For s > 2, t > 1, show that

r(Ks, Pt) > (s− 1)t+ 1.

(d) Show further that for s > 2, t > 1 we have

r(Ks, Pt) = (s− 1)t+ 1.

Paper 4, Section II

17H Graph Theory
(a) State Menger’s theorem relating the size of x-y separators in a graph to the

number of independent x-y paths.

(b) State Hall’s theorem and, assuming Menger’s theorem, prove Hall’s theorem.

(c) Let k > 1 and let [0, 1]3 = A1 ∪ · · · ∪ Ak and [0, 1]3 = B1 ∪ · · · ∪ Bk be two
partitions of the unit cube into sets of equal volume. Show there is a permutation σ of [k]
so that Ai ∩Bσ(i) 6= ∅, for all i ∈ [k].

(d) Let G be a 2k-connected graph that contains a K2k and let x1, . . . , xk, y1, . . . , yk
be distinct vertices in G. Show that there exist paths P1, . . . , Pk for which

V (Pi) ∩ V (Pj) = ∅,

for all i 6= j where, for each i, Pi is an xi-yi path.

[In parts (c) and (d) you may assume results from the course provided they are stated
clearly.]

Part II, Paper 1 [TURN OVER]

2023



49

Paper 1, Section II
17F Graph Theory

(a) Define a proper k-colouring of a graph G. Define the chromatic number χ(G)
of a graph G. Prove that χ(G) 6 ∆(G) + 1 for all graphs G. Do there exist graphs G for
which χ(G) = ∆(G) + 1 for each ∆(G) = 0, 1, 2, . . .?

(b) What does it mean for a graph to be k-connected? If G is a non-complete
3-connected graph, show that χ(G) 6 ∆(G).

(c) State Euler’s formula. If G is a triangle-free planar graph, prove that χ(G) 6 4.

(d) Define the edge-chromatic number χ′(G) of a graph G. State Hall’s theorem. If
G is a 4-regular bipartite graph, determine χ′(G).

Paper 2, Section II
17F Graph Theory

(a) For a graph H and a positive integer n, define ex(n,H). Prove that ex(n,K3) 6
n2/4. [You may not assume Turan’s theorem without proof.]

(b) For a fixed δ > 0, suppose thatG is a graph on n vertices with e(G) > (1+δ)n2/4.
Prove that G must contain at least εn3 triangles, where ε > 0 is a constant that does not
depend on n or G.

(c) Prove that ex(n,K3,2) < cn3/2, for some constant c > 0.

(d) Let x1, . . . , xn be distinct points in R2. Show that there exists a constant c > 0
such that at most cn3/2 of the ordered pairs (xi, xj) can satisfy |xi − xj | = 1.

Paper 3, Section II
17F Graph Theory

(a) Let G be a graph. Show that G contains a subgraph H with χ(H) 6 3 and

e(H) = b(2/3)e(G)c.

Show that the constant 2/3 is sharp, in the following sense: for any ε > 0 there
exists a graph G (with e(G) > 0) such that every subgraph H of G with χ(H) 6 3 has
e(H) 6 (2/3 + ε)e(G).

(b) An unfriendly partition of a graph G = (V,E) is a partition V = A ∪B, where
every v ∈ A has |N(v)∩B| > |N(v)∩A| and every vertex v ∈ B has |N(v)∩A| > |N(v)∩B|.
Show that every finite graph G has an unfriendly partition. [Hint: Consider a partition
A ∪B = V maximizing the number of edges with one end in A and one end in B.]

(c) Let G = (N, E) be a countably infinite graph in which all the vertices have finite
degree. Show that G has an unfriendly partition.

(d) Let G = (N, E) be a countably infinite graph in which all the vertices have
infinite degree. Show that G has an unfriendly partition. (In other words, in this infinite
degree case, we want each vertex v ∈ A to have N(v) ∩B infinite and each v ∈ B to have
N(v) ∩A infinite.)

Part II, Paper 1 [TURN OVER]

2022
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Paper 4, Section II
17F Graph Theory

Define the binomial random graph G(n, p), where n ∈ N and p ∈ [0, 1].

Let Gn ∼ G(n, p) and let En be the event that δ(Gn) > 0. Show that for every
ε > 0, if p = p(n) satisfies p > (1 + ε)n−1 log n then P(En)→ 1.

State Chebyshev’s inequality and show that for every ε > 0, if p is such that
p 6 (1− ε)n−1 log n then P(En)→ 0.

For Gn ∼ G(n, p), let Fn be the event that Gn is connected. Prove that for every
ε > 0, if p > (1 + ε)n−1 log n then P(Fn) → 1 as n → ∞ and if p 6 (1− ε)n−1 log n then
P(Fn) → 0 as n → ∞. [You may wish to consider separately the case when there is a
component of size at most say nε/10 and the case when there is not.]

[You may use, without proof, the fact that 1 − x 6 e−x for all x ∈ [0, 1], and also
that for any fixed δ ∈ (0, 1) we have 1− x > e−(1+2δ)x for all x ∈ [0, δ). All logarithms in
this question are natural logarithms.]

Part II, Paper 1

2022
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Paper 1, Section II

17G Graph Theory
Define the binomial random graph G(n, p), where n ∈ N and p ∈ (0, 1).

(a) Let Gn ∼ G(n, p) and let Et be the event that Gn contains a copy of the complete
graph Kt. Show that if p = p(n) is such that p · n2/(t−1) → 0 then P(Et)→ 0 as n→∞.

(b) State Chebyshev’s inequality. Show that if p · n→∞ then P(E3)→ 1.

(c) Let H be a triangle with an added leaf vertex, that is

H = ({x1, . . . , x4}, {x1x2, x2x3, x3x1, x1x4}),

where x1, . . . , x4 are distinct. Let F be the event that Gn ∼ G(n, p) contains a copy of H.
Show that if p = n−0.9 then P(F )→ 1.

Paper 2, Section II

17G Graph Theory
(a) Define a tree and what it means for a graph to be acyclic. Show that if G is an

acyclic graph on n vertices then e(G) 6 n− 1. [You may use the fact that a spanning tree
on n vertices has n− 1 edges.]

(b) Show that any 3-regular graph on n vertices contains a cycle of length 6
100 log n. Hence show that there exists n0 such that every 3-regular graph on more than
n0 vertices must contain two cycles C1, C2 with disjoint vertex sets.

(c) An unfriendly partition of a graph G = (V,E) is a partition V = A ∪ B, where
A,B 6= ∅, such that every vertex v ∈ A has |N(v) ∩ B| > |N(v) ∩ A| and every v ∈ B
has |N(v) ∩ A| > |N(v) ∩ B|. Show that every graph G with |G| > 2 has an unfriendly
partition.

(d) A friendly partition of a graph G = (V,E) is a partition V = S ∪ T , where
S, T 6= ∅, such that every vertex v ∈ S has |N(v) ∩ S| > |N(v) ∩ T | and every v ∈ T has
|N(v)∩ T | > |N(v)∩ S|. Give an example of a 3-regular graph (on at least 1 vertex) that
does not have a friendly partition. Using part (b), show that for large enough n0 every
3-regular graph G with |G| > n0 has a friendly partition.

Part II, 2021 List of Questions

2021
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Paper 3, Section II

17G Graph Theory
(a) Define the Ramsey number R(k) and show that R(k) 6 4k.

Show that every 2-coloured complete graph Kn with n > 2 contains a monochro-
matic spanning tree. Is the same true if Kn is coloured with 3 colours? Give a proof or
counterexample.

(b) Let G = (V,E) be a graph. Show that the number of paths of length 2 in G is

∑

x∈V
d(x)

(
d(x) − 1

)
.

Now consider a 2-coloured complete graph Kn with n > 3. Show that the number
of monochromatic triangles in Kn is

1

2

∑

x

{(
dr(x)

2

)
+

(
db(x)

2

)}
− 1

2

(
n

3

)
,

where dr(x) denotes the number of red edges incident with a vertex x and db(x) =
(n − 1) − dr(x) denotes the number of blue edges incident with x. [Hint: Count paths
of length 2 in two different ways.]

Paper 4, Section II

17G Graph Theory
State and prove Hall’s theorem, giving any definitions required by the proof (e.g. of

an M -alternating path).

Let G = (V,E) be a (not necessarily bipartite) graph, and let γ(G) be the size of
the largest matching in G. Let β(G) be the smallest k for which there exist k vertices
v1, . . . , vk ∈ V such that every edge in G is incident with at least one of v1, . . . , vk. Show
that γ(G) 6 β(G) and that β(G) 6 2γ(G). For each positive integer k, find a graph G
with β(G) = 2k and γ(G) = k. Determine β(G) and γ(G) when G is the Turan graph
T3(30) on 30 vertices.

By using Hall’s theorem, or otherwise, show that if G is a bipartite graph then
γ(G) = β(G).

Define the chromatic index χ′(G) of a graph G. Prove that if n = 2r with r > 1
then χ′(Kn) = n− 1.

Part II, 2021 List of Questions [TURN OVER]

2021
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Paper 1, Section II

17G Graph Theory
(a) The complement of a graph is defined as having the same vertex set as the graph,

with vertices being adjacent in the complement if and only if they are not adjacent in the
graph.

Show that no planar graph of order greater than 10 has a planar complement.

What is the maximum order of a bipartite graph that has a bipartite complement?

(b) For the remainder of this question, let G be a connected bridgeless planar graph
with n > 4 vertices, e edges, and containing no circuit of length 4. Suppose that it is
drawn with f faces, of which t are 3-sided.

Show that 2e > 3t+ 5(f − t). Show further that e > 3t, and hence f 6 8e/15.

Deduce that e 6 15(n−2)/7. Is there some n and some G for which equality holds?
[Hint: consider “slicing the corners off” a dodecahedron.]

Paper 2, Section II

17G Graph Theory
(i) Define the local connectivity κ(a, b;G) for two non-adjacent vertices a and b in a

graph G. Prove Menger’s theorem, that G contains a set of κ(a, b;G) vertex-disjoint a–b
paths.

(ii) Recall that a subdivision TKr of Kr is any graph obtained from Kr by replacing
its edges by vertex-disjoint paths. Let G be a 3-connected graph. Show that G contains
a TK3. Show further that G contains a TK4. Must G contain a TK5?

Paper 3, Section II

17G Graph Theory
(i) State and prove Turán’s theorem.

(ii) Let G be a graph of order 2n > 4 with n2 + 1 edges. Show that G must contain
a triangle, and that if n = 2 then G contains two triangles.

(iii) Show that if every edge of G lies in a triangle then G contains at least (n2+1)/3
triangles.

(iv) Suppose that G has some edge uv contained in no triangles. Show that
Γ(u) ∩ Γ(v) = ∅, and that if |Γ(u)| + |Γ(v)| = 2n then Γ(u) and Γ(v) are not both
independent sets.

By induction on n, or otherwise, show that every graph of order 2n > 4 with n2 + 1
edges contains at least n triangles. [Hint: If uv is an edge that is contained in no triangles,
consider G− u− v.]

Part II, 2020 List of Questions [TURN OVER]

2020
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Paper 4, Section II

17G Graph Theory
State and prove Vizing’s theorem about the chromatic index χ′(G) of a graph G.

Let Km,n be the complete bipartite graph with class sizes m and n. By first
considering χ′(Kn,n), find χ′(Km,n) for all m and n.

Let G be the graph of order 2n + 1 obtained by subdividing a single edge of Kn,n

by a new vertex. Show that χ′(G) = ∆(G) + 1, where ∆(G) is the maximum degree of G.

Part II, 2020 List of Questions

2020
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Paper 4, Section II

17G Graph Theory
State and prove Hall’s theorem.

Let n be an even positive integer. Let X = {A : A ⊂ [n]} be the power set of
[n] = {1, 2, . . . , n}. For 1 6 i 6 n, let Xi = {A ∈ X : |A| = i}. Let Q be the graph with
vertex set X where A, B ∈ X are adjacent if and only if |A△B| = 1. [Here, A△B denotes
the symmetric difference of A and B, given by A△B := (A ∪B) \ (A ∩B).]

Let 1 6 i 6 n
2 . Why is the induced subgraph Q[Xi ∪Xi−1] bipartite? Show that it

contains a matching from Xi−1 to Xi.

A chain in X is a subset C ⊂ X such that whenever A, B ∈ C we have A ⊂ B or
B ⊂ A. What is the least positive integer k such that X can be partitioned into k pairwise
disjoint chains? Justify your answer.

Paper 3, Section II

17G Graph Theory
(a) What does it mean to say that a graph is bipartite?

(b) Show that G is bipartite if and only if it contains no cycles of odd length.

(c) Show that if G is bipartite then

ex (n;G)(n
2

) → 0

as n→ ∞.
[You may use without proof the Erdős–Stone theorem provided it is stated precisely.]

(d) Let G be a graph of order n with m edges. Let U be a random subset of V (G)
containing each vertex of G independently with probability 1

2 . Let X be the number of
edges with precisely one vertex in U . Find, with justification, E(X), and deduce that G
contains a bipartite subgraph with at least m

2 edges.

By using another method of choosing a random subset of V (G), or otherwise, show
that if n is even then G contains a bipartite subgraph with at least mn

2(n−1) edges.

Part II, 2019 List of Questions [TURN OVER

2019
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Paper 2, Section II

17G Graph Theory
(a) Suppose that the edges of the complete graph K6 are coloured blue and yellow.

Show that it must contain a monochromatic triangle. Does this remain true if K6 is
replaced by K5?

(b) Let t > 1. Suppose that the edges of the complete graph K3t−1 are coloured
blue and yellow. Show that it must contain t edges of the same colour with no two sharing
a vertex. Is there any t > 1 for which this remains true if K3t−1 is replaced by K3t−2?

(c) Now let t > 2. Suppose that the edges of the complete graph Kn are coloured
blue and yellow in such a way that there are a blue triangle and a yellow triangle with
no vertices in common. Show that there are also a blue triangle and a yellow triangle
that do have a vertex in common. Hence, or otherwise, show that whenever the edges of
the complete graph K5t are coloured blue and yellow it must contain t monochromatic
triangles, all of the same colour, with no two sharing a vertex. Is there any t > 2 for
which this remains true if K5t is replaced by K5t−1? [You may assume that whenever
the edges of the complete graph K10 are coloured blue and yellow it must contain two
monochromatic triangles of the same colour with no vertices in common.]

Paper 1, Section II

17G Graph Theory
Let G be a connected d-regular graph.

(a) Show that d is an eigenvalue of G with multiplicity 1 and eigenvector

e = (1 1 . . . 1)T .

(b) Suppose that G is strongly regular. Show that G has at most three distinct
eigenvalues.

(c) Conversely, suppose that G has precisely three distinct eigenvalues d, λ and µ.
Let A be the adjacency matrix of G and let

B = A2 − (λ+ µ)A+ λµI.

Show that if v is an eigenvector of G that is not a scalar multiple of e then Bv = 0. Deduce
that B is a scalar multiple of the matrix J whose entries are all equal to one. Hence show
that, for i 6= j, (A2)ij depends only on whether or not vertices i and j are adjacent, and
so G is strongly regular.

(d) Which connected d-regular graphs have precisely two eigenvalues? Justify your
answer.

Part II, 2019 List of Questions

2019
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Paper 4, Section II

17I Graph Theory
Let s > 3. Define the Ramsey number R(s). Show that R(s) exists and that

R(s) 6 4s.

Show that R(3) = 6. Show that (up to relabelling the vertices) there is a unique
way to colour the edges of the complete graph K5 blue and yellow with no monochromatic
triangle.

What is the least positive integer n such that the edges of the complete graph K6

can be coloured blue and yellow in such a way that there are precisely n monochromatic
triangles?

Paper 3, Section II

17I Graph Theory
What does it mean to say that a graph G has a k-colouring? What are the chromatic

number χ(G) and the independence number α(G) of a graph G? For each r > 3, give an
example of a graph G such that χ(G) > r but Kr 6⊂ G.

Let g, k > 3. Show that there exists a graph G containing no cycle of length 6 g
with χ(G) > k.

Show also that if n is sufficiently large then there is a triangle-free G of order n with
α(G) < n0.7.

Paper 2, Section II

17I Graph Theory
Let G be a graph and A, B ⊂ V (G). Show that if every AB-separator in G has

order at least k then there exist k vertex-disjoint AB-paths in G.

Let k > 3 and assume that G is k-connected. Show that G must contain a cycle of
length at least k.

Assume further that |G| > 2k. Must G contain a cycle of length at least 2k? Justify
your answer.

What is the largest integer n such that any 3-connected graph G with |G| > n must
contain a cycle of length at least n?

[No form of Menger’s theorem or of the max-flow-min-cut theorem may be assumed
without proof.]

Part II, 2018 List of Questions [TURN OVER

2018
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Paper 1, Section II

17I Graph Theory
(a) Define ex (n,H) where H is a graph with at least one edge and n > |H|. Show

that, for any such H, the limit limn→∞ ex (n,H)/
(n
2

)
exists.

[You may not assume the Erdős–Stone theorem.]

(b) State the Erdős–Stone theorem. Use it to deduce that if H is bipartite then
limn→∞ ex (n,H)/

(
n
2

)
= 0.

(c) Let t > 2. Show that ex (n,Kt,t) = O
(
n2−

1
t

)
.

We say A ⊂ Zn is nice if whenever a, b, c, d ∈ A with a + b = c + d then either
a = c, b = d or a = d, b = c. Let f(n) = max{|A| : A ⊂ Zn, A is nice}. Show that
f(n) = O(

√
n).

[Zn denotes the set of integers modulo n, i.e. Zn = {0, 1, 2, . . . , n−1} with addition
modulo n.]

Part II, 2018 List of Questions

2018
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Paper 3, Section II

15H Graph Theory
Define the Ramsey numbers R(s, t) for integers s, t > 2. Show that R(s, t) exists for

all s, t > 2. Show also that R(s, s) 6 4s for all s > 2.

Let t > 2 be fixed. Give a red-blue colouring of the edges of K2t−2 for which there
is no red Kt and no blue odd cycle. Show, however, that for any red-blue colouring of the
edges of K2t−1 there must exist either a red Kt or a blue odd cycle.

Paper 2, Section II

15H Graph Theory
State and prove Hall’s theorem about matchings in bipartite graphs.

Let A = (aij) be an n × n matrix, with all entries non-negative reals, such that
every row sum and every column sum is 1. By applying Hall’s theorem, show that there
is a permutation σ of {1, . . . , n} such that aiσ(i) > 0 for all i.

Paper 1, Section II

16H Graph Theory
Let G be a graph of order n > 3 satisfying δ(G) > n

2 . Show that G is Hamiltonian.

Give an example of a planar graph G, with χ(G) = 4, that is Hamiltonian, and also
an example of a planar graph G, with χ(G) = 4, that is not Hamiltonian.

Let G be a planar graph with the property that the boundary of the unbounded
face is a Hamilton cycle of G. Prove that χ(G) 6 3.

Part II, 2017 List of Questions [TURN OVER

2017
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Paper 4, Section II

16H Graph Theory
Let G be a graph of maximum degree ∆. Show the following:

(i) Every eigenvalue λ of G satisfies |λ| 6 ∆.

(ii) If G is regular then ∆ is an eigenvalue.

(iii) If G is regular and connected then the multiplicity of ∆ as an eigenvalue is 1.

(iv) If G is regular and not connected then the multiplicity of ∆ as an eigenvalue is
greater than 1.

Let A be the adjacency matrix of the Petersen graph. Explain why A2+A−2I = J ,
where I is the identity matrix and J is the all-1 matrix. Find, with multiplicities, the
eigenvalues of the Petersen graph.

Part II, 2017 List of Questions

2017
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Paper 3, Section II

15G Graph Theory

Define the chromatic polynomial pG(t) of a graph G. Show that if G has n vertices

and m edges then

pG(t) = ant
n − an−1t

n−1 + an−2t
n−2 − . . .+ (−1)na0

where an = 1, an−1 = m and ai > 0 for all i. [You may assume the deletion-contraction

relation, provided that you state it clearly.]

Show that for every graph G (with n > 0) we have a0 = 0. Show also that a1 = 0

if and only if G is disconnected.

Explain why t4 − 2t3 + 3t2 − t is not the chromatic polynomial of any graph.

Paper 2, Section II

15G Graph Theory

Define the Turán graph Tr(n), where r and n are positive integers with n > r. For

which r and n is Tr(n) regular? For which r and n does Tr(n) contain T4(8) as a subgraph?

State and prove Turán’s theorem.

Let x1, . . . , xn be unit vectors in the plane. Prove that the number of pairs i < j

for which xi + xj has length less than 1 is at most ⌊n2/4⌋.

Paper 4, Section II

16G Graph Theory

State Menger’s theorem in both the vertex form and the edge form. Explain briefly

how the edge form of Menger’s theorem may be deduced from the vertex form.

(a) Show that if G is 3-connected then G contains a cycle of even length.

(b) Let G be a connected graph with all degrees even. Prove that λ(G) is even.

[Hint: if S is a minimal set of edges whose removal disconnects G, let H be a component

of G−S and consider the degrees of the vertices of H in the graph G−S.] Give an example

to show that κ(G) can be odd.

Part II, 2016 List of Questions [TURN OVER

2016
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Paper 1, Section II

16G Graph Theory

(a) Show that if G is a planar graph then χ(G) 6 5. [You may assume Euler’s

formula, provided that you state it precisely.]

(b) (i) Prove that if G is a triangle-free planar graph then χ(G) 6 4.

(ii) Prove that if G is a planar graph of girth at least 6 then χ(G) 6 3.

(iii) Does there exist a constant g such that, if G is a planar graph of girth at least

g, then χ(G) 6 2? Justify your answer.

Part II, 2016 List of Questions

2016
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Paper 1, Section II

14I Graph Theory

(a) What does it mean to say that a graph G is strongly regular with parameters
(k, a, b)?

(b) Let G be an incomplete, strongly regular graph with parameters (k, a, b) and of
order n. Suppose b > 1. Show that the numbers

1

2

(
n− 1± (n− 1)(b − a)− 2k√

(a− b)2 + 4(k − b)

)

are integers.

(c) Suppose now that G is an incomplete, strongly regular graph with parameters
(k, 0, 3). Show that |G| ∈ {6, 162}.

Paper 2, Section II

14I Graph Theory

(a) Define the Ramsey numbers R(s, t) and R(s) for integers s, t > 2. Show that
R(s, t) exists for all s, t > 2 and that if s, t > 3 then R(s, t) 6 R(s− 1, t) +R(s, t− 1).

(b) Show that, as s → ∞, we have R(s) = O(4s) and R(s) = Ω(2s/2).

(c) Show that, as t → ∞, we have R(3, t) = O(t2) and R(3, t) = Ω

((
t

log t

)3/2
)
.

[Hint: For the lower bound in (c), you may wish to begin by modifying a random
graph to show that for all n and p we have

R(3, t) > n−
(
n

3

)
p3 −

(
n

t

)
(1− p)(

t
2). ]

Part II, 2015 List of Questions

2015
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Paper 3, Section II

14I Graph Theory

(a) Let G be a graph. What is a Hamilton cycle in G? What does it mean to say
that G is Hamiltonian?

(b) Let G be a graph of order n > 3 satisfying δ(G) > n
2 . Show that G is

Hamiltonian. For each n > 3, exhibit a non-Hamiltonian graph Gn of order n with
δ(Gn) =

⌈
n
2

⌉
− 1.

(c) Let H be a bipartite graph with n > 2 vertices in each class satisfying δ(H) > n
2 .

Show that H is Hamiltonian. For each n > 2, exhibit a non-Hamiltonian bipartite graph
Hn with n vertices in each class and δ(Hn) =

⌊
n
2

⌋
.

Paper 4, Section II

14I Graph Theory

Let G be a bipartite graph with vertex classes X and Y . What does it mean to say
that G contains a matching from X to Y ? State and prove Hall’s Marriage Theorem.

Suppose now that every x ∈ X has d(x) > 1, and that if x ∈ X and y ∈ Y with
xy ∈ E(G) then d(x) > d(y). Show that G contains a matching from X to Y .

Part II, 2015 List of Questions [TURN OVER
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Paper 4, Section II

17I Graph Theory

Define the Ramsey number R(r)(s, t). What is the value of R(1)(s, t)? Prove that

R(r)(s, t) 6 1+R(r−1)(R(r)(s−1, t), R(r)(s, t−1)) holds for r > 2 and deduce that R(r)(s, t)

exists.

Show that R(2)(3, 3) = 6 and that R(2)(3, 4)=9.

Show that 7 6 R(3)(4, 4) 6 19. [Hint: For the lower bound, choose a suitable subset

U and colour e red if |U ∩ e| is odd.]

Paper 3, Section II

17I Graph Theory
Prove that χ(G) 6 ∆(G) + 1 for every graph G. Prove further that, if κ(G) > 3,

then χ(G) 6 ∆(G) unless G is complete.

Let k > 2. A graph G is said to be k-critical if χ(G) = k + 1, but χ(G− v) = k for
every vertex v of G. Show that, if G is k-critical, then κ(G) > 2.

Let k > 2, and let H be the graph Kk+1 with an edge removed. Show that H has the
following property: it has two vertices which receive the same colour in every k-colouring
of H. By considering two copies of H, construct a k-colourable graph G of order 2k + 1
with the following property: it has three vertices which receive the same colour in every
k-colouring of G.

Construct, for all integers k > 2 and ℓ > 2, a k-critical graph G of order ℓk+1 with
κ(G) = 2.

Paper 2, Section II

17I Graph Theory

Let k and n be integers with 1 6 k < n. Show that every connected graph of

order n, in which d(u) + d(v) > k for every pair u, v of non-adjacent vertices, contains a

path of length k.

Let k and n be integers with 1 6 k 6 n. Show that a graph of order n that contains

no path of length k has at most (k − 1)n/2 edges, and that this value is achieved only if

k divides n and G is the union of n/k disjoint copies of Kk. [Hint: Proceed by induction

on n and consider a vertex of minimum degree.]
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Paper 1, Section II

17I Graph Theory

Show that a graph is bipartite if and only if all of its cycles are of even length.

Show that a bridgeless plane graph is bipartite if and only if all of its faces are of

even length.

Let G be an Eulerian plane graph. Show that the faces of G can be coloured with

two colours so that no two contiguous faces have the same colour. Deduce that it is

possible to assign a direction to each edge of G in such a way that the edges around each

face form a directed cycle.

Part II, 2014 List of Questions
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Paper 4, Section II

17F Graph Theory

Define the maximum degree ∆(G) and the chromatic index χ′(G) of the graph G.

State and prove Vizing’s theorem relating ∆(G) and χ′(G).

Let G be a connected graph such that χ′(G) = ∆(G) + 1 but, for every subgraph

H of G, χ′(H) = ∆(H) holds. Show that G is a circuit of odd length.

Paper 3, Section II

17F Graph Theory

Let G be a graph of order n and average degree d. Let A be the adjacency matrix

of G and let xn + c1x
n−1 + c2x

n−2 + · · ·+ cn be its characteristic polynomial. Show that

c1 = 0 and c2 = −nd/2. Show also that −c3 is twice the number of triangles in G.

The eigenvalues of A are λ1 > λ2 > · · · > λn. Prove that λ1 > d.

Evaluate λ1+ · · ·+λn. Show that λ2
1+ · · ·+λ2

n = nd and infer that λ1 6
√

d(n− 1).

Does there exist, for each n, a graph G with d > 0 for which λ2 = · · · = λn?

Paper 2, Section II

17F Graph Theory

Let G be a graph with |G| > 3. State and prove a necessary and sufficient condition

for G to be Eulerian (that is, for G to have an Eulerian circuit).

Prove that if δ(G) > |G|/2 then G is Hamiltonian (that is, G has a Hamiltonian

circuit).

The line graph L(G) of G has vertex set V (L(G)) = E(G) and edge set

E(L(G)) = { ef : e, f ∈ E(G), e and f are incident} .

Show that L(G) is Eulerian if G is regular and connected.

Must L(G) be Hamiltonian if G is Eulerian? Must G be Eulerian if L(G) is

Hamiltonian? Justify your answers.

Part II, 2013 List of Questions [TURN OVER
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Paper 1, Section II

17F Graph Theory

State and prove Hall’s theorem about matchings in bipartite graphs.

Show that a regular bipartite graph has a matching meeting every vertex.

A graph is almost r-regular if each vertex has degree r − 1 or r. Show that, if

r > 2, an almost r-regular graph G must contain an almost (r − 1)-regular graph H with

V (H) = V (G).

[Hint: First, if possible, remove edges from G whilst keeping it almost r-regular.]

Part II, 2013 List of Questions
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Paper 4, Section II

17F Graph Theory
(a) Show that every finite tree of order at least 2 has a leaf. Hence, or otherwise,

show that a tree of order n > 1 must have precisely n− 1 edges.

(b) Let G be a graph. Explain briefly why |G|/α(G) 6 χ(G) 6 ∆(G) + 1.

Let k = χ(G), and assume k > 2. By induction on |G|, or otherwise, show that G
has a subgraph H with δ(H) > k − 1. Hence, or otherwise, show that if T is a tree of
order k then T ⊆ G.

(c) Let s, t > 2 be integers, let n = (s − 1)(t − 1) + 1 and let T be a tree of order
t. Show that whenever the edges of the complete graph Kn are coloured blue and yellow
then it must contain either a blue Ks or a yellow T .

Does this remain true if Kn is replaced by Kn−1? Justify your answer.

[The independence number α(G) of a graph G is the size of the largest set W ⊆ V (G)
of vertices such that no edge of G joins two points of W . Recall that χ(G) is the chromatic
number and δ(G),∆(G) are respectively the minimal/maximal degrees of vertices in G. ]

Paper 3, Section II

17F Graph Theory
Let H be a graph with at least one edge. Define ex (n;H), where n is an integer

with n > |H|. Without assuming the Erdős–Stone theorem, show that the sequence
ex (n;H)

/(n
2

)
converges as n → ∞.

State precisely the Erdős–Stone theorem. Hence determine, with justification,
limn→∞ ex (n;H)

/(n
2

)
.

Let K be another graph with at least one edge. For each integer n such that
n > max{|H|, |K|}, let

f(n) = max{e(G) : |G| = n;H 6⊂ G and K 6⊂ G}

and let
g(n) = max{e(G) : |G| = n;H 6⊂ G or K 6⊂ G}.

Find, with justification, limn→∞ f(n)
/(

n
2

)
and limn→∞ g(n)

/(
n
2

)
.
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Paper 2, Section II

17F Graph Theory
Let G be a k-connected graph (k > 2). Let v ∈ G and let U ⊂ V (G)\{v} with

|U | > k. Show that G contains k paths from v to U with any two having only the vertex
v in common.

[No form of Menger’s theorem or of the Max-Flow-Min-Cut theorem may be assumed
without proof.]

Deduce that G must contain a cycle of length at least k.

Suppose further that G has no independent set of vertices of size > k. Show that
G is Hamiltonian.

[Hint. If not, let C be a cycle of maximum length in G and let v ∈ V (G)\V (C);
consider the set of vertices on C immediately preceding the endvertices of a collection of
k paths from v to C that have only the vertex v in common.]

Paper 1, Section II

17F Graph Theory
State Markov’s inequality and Chebyshev’s inequality.

Let G(2)(n, p) denote the probability space of bipartite graphs with vertex classes
U = {1, 2, . . . , n} and V = {−1,−2, . . . ,−n}, with each possible edge uv (u ∈ U ,
v ∈ V ) present, independently, with probability p. Let X be the number of subgraphs of
G ∈ G(2)(n, p) that are isomorphic to the complete bipartite graph K2,2. Write down EX
and Var (X). Hence show that p = 1/n is a threshold for G ∈ G(2)(n, p) to contain K2,2,
in the sense that if np → ∞ then a. e. G ∈ G(2)(n, p) contains a K2,2, whereas if np → 0
then a. e. G ∈ G(2)(n, p) does not contain a K2,2.

By modifying a random G ∈ G(2)(n, p) for suitably chosen p, show that, for each
n, there exists a bipartite graph H with n vertices in each class such that K2,2 6⊂ H but

e(H) > 3
4

(
n

3√n−1

)2
.
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Paper 1, Section II

17F Graph Theory
Let G be a bipartite graph with vertex classes X and Y . What is a matching from

X to Y ?

Show that if |Γ(A)| > |A| for all A ⊂ X then G contains a matching from X to Y .

Let d be a positive integer. Show that if |Γ(A)| > |A| − d for all A ⊂ X then G
contains a set of |X| − d independent edges.

Show that if 0 is not an eigenvalue of G then G contains a matching from X to Y .

Suppose now that |X| = |Y | > 1 and that G does contain a matching from X to Y .
Must it be the case that 0 is not an eigenvalue of G? Justify your answer.

Paper 2, Section II

17F Graph Theory
What does it mean to say that a graph G is k-colourable? Define the chromatic

number χ(G) of a graph G, and the chromatic number χ(S) of a closed surface S.

State the Euler–Poincaré formula relating the numbers of vertices, edges and faces
in a drawing of a graph G on a closed surface S of Euler characteristic E. Show that if
E 6 0 then

χ(S) 6
⌊
7 +

√
49− 24E

2

⌋
.

Find, with justification, the chromatic number of the Klein bottle N2. Show that if
G is a triangle-free graph which can be drawn on the Klein bottle then χ(G) 6 4.

[You may assume that the Klein bottle has Euler characteristic 0, and that K6 can be
drawn on the Klein bottle but K7 cannot. You may use Brooks’s theorem.]

Part II, 2011 List of Questions [TURN OVER

2011



48

Paper 3, Section II

17F Graph Theory
Define the Turán graph Tr(n). State and prove Turán’s theorem. Hence, or

otherwise, find ex(K3;n).

Let G be a bipartite graph with n vertices in each class. Let k be an integer,
1 6 k 6 n, and assume e(G) > (k − 1)n. Show that G contains a set of k independent
edges.

[Hint: Suppose G contains a set D of a independent edges but no set of a + 1
independent edges. Let U be the set of vertices of the edges in D and let F be the set of
edges in G with precisely one vertex in U ; consider |F |.]

Hence, or otherwise, show that if H is a triangle-free tripartite graph with n vertices
in each class then e(H) 6 2n2.

Paper 4, Section II

17F Graph Theory

(i) Given a positive integer k, show that there exists a positive integer n such that,
whenever the edges of the complete graph Kn are coloured with k colours, there
exists a monochromatic triangle.

Denote the least such n by f(k). Show that f(k) 6 3 · k! for all k.

(ii) You may now assume that f(2) = 6 and f(3) = 17.

Let H denote the graph of order 4 consisting of a triangle together with one extra
edge. Given a positive integer k, let g(k) denote the least positive integer n such
that, whenever the edges of the complete graph Kn are coloured with k colours,
there exists a monochromatic copy of H. By considering the edges from one vertex
of a monochromatic triangle in K7, or otherwise, show that g(2) 6 7. By exhibiting
a blue-yellow colouring of the edges of K6 with no monochromatic copy of H, show
that in fact g(2) = 7.

What is g(3)? Justify your answer.

Part II, 2011 List of Questions

2011
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Paper 1, Section II

17F Graph Theory

(a) Define the Ramsey number R(s). Show that for all integers s > 2 the Ramsey

number R(s) exists and that R(s) 6 4s.

(b) For any graph G, let R(G) denote the least positive integer n such that in any

red-blue colouring of the edges of the complete graph Kn there must be a monochromatic

copy of G.

(i) How do we know that R(G) exists for every graph G?

(ii) Let s be a positive integer. Show that, whenever the edge of K2s are red-blue

coloured, there must be a monochromatic copy of the complete bipartite graph

K1,s.

(iii) Suppose s is odd. By exhibiting a suitable colouring of K2s−1, show that

R(K1,s) = 2s .

(iv) Suppose instead s is even. What is R(K1,s)? Justify your answer.

Part II, 2010 List of Questions

2010
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Paper 2, Section II

17F Graph Theory

Let G be a bipartite graph with vertex classes X and Y . What does it mean to say

that G contains a matching from X to Y ?

State and prove Hall’s Marriage Theorem, giving a necessary and sufficient condition

for G to contain a matching from X to Y .

Now assume that G does contain a matching (from X to Y ). For a subset A ⊂ X,

Γ(A) denotes the set of vertices adjacent to some vertex in A.

(i) Suppose |Γ(A)| > |A| for every A ⊂ X with A 6= ∅ , X. Show that every edge of G

is contained in a matching.

(ii) Suppose that every edge of G is contained in a matching and that G is connected.

Show that |Γ(A)| > |A| for every A ⊂ X with A 6= ∅ , X.

(iii) For each n > 2 , give an example of G with |X| = n such that every edge is contained

in a matching but |Γ(A)| = |A| for some A ⊂ X with A 6= ∅ , X.

(iv) Suppose that every edge of G is contained in a matching. Must every pair of

independent edges in G be contained in a matching? Give a proof or counterexample

as appropriate.

[No form of Menger’s Theorem or of the Max-Flow-Min-Cut Theorem may be assumed

without proof.]

Paper 3, Section II

17F Graph Theory

Let G be a graph of order n . Show that G must contain an independent set of⌈∑

v∈G

1

d(v) + 1

⌉
vertices (where ⌈x⌉ denotes the least integer > x).

[Hint: take a random ordering of the vertices of G, and consider the set of those vertices

which are adjacent to no earlier vertex in the ordering.]

Fix an integer m < n with m dividing n , and suppose that e(G) = m

(
n/m

2

)
.

(i) Deduce that G must contain an independent set of m vertices.

(ii) Must G contain an independent set of m+ 1 vertices?

Part II, 2010 List of Questions [TURN OVER
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Paper 4, Section II

17F Graph Theory

State Euler’s formula relating the number of vertices, edges and faces in a drawing

of a connected planar graph. Deduce that every planar graph has chromatic number at

most 5.

Show also that any triangle-free planar graph has chromatic number at most 4.

Suppose G is a planar graph which is minimal 5-chromatic; that is to say, χ(G) = 5

but if H is a subgraph of G with H 6= G then χ(H) < 5 . Prove that δ(G) > 5 . Does

this remain true if we drop the assumption that G is planar? Justify your answer.

[The Four Colour Theorem may not be assumed.]

Part II, 2010 List of Questions

2010
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Paper 1, Section II

17F Graph Theory

(i) State and prove Hall’s theorem concerning matchings in bipartite graphs.

(ii) The matching number of a graph G is the maximum size of a family of

independent edges (edges without shared vertices) in G. Deduce from Hall’s theorem

that if G is a k-regular bipartite graph on n vertices (some k > 0) then G has matching

number n/2.

(iii) Now suppose that G is an arbitrary k-regular graph on n vertices (some k > 0).

Show that G has a matching number at least k
4k−2n. [Hint: Let S be the set of vertices

in a maximal set of independent edges. Consider the edges of G with exactly one endpoint

in S.]

For k = 2, show that there are infinitely many graphs G for which equality holds.

Paper 2, Section II

17F Graph Theory

(i) Define the Turán graph Tr(n). State and prove Turán’s theorem.

(ii) For each value of n and r with n > r, exhibit a graph G on n vertices that has

fewer edges than Tr−1(n) and yet is maximal Kr–free (meaning that G contains no Kr

but the addition of any edge to G produces aKr). In the case r = 3, determine the smallest

number of edges that such aG can have.

Paper 3, Section II

17F Graph Theory

(a) State Brooks’ theorem concerning the chromatic number χ(G) of a graph G . Prove

it in the case when G is 3-connected.

[If you wish to assume that G is regular, you should explain why this assumption is

justified.]

(b) State Vizing’s theorem concerning the edge-chromatic number χ′
(G) of a graph G .

(c) Are the following statements true or false? Justify your answers.

(1) If G is a connected graph on more than two vertices then χ(G) 6 χ′
(G) .

(2) For every ordering of the vertices of a graph G, if we colour G using the greedy

algorithm (on this ordering) then the number of colours we use is at most 2χ(G) .

(3) For every ordering of the edges of a graph G, if we edge-colour G using the

greedy algorithm (on this ordering) then the number of colours we use is at most 2χ
′
(G) .
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Paper 4, Section II

17F Graph Theory

Let X denote the number of triangles in a random graph G chosen from G(n, p).

Find the mean and variance of X. Hence show that p = n−1 is a threshold for the existence

of a triangle, in the sense that if pn → 0 then almost surely G does not contain a triangle,

while if pn → ∞ then almost surely G does contain a triangle.

Now let p = n−1/2, and let Y denote the number of edges of G (chosen as before

from G(n, p)). By considering the mean of Y −X, show that for each n > 3 there exists

a graph on n vertices with at least 1
6n

3/2 edges that is triangle-free. Is this within a

constant factor of the best-possible answer (meaning the greatest number of edges that a

triangle-free graph on n vertices can have)?

Part II, 2009 List of Questions
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1/II/17F Graph Theory

State a result of Euler concerning the number of vertices, edges and faces of a
connected plane graph. Deduce that if G is a planar graph then δ(G) 6 5. Show that if
G is a planar graph then χ(G) 6 5.

Are the following statements true or false? Justify your answers.

[You may quote standard facts about planar and non-planar graphs, provided that
they are clearly stated.]

(i) If G is a graph with χ(G) 6 4 then G is planar.

(ii) If G is a connected graph with average degree at most 2.01 then G is planar.

(iii) If G is a connected graph with average degree at most 2 then G is planar.

2/II/17F Graph Theory

Prove that every graph G on n > 3 vertices with minimum degree δ(G) > n
2 is

Hamiltonian. For each n > 3, give an example to show that this result does not remain
true if we weaken the condition to δ(G) > n

2 − 1 (for n even) or δ(G) > n−1
2 (for n odd).

For any graph G, let Gk denote the graph formed by adding k new vertices to G,
all joined to each other and to all vertices of G. By considering G1, show that if G is a
graph on n > 3 vertices with δ(G) > n−1

2 then G has a Hamilton path (a path passing
through all the vertices of G).

For each positive integer k, exhibit a connected graph G such that Gk is not
Hamiltonian. Is this still possible if we replace ‘connected’ with ‘2-connected’?

Part II 2008

2008
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3/II/17F Graph Theory

Define the chromatic polynomial pG(t) of a graph G. Show that if G has n vertices
and m edges then

pG(t) = ant
n − an−1t

n−1 + an−2t
n−2 − . . .+ (−1)na0,

where an = 1 and an−1 = m and ai > 0 for all 0 6 i 6 n. [You may assume the
deletion–contraction relation, provided it is clearly stated.]

Show that if G is a tree on n vertices then pG(t) = t(t− 1)n−1. Does the converse
hold?

[Hint: if G is disconnected, how is the chromatic polynomial of G related to the
chromatic polynomials of its components?]

Show that if G is a graph on n vertices with the same chromatic polynomial as
Tr(n) (the Turán graph on n vertices with r vertex classes) then G must be isomorphic to
Tr(n).

4/II/17F Graph Theory

For s > 2, let R(s) be the least integer n such that for every 2-colouring of the
edges of Kn there is a monochromatic Ks. Prove that R(s) exists.

For any k > 1 and s1, . . . , sk > 2, define the Ramsey number Rk(s1, . . . , sk), and
prove that it exists.

Show that, whenever the positive integers are partitioned into finitely many classes,
some class contains x, y, z with x+ y = z.

[Hint: given a finite colouring of the positive integers, induce a colouring of the
pairs of positive integers by giving the pair ij (i < j) the colour of j − i.]

Part II 2008
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1/II/17H Graph Theory

LetG be a connected cubic graph drawn in the plane with each edge in the boundary
of two distinct faces. Show that the associated map is 4-colourable if and only if G is 3-edge
colourable.

Is the above statement true if the plane is replaced by the torus and all faces are
required to be simply connected? Give a proof or a counterexample.

2/II/17H Graph Theory

The Ramsey number R(G) of a graph G is the smallest n such that in any red/blue
colouring of the edges of Kn there is a monochromatic copy of G.

Show that R(Kt) 6
(
2t−2
t−1

)
for every t > 3.

Let H be the graph on four vertices obtained by adding an edge to a triangle. Show
that R(H) = 7.

3/II/17H Graph Theory

Let G be a bipartite graph with vertex classes X and Y , each of size n. State and
prove Hall’s theorem giving a necessary and sufficient condition for G to contain a perfect
matching.

A vertex x ∈ X is flexible if every edge from x is contained in a perfect matching.
Show that if |Γ(A)| > |A| for every subset A of X with ∅ 6= A 6= X, then every x ∈ X is
flexible.

Show that whenever G contains a perfect matching, there is at least one flexible
x ∈ X.

Give an example of such a G where no x ∈ X of minimal degree is flexible.

Part II 2007
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4/II/17H Graph Theory

Let G be a graph with n vertices and m edges. Show that if G contains no C4,
then m 6 n

4 (1 +
√
4n− 3).

Let C4(G) denote the number of subgraphs of G isomorphic to C4. Show that if

m > n(n−1)
4 , then G contains at least n(n−1)(n−3)

8 paths of length 2. By considering the
numbers r1, r2, . . . , r(n2)

of vertices joined to each pair of vertices of G, deduce that

C4(G) > 1
2

(
n

2

)(
(n− 3)/4

2

)
.

Now let G = G(n, 1/2) be the random graph on {1, 2, . . . , n} in which each pair of
vertices is joined independently with probability 1/2. Find the expectation E(C4(G)) of
C4(G). Deduce that if 0 < ε < 1/2, then

Pr

(
C4(G) 6 (1 + 2ε)

3

16

(
n

4

))
> ε.

Part II 2007
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1/II/17F Graph Theory

State and prove Euler’s formula relating the number of vertices, edges and faces of
a connected plane graph.

Deduce that a planar graph of order n > 3 has size at most 3n − 6. What bound
can be given if the planar graph contains no triangles?

Without invoking the four colour theorem, prove that a planar graph that contains
no triangles is 4-colourable.

2/II/17F Graph Theory

Let G be a bipartite graph with vertex classes X and Y . State Hall’s necessary
condition for G to have a matching from X to Y , and prove that it is sufficient.

Deduce a necessary and sufficient condition for G to have |X|−d independent edges,
where d is a natural number.

Show that the maximum size of a set of independent edges in G is equal to the
minimum size of a subset S ⊂ V (G) such that every edge of G has an end vertex in S.

3/II/17F Graph Theory

Let R(s) be the least integer n such that every colouring of the edges of Kn with
two colours contains a monochromatic Ks. Prove that R(s) exists.

Prove that a connected graph of maximum degree d > 2 and order dk contains two
vertices distance at least k apart.

Let C(s) be the least integer n such that every connected graph of order n contains,
as an induced subgraph, either a complete graph Ks, a star K1,s or a path Ps of length s.
Show that C(s) 6 R(s)s.

4/II/17F Graph Theory

What is meant by a graph G of order n being strongly regular with parameters
(d, a, b)? Show that, if such a graph G exists and b > 0, then

1

2

{
n− 1 +

(n− 1)(b− a)− 2d√
(a− b)2 + 4(d− b)

}

is an integer.

Let G be a graph containing no triangles, in which every pair of non-adjacent
vertices has exactly three common neighbours. Show that G must be d-regular and
|G| = 1 + d(d+ 2)/3 for some d ∈ {1, 3, 21}. Show that such a graph exists for d = 3.

Part II 2006
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1/II/17F Graph Theory

Show that an acyclic graph has a vertex of degree at most one. Prove that a tree
(that is, a connected acyclic graph) of order n has size n − 1, and deduce that every
connected graph of order n and size n− 1 is a tree.

Let T be a tree of order t. Show that if G is a graph with δ(G) > t− 1 then T is a
subgraph of G, but that this need not happen if δ(G) > t− 2.

2/II/17F Graph Theory

Brooks’ Theorem states that if G is a connected graph then χ(G) 6 ∆(G) unless
G is complete or is an odd cycle. Prove the theorem for 3-connected graphs G.

Let G be a graph, and let d1 + d2 = ∆(G)− 1. By considering a partition V1, V2 of
V (G) that minimizes the quantity d2e(G[V1]) + d1e(G[V2]), show that there is a partition
with ∆(G[Vi]) 6 di, i = 1, 2.

By taking d1 = 3, show that if a graph G contains no K4 then χ(G) 6 3
4∆(G) + 3

2 .

3/II/17F Graph Theory

Let X and Y be disjoint sets of n > 6 vertices each. Let G be a bipartite
graph formed by adding edges between X and Y randomly and independently with
probability p = 1/100. Let e(U, V ) be the number of edges of G between the subsets
U ⊂ X and V ⊂ Y . Let k = dn1/2e. Consider three events A, B and C, as follows.

A : there exist U ⊂ X, V ⊂ Y with |U | = |V | = k and e(U, V ) = 0

B : there exist x ∈ X, W ⊂ Y with |W | = n− k and e({x},W ) = 0

C : there exist Z ⊂ X, y ∈ Y with |Z| = n− k and e(Z, {y}) = 0 .

Show that Pr(A) 6 n2k(1 − p)k
2

and Pr(B ∪ C) 6 2nk+1(1 − p)n−k. Hence show that
Pr(A∪B ∪ C) < 3n2k(1− p)n/2 and so show that, almost surely, none of A, B or C occur.
Deduce that, almost surely, G has a matching from X to Y .

4/II/17F Graph Theory

Write an essay on extremal graph theory. Your essay should include the proof of
at least one extremal theorem. You should state the Erdős–Stone theorem, as well as
describing its proof and showing how it can be applied.
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